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Up-coming:

(1) Harmonic oscillator
(2) Diffeomorphisms of open sets
(3) Densities and duality
(4) Distributions on manifolds
(5) Sobolev spaces

(1) Harmonic oscillator
(2) Diffeomorphisms of open sets

A smooth map between open sets of Rn is a map F : U1 −→ U2 with
components in C∞(U1).

Pull-back is the continuous map given by composition:

(1) F ∗ : C∞(U2) −→ C∞(U1), F ∗φ = φ ◦ F.

Notice this is ‘contravariant’. If G : U2 −→ U3 is smooth then (G ◦ F )∗ =
F ∗ ◦G∗.

The continuity of F ∗ means we get a transpose map ‘push-forward’ on
compactly supported distributions, C−∞c (U) = C∞(U)′ :

(2) F∗ : C−∞c (U1) −→ C−∞c (U2), (F∗u)(ψ) = u(F ∗ψ), ψ ∈ C∞(U2).

Even if u ∈ C∞c (U1) ⊂ C−∞c (U1), F∗u will not usually be smooth. For
instance if F (x) = y0 is a constant map then you will see that

(3) F∗(u) = cδy0
, c =

∫
u(x)dx.

(3) Now a smooth map F : U1 −→ U2 is a diffeomorphism if it has a smooth
inverse – it is a bijection and the inverse map G : U2 −→ U1 is also smooth
(it is easy to find smooth bijections which do not have smooth inverses,
such as x 7−→ x3 on R).

For a diffeomorphism, F ∗ : C∞(U2) −→ C∞(U1) is an isomorphism,
with continuous inverse G∗.

In the case of a diffeomorphism several things happen but let’s concen-
trate on the problem. Namely in this case if u ∈ C∞c (U1) then F∗u ∈ C∞c (U2)
but it is not always equal to G∗u ∈ C∞c (U2)! So we have at the very least a
notational issue. What happens:-

(4) F∗u(ψ) = u(F ∗ψ) =

∫
u(x)ψ(F (x))dx =

∫
u(G(y))ψ(y)|JG(y)|dy,

JG(y) = det
∂Gi(y)

∂yj
.
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So the issue is the change of variable formula for integration, which involves
the absolute value of the determinant of the Jacobian matrix, giving us

(5) F∗u = (G∗u)|JG(y)|.

So there is a problem with coordinate transformations, but it is clearly
a mild one. The problem can be traced back to our identification of C∞c (U)
with a subspace of C−∞c (U) = (C∞(U))′. Something has to give.

The solution is not to break this identification, at least not really. It is
simply to ‘carry along the density factor with us’. So, we want to give the
part of the integration formula f(x)dx = f(x)|dx| (where dx or, better |dx|
is the Lebesgue density; the second notation is better than the first but not
usually adhered to) an independent meaning, so that when use integration
to get our pairing we think of it as

(6) (f, g|dx|) −→
∫
f(x)g(x)|dx|.

This is no longer symmetric. Of course on Euclidean space we always have
Lebesgue measure at our disposal so we can think of g|dx| as just being g.
When we change coordinates this does not work so well!

(4) Densities and duality: Let’s go about this repair mission carefully. We are
still working with open subsets of Rn but now we think of them as manifolds
and try keep more careful track of things.

On an open subset U ⊂ Rn the tangent bundle of U is just

(7) TU = U × Rn

What exactly is the tangent bundle? It is another manifold, constructed
tradionally from curves in the given manifold, U. So consider for each point
p ∈ U the smooth curves say χ : (−1, 1) −→ U such that χ(0) = 0. Then
the tangent space should be

(8) TpU = {χ ∈ C∞((−1, 1);U);χ(0) = p}/ ',
χ1 ' χ2 if they are equal to first order at 0.

Here of course the equivalence condition is vague. On Rn we have several
ways to interpret this. The easiest is to replace the general χ by the linear
(affine) maps through p. Obviously this depends on the linear structure.
The second is to use the derivatives at 0, this uses the linear structure
as well. A third, more general method is to look at the ideal of smooth
functions which vanish at p, Ip ⊂ C∞(U). If f ∈ C∞(U) the composite, χ∗f
is a smooth function on (−1, 1) so we can say

(9) χ1 ' χ2 =⇒ χ∗1(fg)− χ∗2(fg) = O(t2) ∀ f, g ∈ Ip.

This only uses the linear structure on C∞((−1, 1)) and so makes sense much
more generally. The finite linear span of the products of pairs of elements
of Ip is the ideal I2p (by definition) so

(10) χ1 ' χ2 =⇒ χ∗1(u)− χ∗2(u) = O(t2) ∀ u ∈ I2p .

Now the derivative of the curve gives the standard identification

(11) TpU 3 [χ] −→ dχ

dt
(0) ∈ Rn
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which is (7). This is all pedantic stuff, but it pays to get it clear. It
means that the Jacobian, also called the differential, of a smooth map is
well-defined

(12) F∗ : TpU1 −→ TF (p)U2, F∗[χ] = [χ ◦ F ]

since F ∗IF (p) ⊂ Ip =⇒ F ∗I2F (p) ⊂ I
2
p

You should check carefully that according to the identification above, using
the chain rule,

(13) F∗ : TpU1 = Rn −→ TF (p)U2 = Rn is the Jacobian matrix F∗ =
∂Fi

∂xj
.

Now we recall some linear alebra. If V, W are finite dimensional vector
spaces over the reals then the duals, V ′ W ′ are well-defined and

(14) V ⊗W = {B : V ′ ×W ′ −→ R bilinear}
is one possible definition of the tensor product. So v ⊗ w ∈ V ⊗W, (the
‘dyadic product’) for v ∈ V and w ∈W is the element such that

(15) (v ⊗ w)(v′, w′) = v(v′)w(w′).

There is a natural isomorphism V ×W −→W ⊗ V given by switching the
order. If V = W then the higher tensor powers V ⊗k have an action of the
permutation group Σk by order switching and the subspace

(16) λkV ⊂ V ⊗k of totally antisymetric elements

is of particular importance (so is the symmetric part, especially for k = 2!)
If L : V1 −→ V2 is linear then there are induced linear maps Lk :

V ⊗k1 −→ V ⊗k2 and these restrict to Lk : λkV −→ λkV. Of particular impor-
tance for us for the moment is that

(17) if k = dimV,Lk = detL : λkV −→ λkV

where the ‘maximal degree’ λkV is one-dimensional. This is not so much a
theorem as a definition.

Now for the slightly confusing part. On a manifold (of course for the
moment I am only talking about open subsets of Rn but I am doing it in
such a way that it generalizes directly) the cotangent bundle is the dual of
Tp but we can define it directly

(18) TpU = Ip/I2p
and see that it is naturally identified with the dual of Tp from the definition
of the latter. One slightly confusing thing is that the form bundles have
fibres at each point

(19) Λk
pU = λkT ∗pU

which is why I was using a ‘little λ’ above.
(5) Now, if F : U1 −→ U2 is a smooth map then F ∗(IF (p)) ⊂ Ip for any p ∈ U1

and so

(20) F ∗ : T ∗F (p)U2 −→ T ∗pU1

is also often called the differential – because it is the transpose of F∗ :
TpU1 −→ TF (p)U2.
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Now you should do the little computation to see that the induced map
on maximal forms

(21) F ∗ : Λn
F (p)U2 −→ Λn

pU1 is det
∂Fi

∂xj

the determinant of the Jacobian.
(6) So the problem is that we need to get the absolute value of this determinant

into the picture to handle the way our integrals transform. To do this we
make the following observation. For any vector space V of dimension n
there is a natural isomorphism

(22) λnV = (λnV ′)′.

That is, the elements of λnV are just the linear maps

(23) υ : λnV ′ −→ R, n = dimV.

Now, this is just a one-dimensional vector space but there is another one-
dimensional vector space which is very similar but not the same. Namely
we can consider

(24) ωV = {µ : λnV ′ −→ R;µ(sw) = |s|µ(w) ∀ s ∈ R, w ∈ λnV ′}.

In higher dimensions this would not be a vector space, but in dimension one
it is – the space of absolutely homogeneous functions of degree 1. Check it
carefully! Notice that

(25) υ ∈ λnV =⇒ |υ| ∈ ωV.

This of course is not a linear map
On a manifold (open subset U ⊂ Rn) we define

(26) ΩpU = ω(T ∗pU).

These fit together to form a smooth manifold ΩU = U × R.
A very important point is that the Lebesgue measure gives a smooth

section of this one dimensional (trivial) bundle.
Note that this ‘density bundle’ is trivial on any manifold, which is not

the case for its close relative ΛnM – which is trivial only when the manifold
is orientable. Still ΩM is not canonically trivial. Over Rn it is trivialized
by the Lebesgue measure.

You can also write

(27) ΩM = |ΛnM |, n = dimM.

A smooth n-form ν on M does define a section |ν| of ΩM but it is not
smooth unless the n-form is non-vanishing, in which case the manifold is
orientable. Still, ΩM always has a global positive (this makes sense) smooth
section – it just does not have a natural one.

(7)

Proposition 1. If F : U1 −→ U2 is a diffeomorphism (it doesn’t work for
general smooth maps) between open subsets of Rn, then there is a natural
pull-back map

(28) F ∗ : ΩF (p)U2 −→ ΩpU1
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given by multiplcation by |det ∂F
∂x | so taking smooth sections to smooth sec-

tions. If u ∈ C∞c (U ; ΩU) is a smooth (even continuous) section of compact
support then the integral

(29)

∫
u ∈ R is well-defined and

∫
U1

F ∗u =

∫
U2

u ∀ u ∈ C∞(U2; ΩU2).

(8) Distributions on manifolds:-
Let me write down formally what happens, all this can be deduced from

the discussion above. On any smooth manifold, M, there is a well-defined,
naturally oriented real line bundle, the density bundle ΩM, such that there
is an invariant integral

(30)

∫
: C∞c (M ; ΩM) −→ C

(if we allow complex sections). This induces a pairing

(31) C∞(M)× C∞c (M ; ΩM) 3 (u, φ) −→ uφ −→
∫
uφ.

We use this map C∞(M) into the dual C−∞(M) = (C∞c (M ; Ω))′ (this is
a definition of C−∞(M). We also define C−∞c (M ; Ω) = (C∞(M))′ and the
same pairing gives us an injection C∞c (M ; ΩM) −→ C−∞c (M ; ΩM).

Now, if F : M1 −→M2 is a smooth map there are induced linear maps

(32)

F ∗ : C∞(M2) −→ C∞(M1),

F∗ : C−∞c (M1; ΩM1) −→ C−∞c (M2; ΩM2)

s.t. F∗((F
∗u)v) = uF∗v ∀ u ∈ C∞(M2), v ∈ C−∞c (M1; ΩM1).

If we choose a global smooth positive section 0 < ν ∈ C∞(M ; ΩM) then
multiplcation extends to isomorphisms

(33) C∞(M)ν̇ = C∞(M ; ΩM), C−∞(M)ν̇ = C−∞(M ; ΩM).

Saying more might be confusing!
(9) Sobolev spaces
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