BRIEF NOTES FOR 18.155 LECTURE 5 21 SEPTEMBER 2017

RICHARD MELROSE

Abstract.

Sobolev embedding theorem recalled and proved – see Lecture 4.

Corollary 1. An element $u \in \mathcal{S}'(\mathbb{R}^n)$ is in $\mathcal{S}(\mathbb{R})$ if and only if

(1)
$$(1+|x|^2)^k(1+\Delta)^k u \in L^2(\mathbb{R}^n) \ \forall \ k, \ (\Delta = -\partial_1^2 - \dots - \partial_n^2)$$

and the countably many norms

$$\|(1+|x|^2)^k(1+\Delta)^k u\|_{L^2}$$

give the topology on $\mathcal{S}(\mathbb{R}^n)$.

(2)

The norms 'the other way around' $||(1 + \Delta)^k (1 + |x|^2)^k u||_{L^2}$ are equivalent.

[Maybe it isn't a corollary if it requires a proof!]

Proof. We know that $(1 + \Delta)^k u \in L^2(\mathbb{R}^n)$ implies that $u \in H^{2k}(\mathbb{R}^n)$. So from (2) by taking the Fourier transform we find that

(3)
$$(1 + \Delta_{\xi})^{k} (1 + |\xi|^{2})^{k} \hat{u} \in L^{2} \Longrightarrow (1 + |\xi|^{2})^{k} \hat{u} \in H^{2k}(\mathbb{R}^{n}) \Longrightarrow$$

 $(1 + |\xi|^{2})^{k} \hat{u} \in \mathcal{C}_{\infty}^{k}(\mathbb{R}^{n}), \ k > n/2.$

This gives the finiteness of the norms $\sup |\partial^{\alpha} x^{\beta} \hat{u}|$ so $\hat{u} \in \mathcal{S}(\mathbb{R}^n)$.

These are all Hilbert norms and the fact that $\mathcal{S}(\mathbb{R}^n)$ is a 'projective limit of Hilbert spaces' in this sense is quite significant.

What more do we want to know about Sobolev spaces. One important property is duality:-

Proposition 1. For any $s \in \mathbb{R}$ the integral pairing

(4)
$$\mathcal{S}(\mathbb{R}^n) \times \mathcal{S}(\mathbb{R}^n) \ni (\phi, \psi) \longmapsto \int \phi \psi \in \mathbb{C}$$

extends by continuity to a perfect pairing

(5)
$$H^{s}(\mathbb{R}^{n}) \times H^{-s}(\mathbb{R}^{n}) \longrightarrow \mathbb{C}$$

i.e. such that every continuous linear functional on $H^s(\mathbb{R}^n)$ is represented by a unique element of $H^{-s}(\mathbb{R}^n)$ (and the other way around of course!)

Also we have 'representability':- For any $k \in \mathbb{N}_0$ each element of $H^s(\mathbb{R}^n)$ is of the form

(6)
$$u = \sum_{|\alpha| \le k} \partial^{\alpha} u_{\alpha}, \ u_{\alpha} \in H^{s+k}(\mathbb{R}^n).$$

Restriction to a hypersurface (also higher codimension subspaces).

Lemma 1. If $s > \frac{1}{2}$ the restriction map

(7)
$$\mathcal{S}(\mathbb{R}^n) \ni \phi \longmapsto \phi(0, \cdot) \in \mathcal{S}(\mathbb{R}^n)$$

extends by continuity to a surjective map

(8)
$$\Big|_{x_1=0}: H^s(\mathbb{R}^n) \longrightarrow H^{s-\frac{1}{2}}(\mathbb{R}^{n-1}).$$

The surjectivity is not quite so easy to see.

What about the fractional-order spaces, what do they really represent? Notes Prop 5.7

Proposition 2. For any 0 < s < 1, if $u \in L^2(\mathbb{R}^n)$ then $u \in H^s(\mathbb{R}^n)$ if and only if

(9)
$$\int_{\mathbb{R}^{2n}} \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} dx dy < \infty$$

Schwartz struture theorem:

Proposition 3. Any element of
$$\mathcal{S}'(\mathbb{R}^n)$$
 can be written uniquely in the form

(10)
$$u = (1+|x|^2)^k (\Delta+1)^p v, \ v \in L^2(\mathbb{R}^n)$$

for some integers k and p (and any larger ones).

Proof. Proof in Problem set 3. Using the Sobolev embedding theorem it follows that for $\phi \in \mathcal{S}(\mathbb{R}^n)$,

(11)
$$\sup |\partial^{\alpha} \langle x \rangle^{k} \phi| \leq C_{s} || \langle x \rangle^{k} \phi||_{H^{s}}, \ s > |\alpha| + n/2.$$

In particular each of the norms on $\mathcal{S}(\mathbb{R}^n)$ has a bound

(12)
$$\|\phi\|_N \le C \|\langle x \rangle^k \phi\|_{H^s}$$

where C and s only depend on N. This is discussed above.

It follows that any element $u \in \mathcal{S}'(\mathbb{R}^n)$, which has to be bounded by some norm, satisfies

(13)
$$|u(\phi)| \le C ||\langle x \rangle^k \phi||_{H^s}$$

for some k and s (which can be taken equal in fact). This means (14)

$$|\langle x \rangle^{-k} u \rangle (\phi)| \le C ||\phi||_{H^s} \Longrightarrow \langle x \rangle^{-k} u \in H^{-s} \Longrightarrow u = \langle x \rangle^k (1+\Delta)^p v, \ v \in L^2(\mathbb{R}^n)$$

for some k and p.

for some k and p.

So 'what we have done' in defining $L^2(\mathbb{R}^n)$ is to give a consistent description of differentiation, and multiplication by functions of polynomial growth, of L^2 functions.

Support of a tempered distribution.

Distributions supported at a point.

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY *E-mail address*: rbm@math.mit.edu