18.155 LECTURE 6
26 SEPTEMBER 2017

RICHARD MELROSE

ABSTRACT. Notes before and after lecture — if you have questions, ask!

Read: T have changed the order of material from the section ‘Convolution and
density’ and some of the proofs but it would still be appropriate to read that!

Separation — if K € 2 C R™ is a compact subset of an open set then there exists
0 < x € C*(N) such that x =1 on K.

Partition of unity. If Q; C R™ are a collection of open sets and K & J, §2; is
compact then there exist finitely non-zero 0 < x; € C°(£2;) such that

(1) inzlon K.

Can make the equality on a small neighbourhood of K.
We defined condition that v € S'(R™) ‘vanishes on an open set ' (written u = 0
on €2 to mean

(2) u(@) =0V ¢ €C(Q).
This only make sense because:
Lemma 1. If u =0 on open sets ; then u =0 on Q = J, ;.

Proof. if p € C°(€2) then take a partition of unity satisfying (1) for K = supp(u).
Then x;u € C°(2;) so

(3) u(p) = u(d_ xip) =D ulxip) =0
where the sums are finite. O

So now we can define for any element u € §'(R"™)
(4) supp(u) = R™\ U{Q C R" open such that u =0 on Q}.

So the support is the complement of the largest open set on which the distribution
vanishes.

As part of the homework this week I ask you to give a different characterization
(as a dual space) of

(5) Ce () = {u € S'(R"); supp(u) € O}

(note that the supports are required to be compact).
I should also mention here the notion of exhaustion of an open set 2 C R™ by
compact subsets K; € . We can choose these so that K; is the closure of its
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interior, so that K is contained in the interior of K;4; for all j and such that for
any compact subset K € €}, K C K; for some j. In particular this implies that

Uk, =a
J

How to get such an exhaustion? Try

(6) Kj={z € %z < j and d(z,°) = inf d(x,y) 2 1/7}

starting at j large enough so that these have interiors. Note that the distance to a
closed set in this sense is continuous.

Proposition 1. A distribution u € S'(R™) with supp(u) C {0} is a finite sum
™ i= 3 caddo
la| <N
of the Dirac mass at 0, §o(¢) = ¢(0).
Proof. We know two things about u. From the argument for density of C$°(R™) in
S(R™) we see that
(8) u(p) =01if p € S(R™) and ¢ =0 in {|z| < €,e > 0}

where of course € can vary with ¢. Secondly we know that w is continuous so for
some N,

(9) lu(@)] < C sup 2207 ().

|a|+|BI<N, zeR™
As usual, we need a result about test functions:

Lemma 2. The closure of the subset of S(R™) consisting of the elements with
0 ¢ supp(¢) with respect to the norm in (9) contains

(10) {6 € S(R");079(0) =0 ¥ || < N}

Certainly this is necessary since convergence in this norm implies uniform con-
vergence of all derivatives up to order N in a neighbourhood of 0 and since these
vanish at 0 for all ¢ with 0 ¢ supp(¢) they must vanish on the closure. Conversely
we just try a cut-off. Choose x € C°(R™) with x(x) = 1 in some neighbourhood of
0 and for ¢ € S(R™) look at

(11) ¢n = (1 = x(zn))¢ € S(R").
Then, provided 9°¢(0) = 0 for |8| < N, ¢, — ¢ with respect to the norm in (9).

This proves the lemma.
Now, using the same y for a general 1) € S(R™) set

(12) o=v— )

It follows that u(¢) = 0 so

(13) w() = 3 cad®(0)

proves the result. [
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Other things to try at this stage:- Show in dimension one that

(14) Z—u = 0 = u = c a constant function.
x
Also,
d !/ n / n
(15) —:S'(R") — S'(R™)

dx
is surjective.
Defining distributions on a general open set 2 C R™.
The sheaf properties
Convolution and supports, extension to distributions.
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