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As we saw last week a linear differential operator with smooth coefficients on an
open set U C R"

(1) P(z,D;) = Z pa(@) D3, pa € C™(U),
|| <m
has a ‘principal symbol’
(2) Pu(2,6) = Y pa(2)™ € C(T*U)
|a]=m

which is a well-defined function on the cotangent bundle — the symbol ‘transforms
as a function’ on T*U if you change coordinates.

What we are aiming to prove is elliptic regularity in open sets. The differential
operator gives a map

(3) P:C®(U) — C™>(U)

Theorem 1. If P is elliptic in U, i.e. Py(x,£) #0 if 0 £ & € R™ then
P(z,D,):C~*°(U) — C™>°(U) and

P(z,D,)u € H (U) <= u e HZT™(U)

loc

(4)

Let’s recall the constant coefficient case. Then U = R™ and p,, (&) really is a
polynomial. We defined a distribution in S’(R™) by

®) b=ate) = =2,

Here ¢ € C°(R™) is equal to 1 on a large set so that the denominator is non-zero
on the complement, as is possible by ellipticity. Then we showed some nice things
about b. In fact, what we did was ‘encapsulate’ some estimates satisfied by a into
the definition of a space of ‘symbols’

6) aeSMR") = aeC®R") and ||a|r, = sup (€)M D(E)| < 0.
le|<p

This means any derivative D¢'a has absolute value bounded by a constant multiple
of (1+ [¢))M~lel. As usual, the ||a|ar,p give a Fréchet topology to SM(R™) — it is a
complete metric space.
Now, what we showed about b, as the inverse Fourier transform of an element of
SM(R™), in this case for M = —m, is that it is singular only at the origin and is
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the sum of a compactly supported distribution and an element of S(R™). That is,
(1) G:SM(R") — S'(R"),
and if y € C°(R™), x =1 in B(0,€), € > 0 then
(1-x)G: SMR") — S(R™)

are continuous maps. Thus each S(R™) norm on (1 — x)b is bounded by a multiple
of some ||al|as,p-

Then we looked at the operator defined by convolution with . The decay of b
means that convolution with any element of §'(R™) is well-defined and

(8) Pbxf)y=f+FExf bx(Pu)=u+FE=xu, E€SR"), feS'(R").

From this and a little playing with localization, namely showing that bx is a ‘pseu-
dolocal operator’

(9) singsupp(b * u) C singsupp(u), V u € S'(R"),

the result (4) follows — this is the constant coefficient case.

So, how to generalize this; it will take us a little while.

First we can see that it is enough to work near a given point in U. We want to
escape the problems related to the open set U and get back to that at the end. So,
take p € U and x € C°(U) which is supported very close to p and equal to 1 in a
slightly smaller neighborhood of p. Then look at

(10) P'(z, D) = xP(z, D) + (1 - x)P(p, D).

This has smooth coefficients which are constant outside a compact set and it is
equal as an operator to P(x, D) when applied to functions supported sufficiently
close to p. Moreover if the support of x is sufficiently small

P'(z,D) = Z pl, () D" is elliptic globally.

la<m

So we will proceed to discuss regularity for P’(x, D) and then come back to
P(z, D) itself afterwards. I will drop the ‘prime’ and for the moment consider

(11) P(z,D) = Ps(D) + > qa(z)D*, g € S(R™)

la|<m

which certainly includes P'(x, D). We will assume that P is elliptic, which implies
that the constant coefficient operator at infinity, P, (D), is also elliptic.

This means that we actually have uniform ellipticity, that there is actually a
constant C' and a positive constant ¢ such that

(12) Ip(z, )| = cl¢™ in [¢] = C.

So, we can just use one cut-off x € C°(R™), to excise the zeros and look at the
smooth function

_1=x(9)

You could just use the principal part here in place of the whole ‘characteristic poly-
nomial’ but let me follow the construction in the constant coefficient case closely.
Clearly

(14) p(z,&a(z, &) =1 - x(¢)
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as before.

Now, the idea is to ‘quantize’ a into an operator a(z, D), generalizing the re-
lationship between p(z, D) and p(x,&). Before doing that, let’s notice that a is a
‘variable coefficient symbol’ as one might expect. In fact this is just called a symbol
anyway. We know what happens when we differentiate with respect to £ and the
same inductive argument really applies to derivatives with respect to x.

Lemma 1. The function a in (13) satisfies
a = oo + @, s € SM(R™),

(15)  sup 1080, €)| < Cnapla) V(M ¥ 0, € N2, N, M = —m.
R"L >< R’ll

In fact in the case at hand, @ has compact support in = so the decay in x is
trivial and all we are saying is that derivatives with respect to x do not affect the

decay in &.
Another way of describing these estimates is that
(16) a € SMR™) + SR SM(R™)), M = —m.

This is how we will think about it in fact, that the variable part is just a ‘symbol
valued Schwartz function’.

Now, we want to turn a(z,£) into an operator in a way which is consistent with
how p(z,&) is related to P(x, D) and in the constant coefficient case to how a(§)
is relate to b* = a(D). The way we have written out differential operators is with
‘coefficients on the left’ — first differentiate and then multipl. For a product of a
function and a constant coefficient symbol this clearly means

(17) f@)a(€) — f(@)b(y — ), b=a.

We can do this in general:-

Proposition 1. The partial Fourier transform

(18) FomuscS(R™ x R™) 3 b(x, z) — a(x, (), Foueb=a(z,{) = /efiz'cb(:z:,z)dz
is an ismomorphism of S(R®") to S(R?") which extends to an isomorphism of
S'(R?) to S'(R2"™).

Since the Schwartz Kernel Theorem tells us that operators S(R") — S'(R™)
are in 1-1 correspondence with elements of S'(R?") we can certainly get this sort
of operator by taking the partial inverse Fourier transform

a(z, &) — b(z,y — x), Faseb(z, 2) = a(z, ()
e,z —2) = (277)7”/61'(7’71)‘5(1(1:,5)

where the second formulation is more poetic perhaps, but of course it is fine on
Schwartz functions.

(19)

Definition 1. A pseudodifferential operator a(z, D,) € WX (R") (slightly special
because of the restrictions on the symbol which is why I hav added the subscript)
is an operator S(R") — S'(R") with Schwartz kernel b(x,y— z) where b € S'(R?*")
is given by (19) with a as in (16)
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This would be pretty useless unless we can find some good properties. The first
two are:

(2221‘, D,) € V¥ (R") = a(z, D,) : H*(R") — H* "M (R") is bounded V s € R
and
(21) a(x,D,) € T¥(R"™), P(z,D,) as in (13) =
P(z,D;)a(z, Dy) = r(z,D,) € UETM(R™),
r(z,&) — P(x, Dy)a(x, D) € STTM-I(R") + S(R™; S™TM—1(R™),

These, and other properties, are not so hard to prove. Before doing that, notice
that (21) which holds if a(z, D,) happens to be a differential operator of the same
type as P(x, D) is pretty much what we want. It says that for the a(z, ) in (13),
constructed from an elliptic P(x, D,) we get

(22) P(z,D,)a(x,D,) =1d—E * +R(z, D,), R(z,D,) € U5 (R").
Combined with (20) this shows that
(23) ue€ HN(R™), P(z,Dy)u € H*(R") = u € H™T*(R").
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