18.155 LECTURE 16, 2015

RICHARD MELROSE

Up-coming:

(1)

- (1) Harmonic oscillator
- (2) Diffeomorphisms of open sets
- (3) Densities and duality
- (4) Distributions on manifolds
- (5) Sobolev spaces
- (1) Harmonic oscillator
- (2) Diffeomorphisms of open sets

A smooth map between open sets of \mathbb{R}^n is a map $F: U_1 \longrightarrow U_2$ with components in $\mathcal{C}^{\infty}(U_1)$.

Pull-back is the continuous map given by composition:

$$F^*: \mathcal{C}^{\infty}(U_2) \longrightarrow \mathcal{C}^{\infty}(U_1), \ F^*\phi = \phi \circ F.$$

Notice this is 'contravariant'. If $G: U_2 \longrightarrow U_3$ is smooth then $(G \circ F)^* = F^* \circ G^*$.

The continuity of F^* means we get a transpose map 'push-forward' on compactly supported distributions, $C_c^{-\infty}(U) = C^{\infty}(U)'$:

(2)
$$F_*: \mathcal{C}_{c}^{-\infty}(U_1) \longrightarrow \mathcal{C}_{c}^{-\infty}(U_2), \ (F_*u)(\psi) = u(F^*\psi), \ \psi \in \mathcal{C}^{\infty}(U_2).$$

Even if $u \in \mathcal{C}^{\infty}_{c}(U_{1}) \subset \mathcal{C}^{-\infty}_{c}(U_{1})$, $F_{*}u$ will not usually be smooth. For instance if $F(x) = y_{0}$ is a constant map then you will see that

(3)
$$F_*(u) = c\delta_{y_0}, \ c = \int u(x)dx.$$

(3) Now a smooth map $F: U_1 \longrightarrow U_2$ is a diffeomorphism if it has a smooth inverse – it is a bijection and the inverse map $G: U_2 \longrightarrow U_1$ is also smooth (it is easy to find smooth bijections which do not have smooth inverses, such as $x \longmapsto x^3$ on \mathbb{R}).

For a diffeomorphism, $F^* : \mathcal{C}^{\infty}(U_2) \longrightarrow \mathcal{C}^{\infty}(U_1)$ is an isomorphism, with continuous inverse G^* .

In the case of a diffeomorphism several things happen but let's concentrate on the *problem*. Namely in this case if $u \in \mathcal{C}^{\infty}_{c}(U_{1})$ then $F_{*}u \in \mathcal{C}^{\infty}_{c}(U_{2})$ but it is not always equal to $G^{*}u \in \mathcal{C}^{\infty}_{c}(U_{2})$! So we have at the very least a notational issue. What happens:-

(4)
$$F_*u(\psi) = u(F^*\psi) = \int u(x)\psi(F(x))dx = \int u(G(y))\psi(y)|J_G(y)|dy,$$
$$J_G(y) = \det \frac{\partial G_i(y)}{\partial y_j}.$$

RICHARD MELROSE

So the issue is the change of variable formula for integration, which involves the absolute value of the determinant of the Jacobian matrix, giving us

$$F_*u = (G^*u)|J_G(y)|$$

So there is a problem with coordinate transformations, but it is clearly a mild one. The problem can be traced back to our identification of $\mathcal{C}_{c}^{\infty}(U)$ with a subspace of $\mathcal{C}_{c}^{-\infty}(U) = (\mathcal{C}^{\infty}(U))'$. Something has to give.

The solution is *not* to break this identification, at least not really. It is simply to 'carry along the density factor with us'. So, we want to give the part of the integration formula f(x)dx = f(x)|dx| (where dx or, better |dx|is the Lebesgue density; the second notation is better than the first but not usually adhered to) an independent meaning, so that when use integration to get our pairing we think of it as

$$(f,g|dx|) \longrightarrow \int f(x)g(x)|dx|$$

This is no longer symmetric. Of course on Euclidean space we always have Lebesgue measure at our disposal so we can think of g|dx| as just being g. When we change coordinates this does not work so well!

(4) Densities and duality: Let's go about this repair mission carefully. We are still working with open subsets of Rⁿ but now we think of them as manifolds and try keep more careful track of things.

On an open subset $U \subset \mathbb{R}^n$ the tangent bundle of U is just

$$TU = U \times \mathbb{R}^n$$

What exactly is the tangent bundle? It is another manifold, constructed tradionally from curves in the given manifold, U. So consider for each point $p \in U$ the smooth curves say $\chi : (-1,1) \longrightarrow U$ such that $\chi(0) = 0$. Then the tangent space should be

(8)
$$T_p U = \{\chi \in \mathcal{C}^{\infty}((-1,1); U); \chi(0) = p\} / \simeq,$$

 $\chi_1 \simeq \chi_2$ if they are equal to first order at 0.

Here of course the equivalence condition is vague. On \mathbb{R}^n we have several ways to interpret this. The easiest is to replace the general χ by the linear (affine) maps through p. Obviously this depends on the linear structure. The second is to use the derivatives at 0, this uses the linear structure as well. A third, more general method is to look at the ideal of smooth functions which vanish at $p, \mathcal{I}_p \subset \mathcal{C}^\infty(U)$. If $f \in \mathcal{C}^\infty(U)$ the composite, $\chi^* f$ is a smooth function on (-1, 1) so we can say

(9)
$$\chi_1 \simeq \chi_2 \Longrightarrow \chi_1^*(fg) - \chi_2^*(fg) = O(t^2) \ \forall \ f, g \in \mathcal{I}_p$$

This only uses the linear structure on $\mathcal{C}^{\infty}((-1,1))$ and so makes sense much more generally. The finite linear span of the products of pairs of elements of \mathcal{I}_p is the ideal \mathcal{I}_p^2 (by definition) so

(10)
$$\chi_1 \simeq \chi_2 \Longrightarrow \chi_1^*(u) - \chi_2^*(u) = O(t^2) \ \forall \ u \in \mathcal{I}_p^2.$$

Now the derivative of the curve gives the standard identification

(11)
$$T_p U \ni [\chi] \longrightarrow \frac{d\chi}{dt}(0) \in \mathbb{R}^n$$

(5)

(6)

(7)

3

(12)
$$F_*: T_p U_1 \longrightarrow T_{F(p)} U_2, \ F_*[\chi] = [\chi \circ F]$$

since $F^* \mathcal{I}_{F(p)} \subset \mathcal{I}_p \Longrightarrow F^* \mathcal{I}_{F(p)}^2 \subset \mathcal{I}_p^2$

You should check carefully that according to the identification above, using the chain rule,

(13)
$$F_*: T_p U_1 = \mathbb{R}^n \longrightarrow T_{F(p)} U_2 = \mathbb{R}^n$$
 is the Jacobian matrix $F_* = \frac{\partial F_i}{\partial x_j}$

Now we recall some linear alebra. If V, W are finite dimensional vector spaces over the reals then the duals, V' W' are well-defined and

(14)
$$V \otimes W = \{B : V' \times W' \longrightarrow \mathbb{R} \text{ bilinear}\}\$$

is one possible definition of the tensor product. So $v \otimes w \in V \otimes W$, (the 'dyadic product') for $v \in V$ and $w \in W$ is the element such that

(15)
$$(v \otimes w)(v', w') = v(v')w(w').$$

There is a natural isomorphism $V \times W \longrightarrow W \otimes V$ given by switching the order. If V = W then the higher tensor powers $V^{\otimes k}$ have an action of the permutation group Σ_k by order switching and the subspace

(16)
$$\lambda^k V \subset V^{\otimes k}$$
 of totally antisymetric elements

is of particular importance (so is the symmetric part, especially for k = 2!) If $L : V_1 \longrightarrow V_2$ is linear then there are induced linear maps $L_k : V_1^{\otimes k} \longrightarrow V_2^{\otimes k}$ and these restrict to $L_k : \lambda^k V \longrightarrow \lambda^k V$. Of particular importance for us for the moment is that

where the 'maximal degree' $\lambda^k V$ is one-dimensional. This is not so much a theorem as a definition.

Now for the slightly confusing part. On a manifold (of course for the moment I am only talking about open subsets of \mathbb{R}^n but I am doing it in such a way that it generalizes directly) the cotangent bundle is the dual of T_p but we can define it directly

(18)
$$T_p U = \mathcal{I}_p / \mathcal{I}_p^2$$

and see that it is naturally identified with the dual of T_p from the definition of the latter. One slightly confusing thing is that the form bundles have fibres at each point

(19)
$$\Lambda_n^k U = \lambda^k T_n^* U$$

(20)

which is why I was using a 'little λ ' above.

(5) Now, if $F: U_1 \longrightarrow U_2$ is a smooth map then $F^*(\mathcal{I}_{F(p)}) \subset \mathcal{I}_p$ for any $p \in U_1$ and so

$$F^*: T^*_{F(p)}U_2 \longrightarrow T^*_p U_1$$

is also often called the differential – because it is the transpose of F_* : $T_p U_1 \longrightarrow T_{F(p)} U_2$.

RICHARD MELROSE

Now you should do the little computation to see that the induced map on maximal forms

(21)
$$F^*: \Lambda^n_{F(p)} U_2 \longrightarrow \Lambda^n_p U_1 \text{ is } \det \frac{\partial F_i}{\partial x_j}$$

the determinant of the Jacobian.

(6) So the problem is that we need to get the *absolute value* of this determinant into the picture to handle the way our integrals transform. To do this we make the following observation. For any vector space V of dimension n there is a natural isomorphism

(22)
$$\lambda^n V = (\lambda^n V')'.$$

That is, the elements of $\lambda^n V$ are just the linear maps

(23)
$$\upsilon : \lambda^n V' \longrightarrow \mathbb{R}, \ n = \dim V.$$

Now, this is just a one-dimensional vector space but there is another onedimensional vector space which is very similar but not the same. Namely we can consider

(24)
$$\omega V = \{\mu : \lambda^n V' \longrightarrow \mathbb{R}; \mu(sw) = |s|\mu(w) \ \forall \ s \in \mathbb{R}, \ w \in \lambda^n V' \}.$$

In higher dimensions this would not be a vector space, but in dimension one it is – the space of absolutely homogeneous functions of degree 1. Check it carefully! Notice that

$$v \in \lambda^n V \Longrightarrow |v| \in \omega V.$$

This of course is not a linear map

On a manifold (open subset $U \subset \mathbb{R}^n$) we define

(26)
$$\Omega_p U = \omega(T_p^* U).$$

These fit together to form a smooth manifold $\Omega U = U \times \mathbb{R}$.

A very important point is that the Lebesgue measure gives a smooth section of this one dimensional (trivial) bundle.

Note that this 'density bundle' is trivial on any manifold, which is not the case for its close relative $\Lambda^n M$ – which is trivial only when the manifold is orientable. Still ΩM is not *canonically trivial*. Over \mathbb{R}^n it is trivialized by the Lebesgue measure.

You can also write

$$\Omega M = |\Lambda^n M|, \ n = \dim M.$$

A smooth n-form ν on M does define a section $|\nu|$ of ΩM but it is not smooth unless the n-form is non-vanishing, in which case the manifold is orientable. Still, ΩM always has a global positive (this makes sense) smooth section – it just does not have a natural one.

(7)

(27)

(25)

Proposition 1. If $F : U_1 \longrightarrow U_2$ is a diffeomorphism (it doesn't work for general smooth maps) between open subsets of \mathbb{R}^n , then there is a natural pull-back map

(28)
$$F^*: \Omega_{F(p)}U_2 \longrightarrow \Omega_p U_1$$

(29)
$$\int u \in \mathbb{R} \text{ is well-defined and } \int_{U_1} F^* u = \int_{U_2} u \ \forall \ u \in \mathcal{C}^{\infty}(U_2; \Omega U_2).$$

(8) Distributions on manifolds:-

Let me write down formally what happens, all this can be deduced from the discussion above. On any smooth manifold, M, there is a well-defined, naturally oriented real line bundle, the density bundle ΩM , such that there is an invariant integral

(30)
$$\int : \mathcal{C}^{\infty}_{\mathbf{c}}(M; \Omega M) \longrightarrow \mathbb{C}$$

(if we allow complex sections). This induces a pairing

(31)
$$\mathcal{C}^{\infty}(M) \times \mathcal{C}^{\infty}_{c}(M; \Omega M) \ni (u, \phi) \longrightarrow u\phi \longrightarrow \int u\phi.$$

We use this map $\mathcal{C}^{\infty}(M)$ into the dual $\mathcal{C}^{-\infty}(M) = (\mathcal{C}^{\infty}_{c}(M;\Omega))'$ (this is a definition of $\mathcal{C}^{-\infty}(M)$. We also define $\mathcal{C}^{-\infty}_{c}(M;\Omega) = (\mathcal{C}^{\infty}(M))'$ and the same pairing gives us an injection $\mathcal{C}^{\infty}_{c}(M;\Omega M) \longrightarrow \mathcal{C}^{-\infty}_{c}(M;\Omega M)$. Now, if $F: M_{1} \longrightarrow M_{2}$ is a smooth map there are induced linear maps

$$F^*: \mathcal{C}^{\infty}(M_2) \longrightarrow \mathcal{C}^{\infty}(M_1),$$

(32)
$$F_*: \mathcal{C}_{c}^{-\infty}(M_1; \Omega M_1) \longrightarrow \mathcal{C}_{c}^{-\infty}(M_2; \Omega M_2)$$

s.t. $F_*((F^*u)v) = uF_*v \ \forall \ u \in \mathcal{C}^{\infty}(M_2), \ v \in \mathcal{C}_{c}^{-\infty}(M_1; \Omega M_1)$

If we choose a global smooth positive section $0 < \nu \in \mathcal{C}^{\infty}(M; \Omega M)$ then multiplcation extends to isomorphisms

(33)
$$\mathcal{C}^{\infty}(M)\dot{\nu} = \mathcal{C}^{\infty}(M;\Omega M), \ \mathcal{C}^{-\infty}(M)\dot{\nu} = \mathcal{C}^{-\infty}(M;\Omega M)$$

Saying more might be confusing!

(9) Sobolev spaces

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY E-mail address: rbm@math.mit.edu