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As we saw last week a linear differential operator with smooth coefficients on an
open set U ⊂ Rn

(1) P (x,Dx) =
∑
|α|≤m

pα(x)Dα
x , pα ∈ C∞(U),

has a ‘principal symbol’

(2) Pm(x, ξ) =
∑
|α|=m

pα(x)ξα ∈ C∞(T ∗U)

which is a well-defined function on the cotangent bundle – the symbol ‘transforms
as a function’ on T ∗U if you change coordinates.

What we are aiming to prove is elliptic regularity in open sets. The differential
operator gives a map

(3) P : C−∞(U) −→ C−∞(U)

Theorem 1. If P is elliptic in U, i.e. Pm(x, ξ) 6= 0 if 0 6= ξ ∈ Rn then

(4)
P (x,Dx) : C−∞(U) −→ C−∞(U) and

P (x,Dx)u ∈ Hs
loc(U)⇐⇒ u ∈ Hs+m

loc (U)

Let’s recall the constant coefficient case. Then U = Rn and pm(ξ) really is a
polynomial. We defined a distribution in S ′(Rn) by

(5) b̂ = a(ξ) =
1− φ(ξ)

p(ξ)
.

Here φ ∈ C∞c (Rn) is equal to 1 on a large set so that the denominator is non-zero
on the complement, as is possible by ellipticity. Then we showed some nice things
about b. In fact, what we did was ‘encapsulate’ some estimates satisfied by a into
the definition of a space of ‘symbols’

(6) a ∈ SM (Rn) =⇒ a ∈ C∞(Rn) and ‖a‖M,p = sup
|α|≤p

〈ξ〉−M+|α||Dαa(ξ)| <∞.

This means any derivative Dα
ξ a has absolute value bounded by a constant multiple

of (1 + |ξ|)M−|α|. As usual, the ‖a‖M,p give a Fréchet topology to SM (Rn) – it is a
complete metric space.

Now, what we showed about b, as the inverse Fourier transform of an element of
SM (Rn), in this case for M = −m, is that it is singular only at the origin and is
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the sum of a compactly supported distribution and an element of S(Rn). That is,

(7) G : SM (Rn) −→ S ′(Rn),

and if χ ∈ C∞c (Rn), χ ≡ 1 in B(0, ε), ε > 0 then

(1− χ)G : SM (Rn) −→ S(Rn)

are continuous maps. Thus each S(Rn) norm on (1−χ)b is bounded by a multiple
of some ‖a‖M,p.

Then we looked at the operator defined by convolution with b. The decay of b
means that convolution with any element of S ′(Rn) is well-defined and

(8) P (b ∗ f) = f + E ∗ f, b ∗ (Pu) = u+ E ∗ u, E ∈ S(Rn), f ∈ S ′(Rn).

From this and a little playing with localization, namely showing that b∗ is a ‘pseu-
dolocal operator’

(9) singsupp(b ∗ u) ⊂ singsupp(u), ∀ u ∈ S ′(Rn),

the result (4) follows – this is the constant coefficient case.
So, how to generalize this; it will take us a little while.
First we can see that it is enough to work near a given point in U. We want to

escape the problems related to the open set U and get back to that at the end. So,
take p ∈ U and χ ∈ C∞c (U) which is supported very close to p and equal to 1 in a
slightly smaller neighborhood of p. Then look at

(10) P ′(x,D) = χP (x,D) + (1− χ)P (p,D).

This has smooth coefficients which are constant outside a compact set and it is
equal as an operator to P (x,D) when applied to functions supported sufficiently
close to p. Moreover if the support of χ is sufficiently small

P ′(x,D) =
∑
|α|≤m

p′α(x)Dα is elliptic globally.

So we will proceed to discuss regularity for P ′(x,D) and then come back to
P (x,D) itself afterwards. I will drop the ‘prime’ and for the moment consider

(11) P (x,D) = P∞(D) +
∑
|α|≤m

qα(x)Dα, qα ∈ S(Rn)

which certainly includes P ′(x,D). We will assume that P is elliptic, which implies
that the constant coefficient operator at infinity, P∞(D), is also elliptic.

This means that we actually have uniform ellipticity, that there is actually a
constant C and a positive constant c such that

(12) |p(x, ξ)| ≥ c|ξ|m in |ξ| ≥ C.
So, we can just use one cut-off χ ∈ C∞c (Rn), to excise the zeros and look at the
smooth function

(13) a(x, ξ) =
1− χ(ξ)

p(x, ξ)
.

You could just use the principal part here in place of the whole ‘characteristic poly-
nomial’ but let me follow the construction in the constant coefficient case closely.
Clearly

(14) p(x, ξ)a(x, ξ) = 1− χ(ξ)
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as before.
Now, the idea is to ‘quantize’ a into an operator a(x,D), generalizing the re-

lationship between p(x,D) and p(x, ξ). Before doing that, let’s notice that a is a
‘variable coefficient symbol’ as one might expect. In fact this is just called a symbol
anyway. We know what happens when we differentiate with respect to ξ and the
same inductive argument really applies to derivatives with respect to x.

Lemma 1. The function a in (13) satisfies

(15)
a = a∞ + ã, a∞ ∈ SM (Rn),

sup
Rn×Rn

|∂βx∂ξã(x, ξ)| ≤ CN,α,β〈x〉−N 〈ξ〉M−|β|, ∀ α, β ∈ Nn0 , N, M = −m.

In fact in the case at hand, ã has compact support in x so the decay in x is
trivial and all we are saying is that derivatives with respect to x do not affect the
decay in ξ.

Another way of describing these estimates is that

(16) a ∈ SM (Rn) + S(Rnx ;SM (Rn)), M = −m.

This is how we will think about it in fact, that the variable part is just a ‘symbol
valued Schwartz function’.

Now, we want to turn a(x, ξ) into an operator in a way which is consistent with
how p(x, ξ) is related to P (x,D) and in the constant coefficient case to how a(ξ)
is relate to b∗ = a(D). The way we have written out differential operators is with
‘coefficients on the left’ – first differentiate and then multipl. For a product of a
function and a constant coefficient symbol this clearly means

(17) f(x)a(ξ) 7−→ f(x)b(y − x), b̂ = a.

We can do this in general:-

Proposition 1. The partial Fourier transform

(18) Fz→ζS(Rn × Rn) 3 b(x, z) 7−→ a(x, ζ), Fz→ζb = a(x, ζ) =

∫
e−iz·ζb(x, z)dz

is an ismomorphism of S(R2n) to S(R2n) which extends to an isomorphism of
S ′(R2n) to S ′(R2n).

Since the Schwartz Kernel Theorem tells us that operators S(Rn) −→ S ′(Rn)
are in 1-1 correspondence with elements of S ′(R2n) we can certainly get this sort
of operator by taking the partial inverse Fourier transform

(19)

a(x, ξ) 7−→ b(x, y − x), Fz→ζb(x, z) = a(x, ζ)

b(x, x− z) = (2π)−n
∫
ei(y−x)·ξa(x, ξ)

where the second formulation is more poetic perhaps, but of course it is fine on
Schwartz functions.

Definition 1. A pseudodifferential operator a(x,Dx) ∈ ΨM
S (Rn) (slightly special

because of the restrictions on the symbol which is why I hav added the subscript)
is an operator S(Rn) −→ S ′(Rn) with Schwartz kernel b(x, y−z) where b ∈ S ′(R2n)
is given by (19) with a as in (16)
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This would be pretty useless unless we can find some good properties. The first
two are:
(20)
a(x,Dx) ∈ ΨM

S (Rn) =⇒ a(x,Dx) : Hs(Rn) −→ Hs−M (Rn) is bounded ∀ s ∈ R
and

(21) a(x,Dx) ∈ ΨM
S (Rn), P (x,Dx) as in (13) =⇒

P (x,Dx)a(x,Dx) = r(x,Dx) ∈ Ψm+M
S (Rn),

r(x, ξ)− P (x,Dx)a(x,Dx) ∈ Sm+M−1(Rn) + S(Rn;Sm+M−1(Rn).

These, and other properties, are not so hard to prove. Before doing that, notice
that (21) which holds if a(x,Dx) happens to be a differential operator of the same
type as P (x,D) is pretty much what we want. It says that for the a(x, ξ) in (13),
constructed from an elliptic P (x,Dx) we get

(22) P (x,Dx)a(x,Dx) = Id−E ∗+R(x,Dx), R(x,Dx) ∈ Ψ−1S (Rn).

Combined with (20) this shows that

(23) u ∈ H−N (Rn), P (x,Dx)u ∈ Hs(Rn) =⇒ u ∈ Hm+s(Rn).
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