
CHAPTER 7

Suspended families and the resolvent

For a compact manifold, M, the Sobolev spaces Hs(M ;E) (of sec-
tions of a vector bundle E) are defined above by reference to local
coordinates and local trivializations of E. If M is not compact (but is
paracompact, as is demanded by the definition of a manifold) the same
sort of definition leads either to the spaces of sections with compact
support, or the “local” spaces:

(0.1) Hs
c (M ;E) ⊂ Hs

loc(M ;E), s ∈ R.

Thus, if Fa : Ωa → Ω′a is a covering of M , for a ∈ A, by coordinate
patches over which E is trivial, Ta : (F−1

a )∗E ∼= CN , and {ρa} is a
partition of unity subordinate to this cover then

(0.2) µ ∈ Hs
loc(M ;E)⇔ Ta(F

−1
a )∗(ρaµ) ∈ Hs(Ω′a;CN) ∀ a.

Practically, these spaces have serious limitations; for instance they
are not Hilbert or even Banach spaaces. On the other hand they cer-
tainly have their uses and differential operators act on them in the
usual way,

(0.3)

P ∈ Diffm(M ;E)⇒
P :Hs+m

loc (M ;E+)→ Hs
loc(M ;E−),

P :Hs+m
c (M ;E+)→ Hs

c (M ;E−).

However, without some limitations on the growth of elements, as is the
case in Hs

loc(M ;E), it is not reasonable to expect the null space of the
first realization of P above to be finite dimensional. Similarly in the
second case it is not reasonable to expect the operator to be even close
to surjective.

1. Product with a line

Some corrections from Fang Wang added, 25 July, 2007.
Thus, for non-compact manifolds, we need to find intermediate

spaces which represent some growth constraints on functions or dis-
tributions. Of course this is precisely what we have done for Rn in
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168 7. SUSPENDED FAMILIES AND THE RESOLVENT

defining the weighted Sobolev spaces,

(1.1) Hs,t(Rn) =
{
u ∈ S ′(Rn); 〈z〉−tu ∈ Hs(Rn)

}
.

However, it turns out that even these spaces are not always what we
want.

To lead up to the discussion of other spaces I will start with the
simplest sort of non-compact space, the real line. To make things more
interesting (and useful) I will conisider

(1.2) X = R×M

where M is a compact manifold. The new Sobolev spaces defined
for this product will combine the features of Hs(R) and Hs(M). The
Sobolev spaces on Rn are associated with the translation action of Rn

on itself, in the sense that this fixes the “uniformity” at infinity through
the Fourier transform. What happens on X is quite similar.

First we can define “tempered distributions” on X. The space of
Schwartz functions of rapid decay on X can be fixed in terms of differ-
ential operators on M and differentiation on R.
(1.3)

S(R×M) =

{
u : R×M → C; sup

R×M

∣∣tlDk
t Pu(t, ·)

∣∣ <∞ ∀ l, k, P ∈ Diff∗(M)

}
.

Exercise 1. Define the corresponding space for sections of a vector
bundle E over M lifted to X and then put a topology on S(R×M ;E)
corresponding to these estimates and check that it is a complete metric
space, just like S(R) in Chapter 3.

There are several different ways to look at

S(R×M) ⊂ C∞(R×M).

Namely we can think of either R or M as “coming first” and see that

(1.4) S(R×M) = C∞(M ;S(R)) = S(R; C∞(M)).

The notion of a C∞ function on M with values in a topological vector
space is easy to define, since C0(M ;S(R)) is defined using the metric
space topology on S(R). In a coordinate patch on M higher deriva-
tives are defined in the usual way, using difference quotients and these
definitions are coordinate-invariant. Similarly, continuity and differen-
tiability for a map R→ C∞(M) are easy to define and then
(1.5)

S(R; C∞(M)) =

{
u : R→ C∞(M); sup

t

∥∥tkDp
t u
∥∥
Cl(M)

<∞, ∀ k, p, l
}
.
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Using such an interpretation of S(R ×M), or directly, it follows
easily that the 1-dimensional Fourier transform gives an isomorphism
F : S(R×M)→ S(R×M) by

(1.6) F : u(t, ·) 7−→ û(τ, ·) =

∫
R
e−itτu(t, ·) dt.

So, one might hope to use F to define Sobolev spaces on R ×
M with uniform behavior as t → ∞ in R. However this is not so
straightforward, although I will come back to it, since the 1-dimensional
Fourier transform in (1.6) does nothing in the variables in M. Instead
let us think about L2(R×M), the definition of which requires a choice
of measure.

Of course there is an obvious class of product measures on R×M,
namely dt · νM , where νM is a positive smooth density on M and dt is
Lebesgue measure on R. This corresponds to the functional

(1.7)

∫
: C0

c (R×M) 3 u 7−→
∫
u(t, ·) dt · ν ∈ C.

The analogues of (1.4) correspond to Fubini’s Theorem.
(1.8)

L2
ti(R×M) =

{
u : R×M → C measurable;

∫
|u(t, z)|2 dt νz <∞

}
/ ∼ a.e.

L2
ti(R×M) = L2(R;L2(M)) = L2(M ;L2(R)).

Here the subscript “ti” is supposed to denote translation-invariance (of
the measure and hence the space).

We can now easily define the Sobolev spaces of positive integer
order:

(1.9) Hm
ti (R×M) =

{
u ∈ L2

ti(R×M);

Dj
tPku ∈ L2

ti(R×M) ∀ j ≤ m− k, 0 ≤ k ≤ m, Pk ∈ Diffk(M)
}
.

In fact we can write them more succinctly by defining
(1.10)

Diffkti(R×M) =

{
Q ∈ Diffm(R×M); Q =

∑
0≤j≤m

Dj
tPj, Pj ∈ Diffm−j(M)

}
.

This is the space of “t-translation-invariant” differential operators on
R×M and (1.9) reduces to
(1.11)
Hm

ti (R×M) =
{
u ∈ L2

ti(R×M); Pu ∈ L2
ti(R×M), ∀ P ∈ Diffmti (R×M)

}
.



170 7. SUSPENDED FAMILIES AND THE RESOLVENT

I will discuss such operators in some detail below, especially the
elliptic case. First, we need to consider the Sobolev spaces of non-
integral order, for completeness sake if nothing else. To do this, observe
that on R itself (so for M = {pt}), L2

ti(R×{pt}) = L2(R) in the usual
sense. Let us consider a special partition of unity on R consisting of
integral translates of one function.

Definition 1.1. An element µ ∈ C∞c (R) generates a “ti-partition
of unity” (a non-standard description) on R if 0 ≤ µ ≤ 1 and∑

k∈Z µ(t− k) = 1.

It is easy to construct such a µ. Just take µ1 ∈ C∞c (R), µ1 ≥ 0 with
µ1(t) = 1 in |t| ≤ 1/2. Then let

F (t) =
∑
k∈Z

µ1(t− k) ∈ C∞(R)

since the sum is finite on each bounded set. Moreover F (t) ≥ 1 and is
itself invariant under translation by any integer; set µ(t) = µ1(t)/F (t).
Then µ generates a ti-partition of unity.

Using such a function we can easily decompose L2(R). Thus, setting
τk(t) = t− k,
(1.12)

f ∈ L2(R) ⇐⇒ (τ ∗kf)µ ∈ L2
loc(R) ∀ k ∈ Z and

∑
k∈Z

∫
|τ ∗kfµ|

2 dt <∞.

Of course, saying (τ ∗kf)µ ∈ L2
loc(R) is the same as (τ ∗kf)µ ∈ L2

c(R).
Certainly, if f ∈ L2(R) then (τ ∗kf)µ ∈ L2(R) and since 0 ≤ µ ≤ 1 and
supp(µ) ⊂ [−R,R] for some R,∑

k

∫
|(τ ∗kf)µ|2 ≤ C

∫
|f |2 dt.

Conversely, since
∑
|k|≤T µ = 1 on [−1, 1] for some T, it follows that∫
|f |2 dt ≤ C ′

∑
k

∫
|(τ ∗kf)µ|2 dt.

Now, Dtτ
∗
kf = τ ∗k (Dtf), so we can use (1.12) to rewrite the definition

of the spaces Hk
ti(R×M) in a form that extends to all orders. Namely

(1.13)

u ∈ Hs
ti(R×M) ⇐⇒ (τ ∗ku)µ ∈ Hs

c (R×M) and
∑
k

‖τ ∗ku‖Hs <∞

provided we choose a fixed norm on Hs
c (R×M) giving the usual topol-

ogy for functions supported in a fixed compact set, for example by em-
bedding [−T, T ] in a torus T and then taking the norm on Hs(T×M).
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Lemma 1.2. With Diffmti (R×M) defined by (1.10) and the translation-
invariant Sobolev spaces by (1.13),

(1.14)
P ∈ Diffmti (R×M) =⇒

P :Hs+m
ti (R×M) −→ Hs

ti(R×M) ∀ s ∈ R.

Proof. This is basically an exercise. Really we also need to check

a little more carefully that the two definitions of H
(
tiR ×M) for k a

positive integer, are the same. In fact this is similar to the proof of
(1.14) so is omitted. So, to prove (1.14) we will proceed by induction
over m. For m = 0 there is nothing to prove. Now observe that the
translation-invariant of P means that Pτ ∗ku = τ ∗k (Pu) so

(1.15) u ∈ Hs+m
ti (R×M) =⇒

P (τ ∗kuµ) = τ ∗k (Pu) +
∑
m′<m

τ ∗k (Pm′u)Dm−m′
t µ, Pm′ ∈ Diffm

′

ti (R×M).

The left side is in Hs
ti(R × M), with the sum over k of the squares

of the norms bounded, by the regularity of u. The same is easily seen
to be true for the sum on the right by the inductive hypothesis, and
hence for the first term on the right. This proves the mapping property
(1.14) and continuity follows by the same argument or the closed graph
theorem. �

We can, and shall, extend this in various ways. If E = (E1, E2) is a
pair of vector bundles over M then it lifts to a pair of vector bundles
over R×M , which we can again denote by E. It is then straightforward
to define Diffmti (R×M);E) and the Sobolev spaces Hs

ti(R×M ;Ei) and
to check that (1.14) extends in the obvious way.

Then main question we want to understand is the invertibility of
an operator such as P in (1.14). However, let me look first at these
Sobolev spaces a little more carefully. As already noted we really have
two definitions in the case of positive integral order. Thinking about
these we can also make the following provisional definitions in terms of
the 1-dimensional Fourier transform discussed above – where the ‘H̃’
notation is only temporary since these will turn out to be the same as
the spaces just considered.
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For any compact manifold define

H̃s
ti(R×M) =

{
u ∈ L2(R×M);

‖u‖2
s =

∫
R

(
〈τ〉s|û(τ, ·)|2L2(M) +

∫
R
|û(τ, ·)|2Hs(M)

)
dτ <∞

}
, s ≥ 0

(1.16)

H̃s
ti(R×M) =

{
u ∈ S ′(R×M);u = u1 + u2,

u1 ∈ L2(R;Hs(M)), u2 ∈ L2(M ;Hs(R))
}
, ‖u‖2

s = inf ‖u1‖2 + ‖u2‖2, s < 0.

(1.17)

The following interpolation result for Sobolev norms on M should
be back in Chapter 5.

Lemma 1.3. If M is a compact manifold or Rn then for any m1 ≥
m2 ≥ m3 and any R, the Sobolev norms are related by

(1.18) ‖u‖m2 ≤ C
(
(1 +R)m2−m1‖u‖m1 + (1 +R)m2−m3‖u‖m3

)
.

Proof. On Rn this follows directly by dividing Fourier space in
two pieces
(1.19)

‖u‖2
m2

=

∫
|ζ|>R
〈ζ〉2m2|û|dζ +

∫
|ζ|≤R
〈ζ〉2m2|û|dζ

≤ 〈R〉2(m1−m2)

∫
|ζ|>R
〈ζ〉2m1|û|dζ + 〈R〉2(m2−m3)

∫
|ζ|≤R
〈ζ〉2m3|û|dζ

≤ 〈R〉2(m1−m2)‖u‖2
m1

+ 〈R〉2(m2−m3)‖u‖2
m3
.

On a compact manifold we have defined the norms by using a partition
φi of unity subordinate to a covering by coordinate patches Fi : Yi −→
U ′i :

(1.20) ‖u‖2
m =

∑
i

‖(Fi)∗(φiu)‖2
m

where on the right we are using the Sobolev norms on Rn. Thus, ap-
plying the estimates for Euclidean space to each term on the right we
get the same estimate on any compact manifold. �

Corollary 1.4. If u ∈ H̃s
ti(R × M), for s > 0, then for any

0 < t < s

(1.21)

∫
R
〈τ〉2t‖û(τ, ·)‖2

Hs−t(M)dτ <∞

which we can interpret as meaning ‘u ∈ H t(R;Hs−t(M)) or u ∈ Hs−t(M ;Hs(R)).’



1. PRODUCT WITH A LINE 173

Proof. Apply the estimate to û(τ, ·) ∈ Hs(M), with R = |τ |,
m1 = s and m3 = 0 and integrate over τ. �

Lemma 1.5. The Sobolev spaces H̃s
ti(R ×M) and Hs

ti(R ×M) are
the same.

Proof. �

Lemma 1.6. For 0 < s < 1 u ∈ Hs
ti(R ×M) if and only if u ∈

L2(R×M) and

(1.22)∫
R2×M

|u(t, z)− u(t′, z)|2

|t− t′|2s+1
dtdt′ν+

∫
R×M2

|u(t, z′)− u(t, z)|2

ρ(z, z′)s+
n
2

dtν(z)ν(z′) <∞,

n = dimM,

where 0 ≤ ρ ∈ C∞(M2) vanishes exactly quadratically at Diag ⊂M2.

Proof. This follows as in the cases of Rn and a compact manifold
discussed earlier since the second term in (1.22) gives (with the L2

norm) a norm on L2(R;Hs(M)) and the first term gives a norm on
L2(M ;Hs(R)). �

Using these results we can see directly that the Sobolev spaces in
(1.16) have the following ‘obvious’ property as in the cases of Rn and
M.

Lemma 1.7. Schwartz space S(R×M) = C∞(M ;S(R)) is dense in
each Hs

ti(R×M) and the L2 pairing extends by continuity to a jointly
continuous non-degenerate pairing

(1.23) Hs
ti(R×M)×H−sti (R×M) −→ C

which identifies H−sti (R×M) with the dual of Hs
ti(R×M) for any s ∈ R.

Proof. I leave the density as an exercise – use convolution in R
and the density of C∞(M) in Hs(M) (explicity, using a partition of
unity on M and convolution on Rn to get density in each coordinate
patch).

Then the existence and continuity of the pairing follows from the
definitions and the corresponding pairings on R and M. We can assume
that s > 0 in (1.23) (otherwise reverse the factors). Then if u ∈
Hs

ti(R×M) and v = v1 + v2 ∈ H−sti (R×M) as in (1.17),

(1.24) (u, v) =

∫
R

(u(t, ·), u1(t, ·)) dt+

∫
M

(u(·, z), v2(·, z)) νz
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where the first pairing is the extension of the L2 pairing to Hs(M) ×
H−s(M) and in the second case to Hs(R)×H−s(R). The continuity of
the pairing follows directly from (1.24).

So, it remains only to show that the pairing is non-degenerate – so
that

(1.25) H−sti (R×M) 3 v 7−→ sup
‖u‖Hs

ti
(R×M)=1

|(u, v)|

is equivalent to the norm on H−sti (R×M). We already know that this
is bounded above by a multiple of the norm on H−sti so we need the
estimate the other way. To see this we just need to go back to Euclidean
space. Take a partition of unity ψi with our usual φi on M subordinate
to a coordinate cover and consider with φi = 1 in a neighbourhood of
the support of ψi. Then

(1.26) (u, ψiv) = (φiu, ψiv)

allows us to extend ψiv to a continuous linear functional on Hs(Rn)
by reference to the local coordinates and using the fact that for s > 0
(F−1

i )∗(φiu) ∈ Hs(Rn+1). This shows that the coordinate representative
of ψiv is a sum as desired and summing over i gives the desired bound.

�

2. Translation-invariant Operators

Some corrections from Fang Wang added, 25 July, 2007.
Next I will characterize those operators P ∈ Diffmti (R×M ;E) which

give invertible maps (1.14), or rather in the case of a pair of vector
bundles E = (E1, E2) over M :

(2.1) P : Hs+m
ti (R×M ;E1) −→ Hs

ti(R×M ;E2), P ∈ Diffmti (R×M ;E).

This is a generalization of the 1-dimensional case, M = {pt} which we
have already discussed. In fact it will become clear how to generalize
some parts of the discussion below to products Rn ×M as well, but
the case of a 1-dimensional Euclidean factor is both easier and more
fundamental.

As with the constant coefficient case, there is a basic dichotomy
here. A t-translation-invariant differential operator as in (2.1) is Fred-
holm if and only if it is invertible. To find necessary and sufficient
conditons for invertibility we will we use the 1-dimensional Fourier
transform as in (1.6).

If

(2.2) P ∈ Diffmti (R×M);E)⇐⇒ P =
m∑
i=0

Di
tPi, Pi ∈ Diffm−i(M ;E)
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then

P : S(R×M ;E1) −→ S(R×M ;E2)

and

(2.3) P̂ u(τ, ·) =
m∑
i=0

τ iPiû(τ, ·)

where û(τ, ·) is the 1-dimensional Fourier transform from (1.6). So we
clearly need to examine the “suspended” family of operators

(2.4) P (τ) =
m∑
i=0

τ iPi ∈ C∞ (C; Diffm(M ;E)) .

I use the term “suspended” to denote the addition of a parameter
to Diffm(M ;E) to get such a family—in this case polynomial. They
are sometimes called “operator pencils” for reasons that escape me.
Anyway, the main result we want is

Theorem 2.1. If P ∈ Diffmti (M ;E) is elliptic then the suspended
family P (τ) is invertible for all τ ∈ C \D with inverse

(2.5) P (τ)−1 : Hs(M ;E2) −→ Hs+m(M ;E1)

where

(2.6) D ⊂ C is discrete and D ⊂ {τ ∈ C; |Re τ | ≤ c| Im τ |+ 1/c}

for some c > 0 (see Fig. ?? – still not quite right).

In fact we need some more information on P (τ)−1 which we will
pick up during the proof of this result. The translation-invariance of
P can be written in operator form as

(2.7) Pu(t+ s, ·) = (Pu)(t+ s, ·) ∀ s ∈ R

Lemma 2.2. If P ∈ Diffmti (R×M ;E) is elliptic then it has a para-
metrix

(2.8) Q : S(R×M ;E2) −→ S(R×M ;E1)

which is translation-invariant in the sense of (2.7) and preserves the
compactness of supports in R,

(2.9) Q : C∞c (R×M ;E2) −→ C∞c (R×M ;E1)

Proof. In the case of a compact manifold we contructed a global
parametrix by patching local parametricies with a partition of unity.
Here we do the same thing, treating the variable t ∈ R globally through-
out. Thus if Fa : Ωa → Ω′a is a coordinate patch in M over which E1
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and (hence) E2 are trivial, P becomes a square matrix of differential
operators

(2.10) Pa =

 P11(z,Dt, Dz) · · · Pl1(z,Dt, Dz)
...

...
P1l(z,Dt, Dz) · · · Pll(z,Dt, Dz)


in which the coefficients do not depend on t. As discussed in Sections 2
and 3 above, we can construct a local parametrix in Ω′a using a properly
supported cutoff χ. In the t variable the parametrix is global anyway,
so we use a fixed cutoff χ̃ ∈ C∞c (R), χ̃ = 1 in |t| < 1, and so construct
a parametrix

(2.11) Qaf(t, z) =

∫
Ω′a

q(t− t′, z, z′)χ̃(t− t′)χ(z, z′)f(t′, z′) dt′ dz′.

This satisfies

(2.12) PaQa = Id−Ra, QaPa = Id−R′a
where Ra and R′a are smoothing operators on Ω′a with kernels of the
form

(2.13)
Raf(t, z) =

∫
Ω′a

Ra(t− t′, z, z′)f(t′, z′) dt′ dz′

Ra ∈C∞(R× Ω′2a ), Ra(t, z, z
′) = 0 if |t| ≥ 2

with the support proper in Ω′a.
Now, we can sum these local parametricies, which are all t-translation-

invariant to get a global parametrix with the same properties

(2.14) Qf =
∑
a

χa(F
−1
a )∗(T−1

a )∗QaT
∗
aF
∗
a f

where Ta denotes the trivialization of bundles E1 and E2. It follows
that Q satisfies (2.9) and since it is translation-invariant, also (2.8).
The global version of (2.12) becomes

(2.15)

PQ = Id−R2, QP = Id−R1,

Ri :C∞c (R×M ;Ei) −→ C∞c (R×M ;Ei),

Rif =

∫
R×M

Ri(t− t′, z, z′)f(t′, z′) dt′ νz′

where the kernels

(2.16) Ri ∈ C∞c
(
R×M2; Hom(Ei)

)
, i = 1, 2.

�

In fact we can deduce directly from (2.11) the boundedness of Q.
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Lemma 2.3. The properly-supported parametrix Q constructed above
extends by continuity to a bounded operator

(2.17)
Q :Hs

ti(R×M ;E2) −→ Hs+m
ti (R×M ;E1) ∀ s ∈ R

Q :S(R×M ;E2) −→ S(R×M ;E1).

Proof. This follows directly from the earlier discussion of elliptic
regularity for each term in (2.14) to show that

(2.18) Q : {f ∈ Hs
ti(R×M ;E2; supp(f) ⊂ [−2, 2]×M}

−→
{
u ∈ Hs+m

ti (R×M ;E1; supp(u) ⊂ [−2−R, 2 +R]×M
}

for some R (which can in fact be taken to be small and positive).
Indeed on compact sets the translation-invariant Sobolev spaces reduce
to the usual ones. Then (2.17) follows from (2.18) and the translation-
invariance of Q. Using a µ ∈ C∞c (R) generating a ti-paritition of unity
on R we can decompose

(2.19) Hs
ti(R×M ;E2) 3 f =

∑
k∈Z

τ ∗k (µτ ∗−kf).

Then

(2.20) Qf =
∑
k∈Z

τ ∗k
(
Q(µτ ∗−kf)

)
.

The estimates corresponding to (2.18) give

‖Qf‖Hs+m
ti
≤ C‖f‖Hs

ti

if f has support in [−2, 2]×M. The decomposition (2.19) then gives∑
‖µτ ∗−kf‖2

Hs = ‖f‖2
Hs <∞ =⇒ ‖Qf‖2 ≤ C ′‖f‖2

Hs .

This proves Lemma 2.3. �

Going back to the remainder term in (2.15), we can apply the 1-
dimensional Fourier transform and find the following uniform results.

Lemma 2.4. If R is a compactly supported, t-translation-invariant
smoothing operator as in (2.15) then

(2.21) R̂f(τ, ·) = R̂(τ)f̂(τ, ·)

where R̂(τ) ∈ C∞ (C×M2; Hom(E)) is entire in τ ∈ C and satisfies
the estimates

(2.22) ∀ k, p ∃Cp,k such that ‖τ kR̂(τ)‖Cp ≤ Cp,k exp(A| Im τ |).
Here A is a constant such that

(2.23) suppR(t, ·) ⊂ [−A,A]×M2.
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Proof. This is a parameter-dependent version of the usual esti-
mates for the Fourier-Laplace transform. That is,

(2.24) R̂(τ, ·) =

∫
e−iτtR(t, ·) dt

from which all the statements follow just as in the standard case when
R ∈ C∞c (R) has support in [−A,A]. �

Proposition 2.5. If R is as in Lemma 2.4 then there exists a

discrete subset D ⊂ C such that
(

Id−R̂(τ)
)−1

exists for all τ ∈ C \D
and

(2.25)
(

Id−R̂(τ)
)−1

= Id−Ŝ(τ)

where Ŝ : C −→ C∞(M2; Hom(E)) is a family of smoothing operators
which is meromorphic in the complex plane with poles of finite order
and residues of finite rank at D. Furthermore,

(2.26) D ⊂ {τ ∈ C; log(|Re τ |) < c| Im τ |+ 1/c}
for some c > 0 and for any C > 0, there exists C ′ such that

(2.27) | Im τ | < C, |Re τ | > C ′ =⇒ ‖τ kŜ(τ)‖Cp ≤ Cp,k.

Proof. This is part of “Analytic Fredholm Theory” (although usu-
ally done with compact operators on a Hilbert space). The estimates

(2.22) on R̂(τ) show that, in some region as on the right in (2.26),

(2.28) ‖R̂(τ)‖L2 ≤ 1/2.

Thus, by Neumann series,

(2.29) Ŝ(τ) =
∞∑
k=1

(
R̂(τ)

)k
exists as a bounded operator on L2(M ;E). In fact it follows that Ŝ(τ)
is itself a family of smoothing operators in the region in which the
Neumann series converges. Indeed, the series can be rewritten

(2.30) Ŝ(τ) = R̂(τ) + R̂(τ)2 + R̂(τ)Ŝ(τ)R̂(τ)

The smoothing operators form a “corner” in the bounded operators in
the sense that products like the third here are smoothing if the outer
two factors are. This follows from the formula for the kernel of the
product ∫

M×M
R̂1(τ ; z, z′)Ŝ(τ ; z′, z′′)R̂2(τ ; z′′, z̃) νz′ νz′′ .
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Thus Ŝ(τ) ∈ C∞(M2; Hom(E)) exists in a region as on the right in
(2.26). To see that it extends to be meromorphic in C\D for a discrete

divisor D we can use a finite-dimensional approximation to R̂(τ).
Recall — if neccessary from local coordinates — that given any p ∈

N, R > 0, q > 0 there are finitely many sections f
(τ)
i ∈ C∞(M ;E ′), g

(τ)
i ∈

C∞(M ;E) and such that

(2.31) ‖R̂(τ)−
∑
i

gi(τ, z) · fi(τ, z′)‖Cp < ε, |τ | < R.

Writing this difference as M(τ),

Id−R̂(τ) = Id−M(τ) + F (τ)

where F (τ) is a finite rank operator. In view of (2.31), Id−M(τ) is

invertible and, as seen above, of the form Id−M̂(τ) where M̂(τ) is
holomorphic in |τ | < R as a smoothing operator.

Thus

Id−R̂(τ) = (Id−M(τ))(Id +F (τ)− M̂(τ)F (τ))

is invertible if and only if the finite rank perturbation of the identity

by (Id−M̂(τ))F (τ) is invertible. For R large, by the previous result,
this finite rank perturbation must be invertible in an open set in {|τ | <
R}. Then, by standard results for finite dimensional matrices, it has a
meromorphic inverse with finite rank (generalized) residues. The same

is therefore true of Id−R̂(τ) itself.
Since R > 0 is arbitrary this proves the result. �

Proof. Proof of Theorem 2.1 We have proved (2.15) and the cor-
responding form for the Fourier transformed kernels follows:

(2.32) P̂ (τ)Q̂′(τ) = Id−R̂2(τ), Q̂′(τ)P̂ (τ) = Id−R̂1(τ)

where R̂1(τ), R̂2(τ) are families of smoothing operators as in Proposi-
tion 2.5. Applying that result to the first equation gives a new mero-
morphic right inverse

Q̂(τ) = Q̂′(τ)(Id−R̂2(τ))−1 = Q̂′(τ)− Q̂′(τ)M(τ)

where the first term is entire and the second is a meromorphic family
of smoothing operators with finite rank residues. The same argument

on the second term gives a left inverse, but his shows that Q̂(τ) must
be a two-sided inverse.

This we have proved everything except the locations of the poles of

Q̂(τ) — which are only constrained by (2.26) instead of (2.6). However,
we can apply the same argument to Pθ(z,Dt, Dz) = P (z, eiθDt, Dz) for
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|θ| < δ, δ > 0 small, since Pθ stays elliptic. This shows that the poles

of Q̂(τ) lie in a set of the form (2.6). �

3. Invertibility

We are now in a position to characterize those t-translation-invariant
differential operators which give isomorphisms on the translation-invariant
Sobolev spaces.

Theorem 3.1. An element P ∈ Diffmti (R×M ;E) gives an isomor-
phism (2.1) (or equivalently is Fredholm) if and only if it is elliptic and

D ∩ R = ∅, i.e. P̂ (τ) is invertible for all τ ∈ R.

Proof. We have already done most of the work for the important
direction for applications, which is that the ellipticity of P and the
invertibility at P̂ (τ) for all τ ∈ R together imply that (2.1) is an
isomorphism for any s ∈ R.

Recall that the ellipticity of P leads to a parameterix Q which is
translation-invariant and has the mapping property we want, namely
(2.17).

To prove the same estimate for the true inverse (and its existence)
consider the difference

(3.1) P̂ (τ)−1 − Q̂(τ) = R̂(τ), τ ∈ R.

Since P̂ (τ) ∈ Diffm(M ;E) depends smoothly on τ ∈ R and Q̂(τ) is a
paramaterix for it, we know that

(3.2) R̂(τ) ∈ C∞(R; Ψ−∞(M ;E))

is a smoothing operator on M which depends smoothly on τ ∈ R as a
parameter. On the other hand, from (2.32) we also know that for large
real τ,

P̂ (τ)−1 − Q̂(τ) = Q̂(τ)M(τ)

where M(τ) satisfies the estimates (2.27). It follows that Q̂(τ)M(τ)
also satisfies these estimates and (3.2) can be strengthened to

(3.3) sup
τ∈R
‖τ kR̂(τ, ·, ·)‖Cp <∞ ∀ p, k.

That is, the kernel R̂(τ) ∈ S(R; C∞(M2; Hom(E))). So if we define the
t-translation-invariant operator

(3.4) Rf(t, z) = (2π)−1

∫
eitτ R̂(τ)f̂(τ, ·)dτ

by inverse Fourier transform then

(3.5) R : Hs
ti(R×M ;E2) −→ H∞ti (R×M ;E1) ∀ s ∈ R.
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It certainly suffices to show this for s < 0 and then we know that the
Fourier transform gives a map

(3.6) F : Hs
ti(R×M ;E2) −→ 〈τ〉|s|L2(R;H−|s|(M ;E2)).

Since the kernel R̂(τ) is rapidly decreasing in τ, as well as being smooth,
for every N > 0,

(3.7) R̂(τ) : 〈τ〉|s|L2(R;H−|s|M ;E2) −→ 〈τ〉−NL2(R;HN(M ;E2))

and inverse Fourier transform maps

F−1 : 〈τ〉−NHN(M ;E2) −→ HN
ti (R×M ;E2)

which gives (3.5).
Thus Q + R has the same property as Q in (2.17). So it only

remains to check that Q + R is the two-sided version of P and it is
enough to do this on S(R × M ;Ei) since these subspaces are dense
in the Sobolev spaces. This in turn follows from (3.1) by taking the
Fourier transform. Thus we have shown that the invertibility of P
follows from its ellipticity and the invertibility of P̂ (τ) for τ ∈ R.

The converse statement is less important but certainly worth know-
ing! If P is an isomorphism as in (2.1), even for one value of s, then
it must be elliptic — this follows as in the compact case since it is
everywhere a local statement. Then if P̂ (τ) is not invertible for some
τ ∈ R we know, by ellipticity, that it is Fredholm and, by the stability
of the index, of index zero (since P̂ (τ) is invertible for a dense set of
τ ∈ C). There is therefore some τ0 ∈ R and f0 ∈ C∞(M ;E2), f0 6= 0,
such that

(3.8) P̂ (τ0)∗f0 = 0.

It follows that f0 is not in the range of P̂ (τ0). Then, choose a cut off
function, ρ ∈ C∞c (R) with ρ(τ0) = 1 (and supported sufficiently close
to τ0) and define f ∈ S(R×M ;E2) by

(3.9) f̂(τ, ·) = ρ(τ)f0(·).

Then f /∈ P · Hs
ti(R × M ;E1) for any s ∈ R. To see this, suppose

u ∈ Hs
ti(R×M ;E1) has

(3.10) Pu = f ⇒ P̂ (τ)û(τ) = f̂(τ)

where û(τ) ∈ 〈τ〉|s|L2(R;H−|s|(M ;E1)). The invertibility of P (τ) for
τ 6= τ0 on supp(ρ) (chosen with support close enough to τ0) shows that

û(τ) = P̂ (τ)−1f̂(τ) ∈ C∞((R\{τ0})×M ;E1).
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Since we know that P̂ (τ)−1− Q̂(τ) = R̂(τ) is a meromorphic family
of smoothing operators it actually follows that û(ι) is meromorphic in
τ near τ0 in the sense that

(3.11) û(τ) =
k∑
j=1

(τ − τ0)−juj + v(τ)

where the uj ∈ C∞(M ;E1) and v ∈ C∞((τ − ε, τ + ε) ×M ;E1). Now,

one of the uj is not identically zero, since otherwise P̂ (τ0)v(τ0) = f0,
contradicting the choice of f0. However, a function such as (3.11) is not
locally in L2 with values in any Sobolev space on M, which contradicts
the existence of u ∈ Hs

ti(R×M ;E1).
This completes the proof for invertibility of P. To get the Fredholm

version it suffices to prove that if P is Fredholm then it is invertible.
Since the arguments above easily show that the null space of P is empty
on any of the Hs

ti(R×M ;E1) spaces and the same applies to the adjoint,
we easily conclude that P is an isomorphism if it is Fredholm. �

This result allows us to deduce similar invertibility conditions on
exponentially-weighted Sobolev spaces. Set
(3.12)
eatHs

ti(R×M ;E) = {u ∈ Hs
loc(R×M ;E); e−atu ∈ Hs

ti(R×M ;E)}
for any C∞ vector bundle E over M. The translation-invariant differ-
ential operators also act on these spaces.

Lemma 3.2. For any a ∈ R, P ∈ Diffmti (R ×M ;E) defines a con-
tinuous linear operator

(3.13) P : eatHs+m
ti (R×M ;E1) −→ eatHs+m

ti (R×M ;E2).

Proof. We already know this for a = 0. To reduce the general
case to this one, observe that (3.13) just means that

(3.14) P · eatu ∈ eatHs
ti(R×M ;E2) ∀ u ∈ Hs

ti(R×M ;E1)

with continuity meaning just continuous dependence on u. However,
(3.14) in turn means that the conjugate operator

(3.15) Pa = e−at · P · eat : Hs+m
ti (R×M ;E1) −→ Hs

ti(R×M ;E2).

Conjugation by an exponential is actually an isomorphism

(3.16) Diffmti (R×M ;E) 3 P 7−→ e−atPeat ∈ Diffmti (R×M ;E).

To see this, note that elements of Diffj(M ;E) commute with multipli-
cation by eat and

(3.17) e−atDte
at = Dt − ia
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which gives (3.16)).
The result now follows. �

Proposition 3.3. If P ∈ Diffmti (R×M ;E) is elliptic then as a map
(3.13) it is invertible precisely for

(3.18) a /∈ − Im(D), D = D(P ) ⊂ C,
that is, a is not the negative of the imaginary part of an element of D.

Note that the set − Im(D) ⊂ R, for which invertibility fails, is
discrete. This follows from the discreteness of D and the estimate (2.6).
Thus in Fig ?? invertibility on the space with weight eat correspond
exactly to the horizonatal line with Im τ = −a missing D.

Proof. This is direct consequence of (??) and the discussion around
(3.15). Namely, P is invertible as a map (3.13) if and only if Pa is in-
vertible as a map (2.1) so, by Theorem 3.1, if

and only if
D(Pa) ∩ R = ∅.

From (3.17), D(Pa) = D(P ) + ia so this condition is just D(P )∩ (R−
ia) = ∅ as claimed. �

Although this is a characterization of the Fredholm properties on
the standard Sobolev spaces, it is not the end of the story, as we shall
see below.

One important thing to note is that R has two ends. The exponen-
tial weight eat treats these differently – since if it is big at one end it
is small at the other – and in fact we (or rather you) can easily define
doubly-exponentially weighted spaces and get similar results for those.
Since this is rather an informative extended exercise, I will offer some
guidance.

Definition 3.4. Set
(3.19)

Hs,a,b
ti,exp(R×M ;E) = {u ∈ Hs

loc(R×M ;E);

χ(t)e−atu ∈ Hs
ti(R×M ;E)(1− χ(t))ebtu ∈ Hs

ti(R×M ;E)}
where χ ∈ C∞(R), χ = 1 in t > 1, χ = 0 in t < −1.

Exercises.

(1) Show that the spaces in (3.19) are independent of the choice of
χ, are all Hilbertable (are complete with respect to a Hilbert
norm) and show that if a+ b ≥ 0

(3.20) Hs,a,b
ti,exp(R×M ;E) = eatHs

ti(R×M ;E) + e−btHs
ti(R×M ;E)
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whereas if a+ b ≤ 0 then

(3.21) Hs,a,b
ti,exp(R×M ;E) = eatHs

ti(R×M ;E) ∩ e−btHs
ti(R×M ;E).

(2) Show that any P ∈ Diffmti (R×M ;E) defines a continuous linear
map for any s, a, b ∈ R

(3.22) P : Hs+m,a,b
ti- exp (R×M ;E1) −→ Hs,a,b

ti- exp(R×M ;E2).

(3) Show that the standard L2 pairing, with respect to dt, a smooth
positive density on M and an inner product on E extends to
a non-degenerate bilinear pairing

(3.23) Hs,a,b
ti,exp(R×M ;E)×H−s,−a,−bti,exp (R×M ;E) −→ C

for any s, a and b. Show that the adjoint of P with respect to
this pairing is P ∗ on the ‘negative’ spaces – you can use this
to halve the work below.

(4) Show that if P is elliptic then (3.22) is Fredholm precisely
when

(3.24) a /∈ − Im(D) and b /∈ Im(D).

Hint:- Assume for instance that a+b ≥ 0 and use (3.20). Given
(3.24) a parametrix for P can be constructed by combining the
inverses on the single exponential spaces

(3.25) Qa,b = χ′P−1
a χ+ (1− χ′′)P−1

−b (1− χ)

where χ is as in (3.19) and χ′ and χ′′ are similar but such that
χ′χ = 1, (1− χ′′)(1− χ) = 1− χ.

(5) Show that P is an isomorphism if and only if

a+b ≤ 0 and [a,−b]∩− Im(D) = ∅ or a+b ≥ 0 and [−b, a]∩− Im(D) = ∅.
(6) Show that if a+ b ≤ 0 and (3.24) holds then

ind(P ) = dim null(P ) =
∑

τi∈D∩(R×[b,−a])

Mult(P, τi)

where Mult(P, τi) is the algebraic multiplicity of τ as a ‘zero’

of P̂ (τ), namely the dimension of the generalized null space

Mult(P, τi) = dim

{
u =

N∑
p=0

up(z)Dp
τδ(τ − τi);P (τ)u(τ) ≡ 0

}
.

(7) Characterize these multiplicities in a more algebraic way. Namely,
if τ ′ is a zero of P (τ) setE0 = nullP (τ ′) and F0 = C∞(M ;E2)/P (τ ′)C∞(M ;E1).
Since P (τ) is Fredholm of index zero, these are finite dimen-
sional vector spaces of the same dimension. Let the derivatives
of P be Ti = ∂iP/∂τ i at τ = τ ′ Then define R1 : E0 −→ F0
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as T1 restricted to E0 and projected to F0. Let E1 be the
null space of R1 and F1 = F0/R1E0. Now proceed inductively
and define for each i the space Ei as the null space of Ri,
Fi = Fi−1/RiEi−1 and Ri+1 : Ei −→ Fi as Ti restricted to Ei
and projected to Fi. Clearly Ei and Fi have the same, finite,
dimension which is non-increasing as i increases. The prop-
erties of P (τ) can be used to show that for large enough i,
Ei = Fi = {0} and

(3.26) Mult(P, τ ′) =
∞∑
i=0

dim(Ei)

where the sum is in fact finite.
(8) Derive, by duality, a similar formula for the index of P when

a + b ≥ 0 and (3.24) holds, showing in particular that it is
injective.

4. Resolvent operator

Addenda to Chapter 7

More?

• Why – manifold with boundary later for Euclidean space, but
also resolvent (Photo-C5-01)
• Hölder type estimates – Photo-C5-03. Gives interpolation.

As already noted even a result such as Proposition 3.3 and the
results in the exercises above by no means exhausts the possibile real-
izations of an element P ∈ Diffmti (R ×M ;E) as a Fredholm operator.
Necessarily these other realization cannot simply be between spaces
like those in (3.19). To see what else one can do, suppose that the
condition in Theorem 3.1 is violated, so

(4.1) D(P ) ∩ R = {τ1, . . . , τN} 6= ∅.

To get a Fredholm operator we need to change either the domain or the
range space. Suppose we want the range to be L2(R×M ;E2). Now, the
condition (3.24) guarantees that P is Fredholm as an operator (3.22).
So in particular

(4.2) P : Hm,ε,ε
ti−exp(R×M ;E1) −→ H0,ε,ε

ti- exp(R×M ;E2)

is Fredholm for all ε > 0 sufficiently small (becuase D is discrete). The
image space (which is necessarily the range in this case) just consists
of the sections of the form exp(a|t|)f with f in L2. So, in this case the
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range certainly contains L2 so we can define
(4.3)
DomAS(P ) = {u ∈ Hm,ε,ε

ti- exp(R×M ;E1);Pu ∈ L2(R×M ;E2)}, ε > 0 sufficiently small.

This space is independent of ε > 0 if it is taken smalle enough, so the
same space arises by taking the intersection over ε > 0.

Proposition 4.1. For any elliptic element P ∈ Diffmti (R ×M ;E)
the space in (4.3) is Hilbertable space and

(4.4) P : DomAS(P ) −→ L2(R×M ;E2) is Fredholm.

I have not made the assumption (4.1) since it is relatively easy to see
that if D ∩ R = ∅ then the domain in (4.3) reduces again to Hm

ti (R ×
M ;E1) and (4.4) is just the standard realization. Conversely of course
under the assumption (4.1) the domain in (4.4) is strictly larger than
the standard Sobolev space. To see what it actually is requires a bit of
work but if you did the exercises above you are in a position to work
this out! Here is the result when there is only one pole of P̂ (τ) on the
real line and it has order one.

Proposition 4.2. Suppose P ∈ Diffmti (R ×M ;E) is elliptic, P̂ (τ)

is invertible for τ ∈ R \ {0} and in addition τ P̂ (τ)−1 is holomorphic
near 0. Then the Atiyah-Singer domain in (4.4) is

(4.5) DomAS(P ) =
{
u = u1 + u2;u1 ∈ Hm

ti (R×M ;E1),

u2 = f(t)v, v ∈ C∞(M ;E1), P̂ (0)v = 0, f(t) =

∫ t

0

g(t)dt, g ∈ Hm−1(R)
}
.

Notice that the ‘anomalous’ term here, u2, need not be square-
integrable. In fact for any δ > 0 the power 〈t〉 12−δv ∈ 〈t〉1−δL2(R ×
M ;E1) is included and conversely

(4.6) f ∈
⋂
δ>0

〈t〉1+δHm−1(R).

One can say a lot more about the growth of f if desired but it is
generally quite close to 〈t〉L2(R).

Domains of this sort are sometimes called ‘extended L2 domains’ –
see if you can work out what happens more generally.
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Manifolds with boundary

• Dirac operators – Photos-C5-16, C5-17.
• Homogeneity etc Photos-C5-18, C5-19, C5-20, C5-21, C5-23,

C5-24.

1. Compactifications of R.

As I will try to show by example later in the course, there are
I believe considerable advantages to looking at compactifications of
non-compact spaces. These advantages show up last in geometric and
analytic considerations. Let me start with the simplest possible case,
namely the real line. There are two standard compactifications which
one can think of as ‘exponential’ and ‘projective’. Since there is only
one connected compact manifold with boundary compactification cor-
responds to the choice of a diffeomorphism onto the interior of [0, 1]:

(1.1)
γ : R −→ [0, 1], γ(R) = (0, 1),

γ−1 : (0, 1) −→ R, γ, γ−1C∞.

In fact it is not particularly pleasant to have to think of the global
maps γ, although we can. Rather we can think of separate maps

(1.2)
γ+ : (T+,∞) −→ [0, 1]

γ− : (T−,−∞) −→ [0, 1]

which both have images (0, x±) and as diffeomorphism other than signs.
In fact if we want the two ends to be the ‘same’ then we can take
γ−(t) = γ+(−t). I leave it as an exercise to show that γ then exists
with

(1.3)

{
γ(t) = γ+(t) t� 0

γ(t) = 1− γ−(t) t� 0.

So, all we are really doing here is identifying a ‘global coordinate’
γ∗+x near ∞ and another near −∞. Then two choices I refer to above

187
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are

(CR.4)
x = e−t exponential compactification
x = 1/t projective compactification .

Note that these are alternatives !
Rather than just consider R, I want to consider R ×M, with M

compact, as discussed above.

Lemma 1.1. If R : H −→ H is a compact operator on a Hilbert
space then Id−R is Fredholm.

Proof. A compact operator is one which maps the unit ball (and
hence any bounded subset) of H onto a precompact set, a set with
compact closure. The unit ball in the null space of Id−R is

{u ∈ H; ‖u‖ = 1 , u = Ru} ⊂ R{u ∈ H; ‖u‖ = 1}

and is therefore precompact. Since it is closed, it is compact and any
Hilbert space with a compact unit ball is finite dimensional. Thus the
null space of (Id−R) is finite dimensional.

Consider a sequence un = vn − Rvn in the range of Id−R and
suppose un → u in H. We may assume u 6= 0, since 0 is in the range,
and by passing to a subsequence suppose that of γ on ?? fields. Clearly

(CR.5)
γ(t) = e−t ⇒ γ∗(∂t) = −x(∂x)
γ̃(t) = 1/t ⇒ γ̃∗(∂t) = −s2∂s

where I use ‘s’ for the variable in the second case to try to reduce
confusion, it is just a variable in [0, 1]. Dually

(CR.6)

γ∗
(
dx

x

)
= −dt

γ̃∗
(
ds

s2

)
= −dt

in the two cases. The minus signs just come from the fact that both
γ’s reverse orientation.

Proposition 1.2. Under exponential compactification the translation-
invariant Sobolev spaces on R×M are identified with
(1.4)

Hk
b ([0, 1]×M) =

{
u ∈ L2

(
[0, 1]×M ;

dx

x
VM

)
; ∀ `, p ≤ k

Pp ∈ Diffp(M) , (xDx)
`Ppu ∈ L2

(
[0, 1]×M ;

dx

x
VM
)}
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for k a positive integer, dimM = n,

(1.5) Hs
b ([0, 1]×M) =

{
u ∈ L2

(
[0, 1]×M ;

dx

x
VM

)
;∫∫

|u(x, z)− u(x′, z′)|2(
| log x

x′
|2 + ρ(z, z′)

)n+s+1
2

dx

x

dx′

x′
νν ′ <∞

}
0 < s < 1

and for s < 0, k ∈ N s.t., 0 ≤ s+ k < 1,

(1.6) Hs
b ([0, 1]×M) =

{
u =

∑
0≤j+p≤k

(XdJX)pPuj,p,

Pp ∈ Diffp(M) , uj,p ∈ Hs+k
b ([0, 1]×M)

}
.

Moreover the L2 pairing with respect to the measure dx
x
ν extends by

continuity from the dense subspaces C∞c ((0, 1)×M) to a non-degenerate
pairing

(1.7) Hs
b ([0, 1]×M)×H−sb ([0, 1]×M) 3 (n, u) 7−→

∫
u · vdx

x
ν ∈ C.

�

Proof. This is all just translation of the properties of the space
Hs

ti(R×M) to the new coordinates. �

Note that there are other properties I have not translated into this
new setting. There is one additional fact which it is easy to check.
Namely C∞([0, 1]×M) acts as multipliers on all the spaces Hs

b([0, 1]×
M). This follows directly from Proposition 1.2;

C∞([0, 1]×M)×Hs
b([0, 1]×M) 3 (ϕ, u) 7→ ϕu ∈ Hs

b([0, 1]×M) .

(CR.12)

What about the ‘b’ notation? Notice that (1−x)x∂x and the smooth
vector fields on M span, over C∞(X), for X = [0, 1]×M , all the vector
fields tangent to {x = 0|u|x = 1}. Thus we can define the ‘boundary
differential operators’ as

Diffmb ([0, 1]×Mi)
E =

{
P =

∑
0≤j+p≤m

aj,p(xj)((1− x)xDx)
jPp ,

(CR.13)

Pp ∈ Diffp(Mi)
E
}
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and conclude from (CR.12) and the earlier properties that

P ∈ Diffmb (X;E)⇒(CR.14)

P : Hs+m
b (X;E)→ Hs

b(X;E)∀s ∈ R .

Theorem 1.3. A differential operator as in (1.3) is Fredholm if
and only if it is elliptic in the interior and the two “normal operators’

(CR.16) I±(P ) =
∑

0≤j+p≤m

aj,p(x±1)(±Dk)
iPp x+ = 0 , x− = 1

derived from (CR.13), are elliptic and invertible on the translation-
invariant Sobolev spaces.

Proof. As usual we are more interested in the sufficiency of these
conditions than the necessity. To prove this result by using the present
(slightly low-tech) methods requires going back to the beginning and
redoing most of the proof of the Fredholm property for elliptic operators
on a compact manifold.

The first step then is a priori bounds. What we want to show is
that if the conditions of the theorem hold then for u ∈ Hs+m

b (X;E),
x = R×M , ∃C > 0 s.t.

‖u‖m+s ≤ Cs‖Pu‖s + Cs‖x(1− x)u‖s−1+m .(CR.17)

Notice that the norm on the right has a factor, x(1 − x), which van-
ishes at the boundary. Of course this is supposed to come from the
invertibility of I±(P ) in R(0) and the ellipticity of P .

By comparison I±(P ) : Hs+m
~ (R ×M) → Hs

~(R ×M) are isomor-
phisms — necessary and sufficient conditions for this are given in The-
orem ???. We can use the compactifying map γ to convert this to a
statement as in (CR.17) for the operators

(CR.18) P± ∈ Diffmb (X) , P± = I±(P )(γ∗Dt, ·) .

Namely

(CR.19) ‖u‖m+s ≤ Cs‖P±u‖s
where these norms, as in (CR.17) are in the Hs

b spaces. Note that
near x = 0 or x = 1, P± are obtained by substituting Dt 7→ xDx or
(1− x)Dx in (CR.17). Thus

P − P± ∈ (x− x±) Diffmb (X) , x± = 0, 1(CR.20)

have coefficients which vanish at the appropriate boundary. This is
precisely how (CR.16) is derived from (CR.13). Now choose ϕ ∈
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C∞, (0, 1) ×M which is equal to 1 on a sufficiently large set (and has
0 ≤ ϕ ≤ 1) so that

(CR.21) 1− ϕ = ϕ+ + ϕ− , ϕ± ∈ C∞([0, 1]×M)

have supp(ϕ±) ⊂ {|x− x±| ≤ ε), 0 ≤ ϕ+1.
By the interim elliptic estimate,

(CR.22) ‖ϕu‖s+m ≤ Cs‖ϕPu‖s + C ′s‖ψu‖s−1+m

where ψ ∈ C∞c ((0, 1)×M). On the other hand, because of (CR.20)

‖ϕ±u‖m+s ≤ Cs‖ϕ±P±u‖s + Cs‖[ϕ±, P±u]‖s
(CR.23)

≤ Cs‖ϕ±Pu‖s + Csϕ±(P − P±)u‖s + Cs‖[ϕ±, P±]u‖s .
Now, if we can choose the support at ϕ± small enough — recalling that
Cs truly depends on I±(Pt) and s — then the second term on the right
in (CR.23) is bounded by 1

4
‖u‖m+s, since all the coefficients of P −P±

are small on the support off ϕ±. Then (CR.24) ensures that the final
term in (CR.17), since the coefficients vanish at x = x±.

The last term in (CR.22) has a similar bound since ψ has compact
support in the interim. This combining (CR.2) and (CR.23) gives the
desired bound (CR.17).

To complete the proof that P is Fredholm, we need another property
of these Sobolev spaces.

Lemma 1.4. The map

(1.8) Xx(1− x) : Hs
b (X) −→ Hs−1

b (X)

is compact.

Proof. Follow it back to R×M !
�

Now, it follows from the a priori estimate (CR.17) that, as a map
(CR.14), P has finite dimensional null space and closed range. This
is really the proof of Proposition ?? again. Moreover the adjoint of
P with respect to dx

x
V, P ∗, is again elliptic and satisfies the condition

of the theorem, so it too has finite-dimensional null space. Thus the
range of P has finite codimension so it is Fredholm.

�

A corresponding theorem, with similar proof follows for the cusp
compactification. I will formulate it later.

2. Basic properties

A discussion of manifolds with boundary goes here.
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3. Boundary Sobolev spaces

Generalize results of Section 1 to arbitrary compact manifolds with
boundary.

4. Dirac operators

Euclidean and then general Dirac operators

5. Homogeneous translation-invariant operators

One application of the results of Section 3 is to homogeneous constant-
coefficient operators on Rn, including the Euclidean Dirac operators in-
troduced in Section 4. Recall from Chapter 4 that an elliptic constant-
coefficient operator is Fredholm, on the standard Sobolev spaces, if and
only if its characteristic polynomial has no real zeros. If P is homoge-
neous

(5.1) Pij(tζ) = tmPij(ζ) ∀ ζ ∈ Cn , t ∈ R ,
and elliptic, then the only real zero (of the determinant) is at ζ = 0. We
will proceed to discuss the radial compactification of Euclidean space
to a ball, or more conveniently a half-sphere

(5.2) γR : Rn ↪→ Sn,1 = {Z ∈ Rn+1 ; |Z| = 1 , Z0 ≥ 0} .
Transferring P to Sn,1 gives

(5.3) PR ∈ Zm
0 Diffmb (Sn,1 ; CN)

which is elliptic and to which the discussion in Section 3 applies.
In the 1-dimensional case, the map (5.2) reduces to the second

‘projective’ compactification of R discussed above. It can be realized
globally by

(5.4) γR(z) =

(
1√

1 + |z|2
,

z√
1 + |z|2

)
∈ Sn,1 .

Geometrically this corresponds to a form of stereographic projection.
Namely, if Rn 3 z 7→ (1, z) ∈ Rn+1 is embedded as a ‘horizontal
plane’ which is then projected radially onto the sphere (of radius one
around the origin) one arrives at (5.4). It follows easily that γR is a
diffeomorphism onto the open half-sphere with inverse

(5.5) z = Z ′/Z0 , Z
′ = (Z1, . . . , Zn) .

Whilst (5.4) is concise it is not a convenient form of the compacti-
fication as far as computation is concerned. Observe that

x 7→ x√
1 + x2
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is a diffeomorphism of neighborhoods of 0 ∈ R. It follows that Z0, the
first variable in (5.4) can be replaced, near Z0 = 0, by 1/|z| = x. That
is, there is a diffeomorphism

(5.6) {0 ≤ Z0 ≤ ε} ∩ Sn,1 ↔ [0, δ]x × Sn−1
θ

which composed with (5.4) gives x = 1/|z| and θ = z/|z|. In other
words the compactification (5.4) is equivalent to the introduction of
polar coordinates near infinity on Rn followed by inversion of the radial
variable.

Lemma 5.1. If P = (Pij(Dz)) is an N × N matrix of constant
coefficient operators in Rn which is homogeneous of degree −m then
(5.3) holds after radial compactification. If P is elliptic then PR is
elliptic.

Proof. This is a bit tedious if one tries to do it by direct com-
putation. However, it is really only the homogeneity that is involved.
Thus if we use the coordinates x = 1/|z| and θ = z/|z| valid near the
boundary of the compactification (i.e., near ∞ on Rn) then

(5.7) Pij =
∑

0≤`≤m

D`
xP`,i,j(x, θ,Dθ) , P`,i,j ∈ C∞(0, δ)x ; Diffm−`(Sn−1).

Notice that we do know that the coefficients are smooth in 0 < x < δ,
since we are applying a diffeomorphism there. Moreover, the operators
P`,i,j are uniquely determined by (5.7).

So we can exploit the assumed homogeneity of Pij. This means that
for any t > 0, the transformation z 7→ tz gives

(5.8) Pijf(tz) = tm(Pijf)(tz) .

Since |tz| = t|z|, this means that the transformed operator must satisfy
(5.9)∑

`

D`
xP`,i,j(x, θ,Dθ)f(x/t, θ) = tm(

∑
`

D`P`,i,j(·, θ,Dθ)f(·, θ))(x/t) .

Expanding this out we conclude that

x−m−`P`,i,j(x, θ,Dθ) = P`,i,j(θ,Dθ)(5.10)

is independent of x. Thus in fact (5.7) becomes

(5.11) Pij = xm
∑

0≤j≤`

x`D`
xP`,j,i(θ,Dθ) .

Since we can rewrite

(5.12) x`Dx =
∑

0≤j≤`

C`,j(xDx)
j
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(with explicit coefficients if you want) this gives (5.3). Ellipticity in
this sense, meaning that

(5.13) x−mPR ∈ Diffmb (Sn,1;CN)

(5.11) and the original ellipticity at P. Namely, when expressed in terms
of xDx the coefficients of 5.13 are independent of x (this of course just
reflects the homogeneity), ellipticity in x > 0 follows by the coordinate
independence of ellipticity, and hence extends down to x = 0. �

Now the coefficient function Zw+m
0 in (5.3) always gives an isomor-

phism

(5.14) ×Zm
0 : Zw

0 H
s
b(Sn,1) −→ Zw+m

0 Hs
b(Sn,1) .

Combining this with the results of Section 3 we find most of

Theorem 5.2. If P is an N × N matrix of constant coefficient
differential operators on Rn which is elliptic and homogeneous of degree
−m then there is a discrete set − Im(D(P )) ⊂ R such that
(5.15)
P : Zw

0 H
m+s
b (Sn,1) −→ Zw+m

0 Hs
b (Sn,1) is Fredholm ∀ w /∈ − Im(D(P ))

where (5.4) is used to pull these spaces back to Rn. Moreover,

(5.16)
P is injective for w ∈ [0,∞) and

P is surjective for w ∈ (−∞, n−m] ∩ (− Im(D)(P )) .

Proof. The conclusion (5.15) is exactly what we get by applying
Theorem X knowing (5.3).

To see the specific restriction (5.16) on the null space and range,
observe that the domain spaces in (5.15) are tempered. Thus the null
space is contained in the null space on S ′(Rn). Fourier transform shows
that P (ζ)û(ζ) = 0. From the assumed ellipticity of P and homogeneity
it follows that supp(û(ζ)) ⊂ {0} and hence û is a sum of derivatives of
delta functions and finally that u itself is a polynomial. If w ≥ 0 the
domain in (5.15) contains no polynomials and the first part of (5.16)
follows.

The second part of (5.16) follows by a duality argument. Namely,
the adjoint of P with respect to L2(Rn), the usual Lebesgue space,
is P ∗ which is another elliptic homogeneous differential operator with
constant coefficients. Thus the first part of (5.16) applies to P ∗. Using
the homogeneity of Lebesgue measure,

(5.17) |dz| = dx

xn+1
· νθ near ∞

and the shift in weight in (5.15), the second part of (5.16) follows. �
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One important consequence of this is a result going back to Niren-
berg and Walker (although expressed in different language).

Corollary 5.3. If P is an elliptic N × N matrix constant co-
efficient differential operator which is homogeneous of degree m, with
n > m, the the map (5.15) is an isomorphism for w ∈ (0, n−m).

In particular this applies to the Laplacian in dimensions n > 2
and to the constant coefficient Dirac operators discussed above in di-
mensions n > 1. In these cases it is also straightforward to compute
the index and to identify the surjective set. Namely, for a constant
coefficient Dirac operator

(5.18) D(P ) = iN0 ∪ i(n−m+ N0) .

Figure goes here.

6. Scattering structure

Let me briefly review how the main result of Section 5 was arrived
at. To deal with a constant coefficient Dirac operator we first radially
compactified Rn to a ball, then peeled off a multiplicative factor Z0

from the operator showed that the remaining operator was Fredholm by
identifing a neighbourhood of the boundary with part of R×Sn−1 using
the exponential map to exploit the results of Section 1 near infinity.
Here we will use a similar, but different, procedure to treat a different
class of operators which are Fredholm on the standard Sobolev spaces.

Although we will only apply this in the case of a ball, coming from
Rn, I cannot resist carrying out the discussed for a general compact
manifolds — since I think the generality clarifies what is going on.
Starting from a compact manifold with boundary, M, the first step is
essentially the reverse of the radial compactification of Rn.

Near any point on the boundary, p ∈ ∂M, we can introduce ‘ad-
missible’ coordinates, x, y1, . . . , yn−1 where {x = 0‖ is the local form of
the boundary and y1, . . . , yn−1 are tangential coordinates; we normalize
y1 = · · · = yn−1 = 0 at p. By reversing the radial compactification of
Rn I mean we can introduce a diffeomorphism of a neighbourhood of p
to a conic set in Rn :

(6.1) zn = 1/x , zj = yj/x , j = 1, . . . , n− 1 .

Clearly the ‘square’ |y| < ε, 0 < x < ε is mapped onto the truncated
conic set

(6.2) zn ≥ 1/ε , |z′| < ε|zn| , z′ = (z1, . . . , zn−1) .
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Definition 6.1. We define spaces Hs
sc(M) for any compact mani-

fold with boundary M by the requirements

(6.3) u ∈ Hs
sc(M)⇐⇒ u ∈ Hs

loc(M \ ∂M) and R∗j (ϕju) ∈ Hs(Rn)

for ϕj ∈ C∞(M), 0 ≤ ϕi ≤ 1,
∑
ϕi = 1 in a neighbourhood of the

boundary and where each ϕj is supported in a coordinate patch (??),
(6.2) with R given by (6.1).

Of course such a definition would not make much sense if it de-
pended on the choice of the partition of unity near the boundary {ϕi‖
or the choice of coordinate. So really (6.1) should be preceded by such
an invariance statement. The key to this is the following observation.

Proposition 6.2. If we set Vsc(M) = xVb(M) for any compact
manifold with boundary then for any ψ ∈ C∞(M) supported in a coor-
dinate patch (??), and any C∞ vector field V on M

(6.4) ψV ∈ Vsc(M)⇐⇒ ψV =
n∑
j=1

µj(R
−1)∗(Dzj) , µj ∈ C∞(M) .

Proof. The main step is to compute the form of Dzj in terms of
the coordinate obtained by inverting (6.1). Clearly

(6.5) Dzn = x2Dx , Dzj = xDyj − yix2Dx , j < n .

Now, as discussed in Section 3, xDx and Dyj locally span Vb(M), so
x2Dx, xDyj locally span Vsc(M). Thus (6.5) shows that in the singular
coordinates (6.1), Vsc(M) is spanned by the Dz` , which is exactly what
(6.4) claims. �

Next let’s check what happens to Euclidean measure under R, ac-
tually we did this before:

(SS.9) |dz| = |dx|
xn+1

νy .

Thus we can first identify what (6.3) means in the case of s = 0.

Lemma 6.3. For s = 0, Definition (6.1) unambiguously defines

(6.6) H0
sc(M) =

{
u ∈ L2

loc(M) ;

∫
|u|2 νM

xn+1
<∞

}
where νM is a positive smooth density on M (smooth up to the boundary
of course) and x ∈ C∞(M) is a boundary defining function.

Proof. This is just what (6.3) and (SS.9) mean. �

Combining this with Proposition 6.2 we can see directly what (6.3)
means for kinN.
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Lemma 6.4. If (6.3) holds for s = k ∈ N for any one such partition
of unity then u ∈ H0

sc(M) in the sense of (6.6) and

(6.7) V1 . . . Vju ∈ H0
sc(M) ∀ Vi ∈ Vsc(M) if j ≤ k ,

and conversely.

Proof. For clarity we can proceed by induction on k and re-
place (6.7) by the statements that u ∈ Hk−1

sc (M) and V u ∈ Hk−1
sc (M)

∀V ∈ Vsc(M). In the interior this is clear and follows immediately from
Proposition 6.2 provided we carry along the inductive statement that

(6.8) C∞(M) acts by multiplication on Hk
sc(M) .

�

As usual we can pass to general s ∈ R by treating the cases 0 <
s < 1 first and then using the action of the vector fields.

Proposition 6.5. For 0 < s < 1 the condition (6.3) (for any one
partition of unity) is equivalent to requiring u ∈ H0

sc(M) and

(6.9)

∫∫
M×M

|u(p)− u(p′)|2

ρn+2s
sc

νM
xn+1

ν ′M
(x′)n+1

<∞

where ρsc(p, p
′) = χχ′p(p, p′) +

∑
j ϕjϕ

′
j〈z − z′〉.

Proof. Use local coordinates. �

Then for s ≥ 1 if k is the integral part of s, so 0 ≤ s−k < 1, k ∈ N,

(6.10) u ∈ Hs
sc(M)⇐⇒ V1, . . . , Vju ∈ Hs−k

sc (M) , Vi ∈ Vsc(M) , j ≤ k

and for s < 0 if k ∈ N is chosen so that 0 ≤ k + s < 1, then

(6.11)

u ∈ Hs
sc(M)⇔ ∃ Vj ∈ Hs+k

sc (M) , j = 1, . . . ,N ,
uj ∈ Hs−k

sc (M) , Vj,i(M) , 1 ≤ i ≤ `j ≤ k s.t.

u = u0 +
N∑
j=1

Vj,i · · ·Vj,`juj.

All this complexity is just because we are preceding in such a ‘low-
tech’ fashion. The important point is that these Sobolev spaces are
determined by the choice of ‘structure vector fields’, V ∈ Vsc(M). I
leave it as an important exercise to check that

Lemma 6.6. For the ball, or half-sphere,

γ∗RH
s
sc(Sn,1) = Hs(Rn) .
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Thus on Euclidean space we have done nothing. However, my claim
is that we understand things better by doing this! The idea is that we
should Fourier analysis on Rn to analyse differential operators which
are made up out of Vsc(M) on any compact manifold with boundary
M, and this includes Sn,1 as the radial compactification of Rn. Thus set

(6.12) Diffmsc(M) =
{
P : C∞(M) −→ C∞(M); ∃ f ∈ C∞(M) and

Vi,j ∈ Vsc(M) s.t. P = f +
∑

i,1≤j≤m

Vi,1 . . . Vi,j
}
.

In local coordinates this is just a differential operator and it is smooth
up to the boundary. Since only scattering vector fields are allowed in
the definition such an operator is quite degenerate at the boundary. It
always looks like

(6.13) P =
∑

k+|α|≤m

ak,α(x, y)(x2Dx)
k(xDy)

α,

with smooth coefficients in terms of local coordinates (??).
Now, if we freeze the coefficients at a point, p, on the boundary of

M we get a polynomial

(6.14) σsc(P )(p) =
∑

k+|α|≤m

ak,α(p)τ kηα.

Note that this is not in general homogeneous since the lower order terms
are retained. Despite this one gets essentially the same polynomial at
each point, independent of the admissible coordinates chosen, as will
be shown below. Let’s just assume this for the moment so that the
condition in the following result makes sense.

Theorem 6.7. If P ∈ Diffmsc(M ;E) acts between vector bundles
over M, is elliptic in the interior and each of the polynomials (matrices)
(6.14) is elliptic and has no real zeros then

(6.15) P : Hs+m
sc (M,E1) −→ Hs

sc(M ;E2) is Fredholm

for each s ∈ R and conversely.

Last time at the end I gave the following definition and theorem.

Definition 6.8. We define weighted (non-standard) Sobolev spaces
for (m,w) ∈ R2 on Rn by
(6.16)
H̃m,w(Rn) = {u ∈Mm

loc(Rn);F ∗
(
(1− χ)r−wu

)
∈ Hm

ti (R× Sn−1)}
where χ ∈ C∞c (Rn), χ(y) = 1 in |y| < 1 and

(6.17) F : R× Sn−1 3 (t, θ) −→ (et, etθ) ∈ Rn \ {0}.
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Theorem 6.9. If P =
n∑
i=1

ΓiDi, Γi ∈ M(N,C), is an elliptic, con-

stant coefficient, homogeneous differential operator of first order then

(6.18) P : H̃m,w(Rn) −→ H̃m−1,w+1(Rn) ∀ (m,w) ∈ R2

is continuous and is Fredholm for w ∈ R \ D̃ where D̃ is discrete.
If P is a Dirac operators, which is to say explicitly here that the

coefficients are ‘Pauli matrices’ in the sense that

(6.19) Γ∗i = Γi, Γ2
i = IdN×N , ∀ i, ΓiΓj + ΓjΓi = 0, i 6= j,

then

(6.20) D̃ = −N0 ∪ (n− 2 + N0)

and if n > 2 then for w ∈ (0, n − 2) the operator P in (6.18) is an
isomorphism.

I also proved the following result from which this is derived

Lemma 6.10. In polar coordinates on Rn in which Rn \ {0} '
(0,∞)× Sn−1, y = rθ,

(6.21) Dyj =





CHAPTER 9

Electromagnetism

1. Maxwell’s equations

Maxwell’s equations in a vacuum take the standard form

(1.1)

div E = ρ div B = 0

curl E = −∂B

∂t
curl B =

∂E

∂t
+ J

where E is the electric and B the magnetic field strength, both are
3-vectors depending on position z ∈ R3 and time t ∈ R. The external
quantities are ρ, the charge density which is a scalar, and J, the current
density which is a vector.

We will be interested here in stationary solutions for which E and
B are independent of time and with J = 0, since this also represents
motion in the standard description. Thus we arrive at

(1.2)
div E = ρ div B = 0

curl E = 0 curl B = 0.

The simplest interesting solutions represent charged particles, say
with the charge at the origin, ρ = cδ0(z), and with no magnetic field,
B = 0. By identifying E with a 1-form, instead of a vector field on R3,

(1.3) E = (E1, E2, E3) =⇒ e = E1dz1 + E2dz2 + E3dz3

we may identify curl E with the 2-form de,

(1.4) de =(
∂E2

∂z1

− ∂E1

∂z2

)
dz1∧dz2+

(
∂E3

∂z2

− ∂E2

∂z3

)
dz2∧dz3+

(
∂E1

∂z3

− ∂E3

∂z1

)
dz3∧dz1.

Thus (1.2) implies that e is a closed 1-form, satisfying

(1.5)
∂E1

∂z1

+
∂E2

∂z2

+
∂E3

∂z3

= cδ0(z).

By the Poincaré Lemma, a closed 1-form on R3 is exact, e = dp,
with p determined up to an additive constant. If e is smooth (which it

201
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cannot be, because of (1.5)), then
(1.6)

p(z)− p(z′) =

∫ 1

0

γ∗e along γ : [0, 1] −→ R3, γ(0) = z′, γ(1) = z.

It is reasonable to look for a particular p and 1-form e which satisfy
(1.5) and are smooth outside the origin. Then (1.6) gives a potential
which is well defined, up to an additive constant, outside 0, once z′ is
fixed, since de = 0 implies that the integral of γ∗e along a closed curve
vanishes. This depends on the fact that R3\{0} is simply connected.

So, modulo confirmation of these simple statements, it suffices to
look for p ∈ C∞(R3\{0}) satisfying e = dp and (1.5), so

(1.7) ∆p = −
(
∂2p

∂z2
1

+
∂2p

∂z2
2

+
∂2p

∂z2
3

)
= −cδ0(z).

Then E is recovered from e = dp.
The operator ‘div’ can also be understood in terms of de Rham d

together with the Hodge star ∗. If we take R3 to have the standard ori-
entation and Euclidean metric dz2

1 +dz2
2 +dz2

3 , the Hodge star operator
is given on 1-forms by

(1.8) ∗dz1 = dz2 ∧ dz3, ∗dz2 = dz3 ∧ dz1, ∗dz3 = dz1 ∧ dz2.

Thus ∗e is a 2-form,

(1.9) ∗ e = E1 dz2 ∧ dz3 + E2 dz3 ∧ dz1 + E3 dz1 ∧ dz2

=⇒ d∗e =

(
∂E1

∂z1

+
∂E2

∂z2

+
∂E3

∂z3

)
dz1∧dz2∧dz3 = (div E) dz1∧dz2∧dz3.

The stationary Maxwell’s equations on e become

(1.10) d ∗ e = ρ dz1 ∧ dz2 ∧ dz3, de = 0.

There is essential symmetry in (1.1) except for the appearance of the
“source” terms, ρ and J. To reduce (1.1) to two equations, analogous
to (1.10) but in 4-dimensional (Minkowski) space requires B to be
identified with a 2-form on R3, rather than a 1-form. Thus, set

(1.11) β = B1 dz2 ∧ dz3 +B2 dz3 ∧ dz1 +B3 dz1 ∧ dz2.

Then

(1.12) dβ = div B dz1 ∧ dz2 ∧ dz3

as follows from (1.9) and the second equation in (1.1) implies β is
closed.
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Thus e and β are respectively a closed 1-form and a closed 2-form
on R3. If we return to the general time-dependent setting then we may
define a 2-form on R4 by

(1.13) λ = e ∧ dt+ β

where e and β are pulled back by the projection π : R4 → R3. Com-
puting directly,

(1.14) dλ = d′e ∧ dt+ d′β +
∂β

∂t
∧ dt

where d′ is now the differential on R3. Thus

(1.15) dλ = 0⇔ d′e+
∂β

∂t
= 0, d′β = 0

recovers two of Maxwell’s equations. On the other hand we can define
a 4-dimensional analogue of the Hodge star but corresponding to the
Minkowski metric, not the Euclidean one. Using the natural analogue
of the 3-dimensional Euclidean Hodge by formally inserting an i into
the t-component, gives

(1.16)



∗4dz1 ∧ dz2 = idz3 ∧ dt
∗4dz1 ∧ dz3 = idt ∧ dz2

∗4dz1 ∧ dt = −idz2 ∧ dz3

∗4dz2 ∧ dz3 = idz1 ∧ dt
∗4dz2 ∧ dt = −idz3 ∧ dz1

∗4dz3 ∧ dt = −idz1 ∧ dz2.

The other two of Maxwell’s equations then become

(1.17) d ∗4 λ = d(−i ∗ e+ i(∗β) ∧ dt) = −i(ρ dz1 ∧ dz2 ∧ dz3 + j ∧ dt)
where j is the 1-form associated to J as in (1.3). For our purposes this
is really just to confirm that it is best to think of B as the 2-form β
rather than try to make it into a 1-form. There are other good reasons
for this, related to behaviour under linear coodinate changes.

Returning to the stationary setting, note that (1.7) has a ‘preferred’
solution

(1.18) p =
1

4π|z|
.

This is in fact the only solution which vanishes at infinity.

Proposition 1.1. The only tempered solutions of (1.7) are of the
form

(1.19) p =
1

4π|z|
+ q, ∆q = 0, q a polynomial.
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Proof. The only solutions are of the form (1.19) where q ∈ S ′(R3)
is harmonic. Thus q̂ ∈ S ′(R3) satisfies |ξ|2q̂ = 0, which implies that q
is a polynomial. �

2. Hodge Theory

The Hodge ∗ operator discussed briefly above in the case of R3 (and
Minkowski 4-space) makes sense in any oriented real vector space, V,
with a Euclidean inner product—that is, on a finite dimensional real
Hilbert space. Namely, if e1, . . . , en is an oriented orthonormal basis
then

(2.1) ∗(ei1 ∧ · · · ∧ eik) = sgn(i∗)eik+1
∧ · · · ein

extends by linearity to

(2.2) ∗ :
∧k V −→

∧n−k V .

Proposition 2.1. The linear map (2.2) is independent of the ori-
ented orthonormal basis used to define it and so depends only on the
choice of inner product and orientation of V. Moreover,

(2.3) ∗2 = (−1)k(n−k), on
∧k V .

Proof. Note that sgn(i∗), the sign of the permutation defined by
{i1, . . . , in} is fixed by

(2.4) ei1 ∧ · · · ∧ ein = sgn(i∗)e1 ∧ · · · ∧ en.

Thus, on the basis ei1 ∧ . . . ∧ ein of
∧k V given by strictly increasing

sequences i1 < i2 < · · · < ik in {1, . . . , n},
(2.5) e∗ ∧ ∗e∗ = sgn(i∗)

2e1 ∧ · · · ∧ en = e1 ∧ · · · ∧ en.

The standard inner product on
∧k V is chosen so that this basis is

orthonormal. Then (2.5) can be rewritten

(2.6) eI ∧ ∗eJ = 〈eI , eJ〉e1 ∧ · · · ∧ en.
This in turn fixes ∗ uniquely since the pairing given by

(2.7)
∧k V ×

∧k−1 V 3 (u, v) 7→ (u ∧ v)/e1∧···∧en

is non-degenerate, as can be checked on these bases.
Thus it follows from (2.6) that ∗ depends only on the choice of inner

product and orientation as claimed, provided it is shown that the inner
product on

∧k V only depends on that of V. This is a standard fact
following from the embedding

(2.8)
∧k V ↪→ V ⊗k
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as the totally antisymmetric part, the fact that V ⊗k has a natural inner
product and the fact that this induces one on

∧k V after normalization
(depending on the convention used in (2.8). These details are omitted.

�

Since ∗ is uniquely determined in this way, it necessarily depends
smoothly on the data, in particular the inner product. On an ori-
ented Riemannian manifold the induced inner product on T ∗pM varies
smoothly with p (by assumption) so

(2.9) ∗ :
∧k
pM −→

∧n−k
p M,

∧k
pM =

∧k
p(T

∗
pM)

varies smoothly and so defines a smooth bundle map

(2.10) ∗ ∈ C∞(M ;
∧kM,

∧n−kM).

An oriented Riemannian manifold carries a natural volume form
ν ∈ C∞(M,

∧nM), and this allows (2.6) to be written in integral form:

(2.11)

∫
M

〈α, β〉 ν =

∫
M

α ∧ ∗β ∀α, β ∈ C∞(M,
∧kM).

Lemma 2.2. On an oriented, (compact) Riemannian manifold the
adjoint of d with respect to the Riemannian inner product and volume
form is

(2.12) d∗ = δ = (−1)k+n(n−k+1) ∗ d ∗ on
∧kM.

Proof. By definition,

(2.13) d : C∞(M,
∧kM) −→ C∞(M,

∧k+1M)

=⇒ δ : C∞(M,
∧k+1 M) −→ C∞(M,

∧kM),∫
M

〈dα, α′〉 ν =

∫
M

〈α, δα′〉 ν ∀α ∈ C∞(M,
∧kM), α′ ∈ C∞(M,

∧k+1M).

Applying (2.11) and using Stokes’ theorem, (and compactness of either
M or the support of at least one of α, α′),∫

M

〈δα, α′〉 ν =

∫
M

dα ∧ ∗α′

=

∫
M

d(α∧∗α′)+(−1)k+1

∫
M

α∧d∗α′ = 0+(−1)k+1

∫
M

〈α, ∗−1d∗α′〉 ν.

Taking into account (2.3) to compute ∗−1 on n− k forms shows that

(2.14) δα′ = (−1)k+1+n(n−k) ∗ d ∗ on (k + 1)-forms

which is just (2.12) on k-forms. �
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Notice that changing the orientation simply changes the sign of ∗
on all forms. Thus (2.12) does not depend on the orientation and as a
local formula is valid even if M is not orientable — since the existence
of δ = d∗ does not require M to be orientable.

Theorem 2.3 (Hodge/Weyl). On any compact Riemannian man-
ifold there is a canonical isomorphism

(2.15) Hk
dR(M) ∼= Hk

Ho(M) =
{
u ∈ L2(M ;

∧kM); (d+ δ)u = 0
}

where the left-hand side is either the C∞ or the distributional de Rham
cohomology

(2.16)
{
u ∈ C∞(M ;

∧kM); du = 0
}/

d C∞(M ;
∧kM)

∼=
{
u ∈ C−∞(M ;

∧kM); du = 0
}/

d C−∞(M ;
∧kM).

Proof. The critical point of course is that

(2.17) d+ δ ∈ Diff1(M ;
∧∗M) is elliptic.

We know that the symbol of d at a point ζ ∈ T ∗pM is the map

(2.18)
∧kM 3 α 7→ iζ ∧ α.

We are only interested in ζ 6= 0 and by homogeneity it is enough to
consider |ζ| = 1. Let e1 = ζ, e2, . . . , en be an orthonormal basis of
T ∗pM , then from (2.12) with a fixed sign throughout:

(2.19) σ(δ, ζ)α = ± ∗ (iζ ∧ ·) ∗ α.

Take α = eI , ∗α = ±eI′ where I ∪ I ′ = {1, . . . , n}. Thus

(2.20) σ(δ, ζ)α =
{ 0 1 6∈ I
±iαI\{1} 1 ∈ I .

In particular, σ(d+ δ) is an isomorphism since it satisfies

(2.21) σ(d+ δ)2 = |ζ|2

as follows from (2.18) and (2.20) or directly from the fact that

(2.22) (d+ δ)2 = d2 + dδ + δd+ δ2 = dδ + δd

again using (2.18) and (2.20).
Once we know that d+ δ is elliptic we conclude from the discussion

of Fredholm properties above that the distributional null space

(2.23)
{
u ∈ C−∞(M,

∧∗M); (d+ δ)u = 0
}
⊂ C∞(M,

∧∗M)



2. HODGE THEORY 207

is finite dimensional. From this it follows that

(2.24)
Hk

Ho ={u ∈ C−∞(M,
∧kM); (d+ δ)u = 0}

={u ∈ C∞(M,
∧kM); du = δu = 0}

and that the null space in (2.23) is simply the direct sum of these spaces
over k. Indeed, from (2.23) the integration by parts in

0 =

∫
〈du, (d+ δ)u〉 ν = ‖du‖2

L2 +

∫
〈u, δ2u〉 ν = ‖du‖2

L2

is justified.
Thus we can consider d+ δ as a Fredholm operator in three forms

(2.25)

d+ δ :C−∞(M,
∧∗M) −→ C−∞(M,

∧∗M),

d+ δ :H1(M,
∧∗M) −→ H1(M,

∧∗M),

d+ δ :C∞(M,
∧∗M) −→ C∞(M,

∧∗M)

and obtain the three direct sum decompositions

(2.26)

C−∞(M,
∧∗M) = H∗Ho ⊕ (d+ δ)C−∞(M,

∧∗M),

L2(M,
∧∗M) = H∗Ho ⊕ (d+ δ)L2(M,

∧∗M),

C∞(M,
∧∗M) = H∗Ho ⊕ (d+ δ)C∞(M,

∧∗M).

The same complement occurs in all three cases in view of (2.24).
From (2.24) directly, all the “harmonic” forms in Hk

Ho(M) are closed
and so there is a natural map

(2.27) Hk
Ho(M) −→ Hk

dR(M) −→ Hk
dR,C−∞(M)

where the two de Rham spaces are those in (2.16), not yet shown to be
equal.

We proceed to show that the maps in (2.27) are isomorphisms. First
to show injectivity, suppose u ∈ Hk

Ho(M) is mapped to zero in either
space. This means u = dv where v is either C∞ or distributional, so
it suffices to suppose v ∈ C−∞(M,

∧k−1M). Since u is smooth the
integration by parts in the distributional pairing

‖u‖2
L2 =

∫
M

〈u, dv〉 ν =

∫
M

〈δu, v〉 ν = 0

is justified, so u = 0 and the maps are injective.
To see surjectivity, use the Hodge decomposition (2.26). If u′ ∈

C−∞(M,
∧kM) or C∞(M,

∧kM), we find

(2.28) u′ = u0 + (d+ δ)v

where correspondingly, v ∈ C−∞(M,
∧∗M) or C∞(M,

∧∗M) and u0 ∈
Hk

Ho(M). If u′ is closed, du′ = 0, then dδv = 0 follows from applying
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d to (2.28) and hence (d + δ)δv = 0, since δ2 = 0. Thus δv ∈ H∗Ho(M)
and in particular, δv ∈ C∞(M,

∧∗M). Then the integration by parts
in

‖δv‖2
L2 =

∫
〈δv, δv〉 ν =

∫
〈v, (d+ δ)δv〉 ν = 0

is justified, so δv = 0. Then (2.28) shows that any closed form, smooth
or distributional, is cohomologous in the same sense to u0 ∈ Hk

Ho(M).
Thus the natural maps (2.27) are isomorphisms and the Theorem is
proved. �

Thus, on a compact Riemannian manifold (whether orientable or
not), each de Rham class has a unique harmonic representative.

3. Coulomb potential

4. Dirac strings

Addenda to Chapter 9



CHAPTER 10

Monopoles

1. Gauge theory

2. Bogomolny equations

(1) Compact operators, spectral theorem
(2) Families of Fredholm operators(*)
(3) Non-compact self-adjoint operators, spectral theorem
(4) Spectral theory of the Laplacian on a compact manifold
(5) Pseudodifferential operators(*)
(6) Invertibility of the Laplacian on Euclidean space
(7) Lie groups(�), bundles and gauge invariance
(8) Bogomolny equations on R3

(9) Gauge fixing
(10) Charge and monopoles
(11) Monopole moduli spaces

* I will drop these if it looks as though time will become an issue.
�,� I will provide a brief and elementary discussion of manifolds and Lie
groups if that is found to be necessary.

3. Problems

Problem 1. Prove that u+, defined by (15.10) is linear.

Problem 2. Prove Lemma 15.7.
Hint(s). All functions here are supposed to be continuous, I just

don’t bother to keep on saying it.

(1) Recall, or check, that the local compactness of a metric space
X means that for each point x ∈ X there is an ε > 0 such that
the ball {y ∈ X; d(x, y) ≤ δ} is compact for δ ≤ ε.

(2) First do the case n = 1, so K b U is a compact set in an open
subset.
(a) Given δ > 0, use the local compactness of X, to cover K

with a finite number of compact closed balls of radius at
most δ.

209
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(b) Deduce that if ε > 0 is small enough then the set {x ∈
X; d(x,K) ≤ ε}, where

d(x,K) = inf
y∈K

d(x, y),

is compact.
(c) Show that d(x,K), for K compact, is continuous.
(d) Given ε > 0 show that there is a continuous function

gε : R −→ [0, 1] such that gε(t) = 1 for t ≤ ε/2 and
gε(t) = 0 for t > 3ε/4.

(e) Show that f = gε◦d(·, K) satisfies the conditions for n = 1
if ε > 0 is small enough.

(3) Prove the general case by induction over n.
(a) In the general case, set K ′ = K ∩ U {1 and show that the

inductive hypothesis applies toK ′ and the Uj for j > 1; let
f ′j, j = 2, . . . , n be the functions supplied by the inductive
assumption and put f ′ =

∑
j≥2 f

′
j.

(b) Show that K1 = K ∩ {f ′ ≤ 1
2
} is a compact subset of U1.

(c) Using the case n = 1 construct a function F for K1 and
U1.

(d) Use the case n = 1 again to find G such that G = 1 on K
and supp(G) b {f ′ + F > 1

2
}.

(e) Make sense of the functions

f1 = F
G

f ′ + F
, fj = f ′j

G

f ′ + F
, j ≥ 2

and show that they satisfies the inductive assumptions.

Problem 3. Show that σ-algebras are closed under countable in-
tersections.

Problem 4. (Easy) Show that if µ is a complete measure and
E ⊂ F where F is measurable and has measure 0 then µ(E) = 0.

Problem 5. Show that compact subsets are measurable for any
Borel measure. (This just means that compact sets are Borel sets if
you follow through the tortuous terminology.)

Problem 6. Show that the smallest σ-algebra containing the sets

(a,∞] ⊂ [−∞,∞]

for all a ∈ R, generates what is called above the ‘Borel’ σ-algebra on
[−∞,∞].

Problem 7. Write down a careful proof of Proposition 1.1.
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Problem 8. Write down a careful proof of Proposition 1.2.

Problem 9. Let X be the metric space

X = {0} ∪ {1/n;n ∈ N = {1, 2, . . .}} ⊂ R
with the induced metric (i.e. the same distance as on R). Recall why
X is compact. Show that the space C0(X) and its dual are infinite
dimensional. Try to describe the dual space in terms of sequences; at
least guess the answer.

Problem 10. For the space Y = N = {1, 2, . . .} ⊂ R, describe
C0(Y ) and guess a description of its dual in terms of sequences.

Problem 11. Let (X,M, µ) be any measure space (so µ is a mea-
sure on the σ-algebraM of subsets of X). Show that the set of equiv-
alence classes of µ-integrable functions on X, with the equivalence re-
lation given by (4.8), is a normed linear space with the usual linear
structure and the norm given by

‖f‖ =

∫
X

|f |dµ.

Problem 12. Let (X,M) be a set with a σ-algebra. Let µ :M→
R be a finite measure in the sense that µ(φ) = 0 and for any {Ei}∞i=1 ⊂
M with Ei ∩ Ej = φ for i 6= j,

(3.1) µ

(
∞⋃
i=1

Ei

)
=
∞∑
i=1

µ(Ei)

with the series on the right always absolutely convergenct (i.e., this is
part of the requirement on µ). Define

(3.2) |µ| (E) = sup
∞∑
i=1

|µ(Ei)|

for E ∈ M, with the supremum over all measurable decompositions
E =

⋃∞
i=1Ei with the Ei disjoint. Show that |µ| is a finite, positive

measure.
Hint 1. You must show that |µ| (E) =

∑∞
i=1 |µ| (Ai) if

⋃
iAi = E,

Ai ∈ M being disjoint. Observe that if Aj =
⋃
lAjl is a measurable

decomposition of Aj then together the Ajl give a decomposition of E.
Similarly, if E =

⋃
j Ej is any such decomposition of E then Ajl =

Aj ∩ El gives such a decomposition of Aj.
Hint 2. See [6] p. 117!

Problem 13. (Hahn Decomposition)
With assumptions as in Problem 12:
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(1) Show that µ+ = 1
2
(|µ| + µ) and µ− = 1

2
(|µ| − µ) are positive

measures, µ = µ+ − µ−. Conclude that the definition of a
measure based on (4.16) is the same as that in Problem 12.

(2) Show that µ± so constructed are orthogonal in the sense that
there is a set E ∈M such that µ−(E) = 0, µ+(X \ E) = 0.

Hint. Use the definition of |µ| to show that for any F ∈M
and any ε > 0 there is a subset F ′ ∈ M, F ′ ⊂ F such that
µ+(F ′) ≥ µ+(F ) − ε and µ−(F ′) ≤ ε. Given δ > 0 apply
this result repeatedly (say with ε = 2−nδ) to find a decreasing
sequence of sets F1 = X, Fn ∈ M, Fn+1 ⊂ Fn such that
µ+(Fn) ≥ µ+(Fn−1)−2−nδ and µ−(Fn) ≤ 2−nδ. Conclude that
G =

⋂
n Fn has µ+(G) ≥ µ+(X) − δ and µ−(G) = 0. Now let

Gm be chosen this way with δ = 1/m. Show that E =
⋃
mGm

is as required.

Problem 14. Now suppose that µ is a finite, positive Radon mea-
sure on a locally compact metric space X (meaning a finite positive
Borel measure outer regular on Borel sets and inner regular on open
sets). Show that µ is inner regular on all Borel sets and hence, given
ε > 0 and E ∈ B(X) there exist sets K ⊂ E ⊂ U with K compact and
U open such that µ(K) ≥ µ(E)− ε, µ(E) ≥ µ(U)− ε.

Hint. First take U open, then use its inner regularity to find K
with K ′ b U and µ(K ′) ≥ µ(U) − ε/2. How big is µ(E\K ′)? Find
V ⊃ K ′\E with V open and look at K = K ′\V .

Problem 15. Using Problem 14 show that if µ is a finite Borel
measure on a locally compact metric space X then the following three
conditions are equivalent

(1) µ = µ1 − µ2 with µ1 and µ2 both positive finite Radon mea-
sures.

(2) |µ| is a finite positive Radon measure.
(3) µ+ and µ− are finite positive Radon measures.

Problem 16. Let ‖ ‖ be a norm on a vector space V . Show that
‖u‖ = (u, u)1/2 for an inner product satisfying (1.1) - (1.4) if and only
if the parallelogram law holds for every pair u, v ∈ V .

Hint (From Dimitri Kountourogiannis)
If ‖ · ‖ comes from an inner product, then it must satisfy the polar-

isation identity:

(x, y) = 1/4(‖x+ y‖2 − ‖x− y‖2 − i‖x+ iy‖2 − i‖x− iy‖2)

i.e, the inner product is recoverable from the norm, so use the RHS
(right hand side) to define an inner product on the vector space. You
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will need the paralellogram law to verify the additivity of the RHS.
Note the polarization identity is a bit more transparent for real vector
spaces. There we have

(x, y) = 1/2(‖x+ y‖2 − ‖x− y‖2)

both are easy to prove using ‖a‖2 = (a, a).

Problem 17. Show (Rudin does it) that if u : Rn → C has con-
tinuous partial derivatives then it is differentiable at each point in the
sense of (6.19).

Problem 18. Consider the function f(x) = 〈x〉−1 = (1 + |x|2)−1/2.
Show that

∂f

∂xj
= lj(x) · 〈x〉−3

with lj(x) a linear function. Conclude by induction that 〈x〉−1 ∈
Ck0 (Rn) for all k.

Problem 19. Show that exp(− |x|2) ∈ S(Rn).

Problem 20. Prove (2.8), probably by induction over k.

Problem 21. Prove Lemma 2.4.

Hint. Show that a set U 3 0 in S(Rn) is a neighbourhood of 0 if
and only if for some k and ε > 0 it contains a set of the formϕ ∈ S(Rn) ;

∑
|α|≤k,
|β|≤k

sup
∣∣xαDβϕ

∣∣ < ε

 .

Problem 22. Prove (3.7), by estimating the integrals.

Problem 23. Prove (3.9) where

ψj(z;x′) =

∫ ′
0

∂ψ

∂zj
(z + tx′) dt .

Problem 24. Prove (3.20). You will probably have to go back to
first principles to do this. Show that it is enough to assume u ≥ 0 has
compact support. Then show it is enough to assume that u is a simple,
and integrable, function. Finally look at the definition of Lebesgue
measure and show that if E ⊂ Rn is Borel and has finite Lebesgue
measure then

lim
|t|→∞

µ(E\(E + t)) = 0

where µ = Lebesgue measure and

E + t = {p ∈ Rn ; p′ + t , p′ ∈ E} .
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Problem 25. Prove Leibniz’ formula

Dα
x(ϕψ) =

∑
β≤α

(
α

β

)
Dα

xϕ · dα−βx ψ

for any C∞ functions and ϕ and ψ. Here α and β are multiindices,
β ≤ α means βj ≤ αj for each j? and(

α

β

)
=
∏
j

(
αj
βj

)
.

I suggest induction!

Problem 26. Prove the generalization of Proposition 3.10 that
u ∈ S ′(Rn), supp(w) ⊂ {0} implies there are constants cα , |α| ≤ m,
for some m, such that

u =
∑
|α|≤m

cαD
αδ .

Hint This is not so easy! I would be happy if you can show that
u ∈ M(Rn), suppu ⊂ {0} implies u = cδ. To see this, you can show
that

ϕ ∈ S(Rn), ϕ(0) = 0

⇒ ∃ϕj ∈ S(Rn) , ϕj(x) = 0 in |x| ≤ εj > 0(↓ 0) ,

sup |ϕj − ϕ| → 0 as j →∞ .

To prove the general case you need something similar — that given m,
if ϕ ∈ S(Rn) and Dα

xϕ(0) = 0 for |α| ≤ m then ∃ϕj ∈ S(Rn), ϕj = 0
in |x| ≤ εj , εj ↓ 0 such that ϕj → ϕ in the Cm norm.

Problem 27. If m ∈ N, m′ > 0 show that u ∈ Hm(Rn) and
Dαu ∈ Hm′(Rn) for all |α| ≤ m implies u ∈ Hm+m′(Rn). Is the
converse true?

Problem 28. Show that every element u ∈ L2(Rn) can be written
as a sum

u = u0 +
n∑
j=1

Djuj , uj ∈ H1(Rn) , j = 0, . . . , n .

Problem 29. Consider for n = 1, the locally integrable function
(the Heaviside function),

H(x) =

{
0 x ≤ 0
1 x > 1 .

Show that DxH(x) = cδ; what is the constant c?
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Problem 30. For what range of orders m is it true that δ ∈
Hm(Rn) , δ(ϕ) = ϕ(0)?

Problem 31. Try to write the Dirac measure explicitly (as possi-
ble) in the form (5.8). How many derivatives do you think are neces-
sary?

Problem 32. Go through the computation of ∂E again, but cut-
ting out a disk {x2 + y2 ≤ ε2} instead.

Problem 33. Consider the Laplacian, (6.4), for n = 3. Show that
E = c(x2 + y2)−1/2 is a fundamental solution for some value of c.

Problem 34. Recall that a topology on a set X is a collection F of
subsets (called the open sets) with the properties, φ ∈ F , X ∈ F and
F is closed under finite intersections and arbitrary unions. Show that
the following definition of an open set U ⊂ S ′(Rn) defines a topology:

∀ u ∈ U and all ϕ ∈ S(Rn) ∃ε > 0 st.

|(u′ − u)(ϕ)| < ε⇒ u′ ∈ U .

This is called the weak topology (because there are very few open
sets). Show that uj → u weakly in S ′(Rn) means that for every open
set U 3 u ∃N st. uj ∈ U ∀ j ≥ N .

Problem 35. Prove (6.18) where u ∈ S ′(Rn) and ϕ, ψ ∈ S(Rn).

Problem 36. Show that for fixed v ∈ S ′(Rn) with compact support

S(Rn) 3 ϕ 7→ v ∗ ϕ ∈ S(Rn)

is a continuous linear map.

Problem 37. Prove the ?? to properties in Theorem 6.6 for u ∗ v
where u ∈ S ′(Rn) and v ∈ S ′(Rn) with at least one of them having
compact support.

Problem 38. Use Theorem 6.9 to show that if P (D) is hypoelliptic
then every parametrix F ∈ S(Rn) has sing supp(F ) = {0}.

Problem 39. Show that if P (D) is an ellipitic differential operator
of order m, u ∈ L2(Rn) and P (D)u ∈ L2(Rn) then u ∈ Hm(Rn).

Problem 40 (Taylor’s theorem). . Let u : Rn −→ R be a real-
valued function which is k times continuously differentiable. Prove that
there is a polynomial p and a continuous function v such that

u(x) = p(x) + v(x) where lim
|x|↓0

|v(x)|
|x|k

= 0.
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Problem 41. Let C(Bn) be the space of continuous functions on
the (closed) unit ball, Bn = {x ∈ Rn; |x| ≤ 1}. Let C0(Bn) ⊂ C(Bn) be
the subspace of functions which vanish at each point of the boundary
and let C(Sn−1) be the space of continuous functions on the unit sphere.
Show that inclusion and restriction to the boundary gives a short exact
sequence

C0(Bn) ↪→ C(Bn) −→ C(Sn−1)

(meaning the first map is injective, the second is surjective and the
image of the first is the null space of the second.)

Problem 42 (Measures). A measure on the ball is a continuous
linear functional µ : C(Bn) −→ R where continuity is with respect to
the supremum norm, i.e. there must be a constant C such that

|µ(f)| ≤ C sup
x∈Rn
|f(x)| ∀ f ∈ C(Bn).

Let M(Bn) be the linear space of such measures. The space M(Sn−1)
of measures on the sphere is defined similarly. Describe an injective
map

M(Sn−1) −→M(Bn).

Can you define another space so that this can be extended to a short
exact sequence?

Problem 43. Show that the Riemann integral defines a measure

(3.3) C(Bn) 3 f 7−→
∫
Bn
f(x)dx.

Problem 44. If g ∈ C(Bn) and µ ∈M(Bn) show that gµ ∈M(Bn)
where (gµ)(f) = µ(fg) for all f ∈ C(Bn). Describe all the measures
with the property that

xjµ = 0 in M(Bn) for j = 1, . . . , n.

Problem 45 (Hörmander, Theorem 3.1.4). Let I ⊂ R be an open,
non-empty interval.

i) Show (you may use results from class) that there exists ψ ∈
C∞c (I) with

∫
R ψ(x)ds = 1.

ii) Show that any φ ∈ C∞c (I) may be written in the form

φ = φ̃+ cψ, c ∈ C, φ̃ ∈ C∞c (I) with

∫
R
φ̃ = 0.

iii) Show that if φ̃ ∈ C∞c (I) and
∫
R φ̃ = 0 then there exists µ ∈

C∞c (I) such that dµ
dx

= φ̃ in I.
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iv) Suppose u ∈ C−∞(I) satisfies du
dx

= 0, i.e.

u(−dφ
dx

) = 0 ∀ φ ∈ C∞c (I),

show that u = c for some constant c.
v) Suppose that u ∈ C−∞(I) satisfies du

dx
= c, for some constant

c, show that u = cx+ d for some d ∈ C.

Problem 46. [Hörmander Theorem 3.1.16]

i) Use Taylor’s formula to show that there is a fixed ψ ∈ C∞c (Rn)
such that any φ ∈ C∞c (Rn) can be written in the form

φ = cψ +
n∑
j=1

xjψj

where c ∈ C and the ψj ∈ C∞c (Rn) depend on φ.
ii) Recall that δ0 is the distribution defined by

δ0(φ) = φ(0) ∀ φ ∈ C∞c (Rn);

explain why δ0 ∈ C−∞(Rn).
iii) Show that if u ∈ C−∞(Rn) and u(xjφ) = 0 for all φ ∈ C∞c (Rn)

and j = 1, . . . , n then u = cδ0 for some c ∈ C.
iv) Define the ‘Heaviside function’

H(φ) =

∫ ∞
0

φ(x)dx ∀ φ ∈ C∞c (R);

show that H ∈ C−∞(R).
v) Compute d

dx
H ∈ C−∞(R).

Problem 47. Using Problems 45 and 46, find all u ∈ C−∞(R)
satisfying the differential equation

x
du

dx
= 0 in R.

These three problems are all about homogeneous distributions on
the line, extending various things using the fact that

xz+ =

{
exp(z log x) x > 0

0 x ≤ 0

is a continuous function on R if Re z > 0 and is differentiable if Re z > 1
and then satisfies

d

dx
xz+ = zxz−1

+ .
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We used this to define

(3.4) xz+ =
1

z + k

1

z + k − 1
· · · 1

z + 1

dk

dxk
xz+k+ if z ∈ C \ −N.

Problem 48. [Hadamard regularization]

i) Show that (3.4) just means that for each φ ∈ C∞c (R)

xz+(φ) =
(−1)k

(z + k) · · · (z + 1)

∫ ∞
0

dkφ

dxk
(x)xz+kdx, Re z > −k, z /∈ −N.

ii) Use integration by parts to show that
(3.5)

xz+(φ) = lim
ε↓0

[∫ ∞
ε

φ(x)xzdx−
k∑
j=1

Cj(φ)εz+j

]
, Re z > −k, z /∈ −N

for certain constants Cj(φ) which you should give explicitly.
[This is called Hadamard regularization after Jacques Hadamard,
feel free to look at his classic book [3].]

iii) Assuming that −k + 1 ≥ Re z > −k, z 6= −k + 1, show that
there can only be one set of the constants with j < k (for each
choice of φ ∈ C∞c (R)) such that the limit in (3.5) exists.

iiv) Use ii), and maybe iii), to show that

d

dx
xz+ = zxz−1

+ in C−∞(R) ∀ z /∈ −N0 = {0, 1, . . . }.

v) Similarly show that xxz+ = xz+1
+ for all z /∈ −N.

vi) Show that xz+ = 0 in x < 0 for all z /∈ −N. (Duh.)

Problem 49. [Null space of x d
dx
− z]

i) Show that if u ∈ C−∞(R) then ũ(φ) = u(φ̃), where φ̃(x) =
φ(−x) ∀ φ ∈ C∞c (R), defines an element of C−∞(R). What is

ũ if u ∈ C0(R)? Compute δ̃0.

ii) Show that d
dx
ũ = − d̃

dx
u.

iii) Define xz− = x̃z+ for z /∈ −N and show that d
dx
xz− = −zxz−1

−
and xxz− = −xz+1

− .
iv) Suppose that u ∈ C−∞(R) satisfies the distributional equation

(x d
dx
− z)u = 0 (meaning of course, xdu

dx
= zu where z is a

constant). Show that

u
∣∣
x>0

= c+x
z
−
∣∣
x>0

and u
∣∣
x<0

= c−x
z
−
∣∣
x<0
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for some constants c±. Deduce that v = u − c+x
z
+ − c−x

z
−

satisfies

(3.6) (x
d

dx
− z)v = 0 and supp(v) ⊂ {0}.

v) Show that for each k ∈ N, (x d
dx

+ k + 1) dk

dxk
δ0 = 0.

vi) Using the fact that any v ∈ C−∞(R) with supp(v) ⊂ {0} is

a finite sum of constant multiples of the dk

dxk
δ0, show that, for

z /∈ −N, the only solution of (3.6) is v = 0.
vii) Conclude that for z /∈ −N

(3.7)

{
u ∈ C−∞(R); (x

d

dx
− z)u = 0

}
is a two-dimensional vector space.

Problem 50. [Negative integral order] To do the same thing for
negative integral order we need to work a little differently. Fix k ∈ N.

i) We define weak convergence of distributions by saying un → u
in C∞c (X), where un, u ∈ C−∞(X), X ⊂ Rn being open, if
un(φ)→ u(φ) for each φ ∈ C∞c (X). Show that un → u implies
that ∂un

∂xj
→ ∂u

∂xj
for each j = 1, . . . , n and fun → fu if f ∈

C∞(X).
ii) Show that (z + k)xz+ is weakly continuous as z → −k in the

sense that for any sequence zn → −k, zn /∈ −N, (zn +k)xzn+ →
vk where

vk =
1

−1
· · · 1

−k + 1

dk+1

dxk+1
x+, x+ = x1

+.

iii) Compute vk, including the constant factor.
iv) Do the same thing for (z + k)xz− as z → −k.
v) Show that there is a linear combination (k + z)(xz+ + c(k)xz−)

such that as z → −k the limit is zero.
vi) If you get this far, show that in fact xz+ + c(k)xz− also has a

weak limit, uk, as z → −k. [This may be the hardest part.]
vii) Show that this limit distribution satisfies (x d

dx
+ k)uk = 0.

viii) Conclude that (3.7) does in fact hold for z ∈ −N as well.
[There are still some things to prove to get this.]

Problem 51. Show that for any set G ⊂ Rn

v∗(G) = inf
∞∑
i=1

v(Ai)

where the infimum is taken over coverings of G by rectangular sets
(products of intervals).
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Problem 52. Show that a σ-algebra is closed under countable in-
tersections.

Problem 53. Show that compact sets are Lebesgue measurable
and have finite volume and also show the inner regularity of the Lebesgue
measure on open sets, that is if E is open then

(3.8) v(E) = sup{v(K);K ⊂ E, K compact}.

Problem 54. Show that a set B ⊂ Rn is Lebesgue measurable if
and only if

v∗(E) = v∗(E ∩B) + v∗(E ∩B{) ∀ open E ⊂ Rn.

[The definition is this for all E ⊂ Rn.]

Problem 55. Show that a real-valued continuous function f :
U −→ R on an open set, is Lebesgue measurable, in the sense that
f−1(I) ⊂ U ⊂ Rn is measurable for each interval I.

Problem 56. Hilbert space and the Riesz representation theorem.
If you need help with this, it can be found in lots of places – for instance
[7] has a nice treatment.

i) A pre-Hilbert space is a vector space V (over C) with a ‘posi-
tive definite sesquilinear inner product’ i.e. a function

V × V 3 (v, w) 7→ 〈v, w〉 ∈ C

satisfying
• 〈w, v〉 = 〈v, w〉
• 〈a1v1 + a2v2, w〉 = a1〈v1, w〉+ a2〈v2, w〉
• 〈v, v〉 ≥ 0
• 〈v, v〉 = 0⇒ v = 0.
Prove Schwarz’ inequality, that

|〈u, v〉| ≤ 〈u〉
1
2 〈v〉

1
2 ∀ u, v ∈ V.

Hint: Reduce to the case 〈v, v〉 = 1 and then expand

〈u− 〈u, v〉v, u− 〈u, v〉v〉 ≥ 0.

ii) Show that ‖v‖ = 〈v, v〉1/2 is a norm and that it satisfies the
parallelogram law:

(3.9) ‖v1 + v2‖2 + ‖v1 − v2‖2 = 2‖v1‖2 + 2‖v2‖2 ∀ v1, v2 ∈ V.
iii) Conversely, suppose that V is a linear space over C with a

norm which satisfies (3.9). Show that

4〈v, w〉 = ‖v + w‖2 − ‖v − w‖2 + i‖v + iw‖2 − i‖v − iw‖2
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defines a pre-Hilbert inner product which gives the original
norm.

iv) Let V be a Hilbert space, so as in (i) but complete as well.
Let C ⊂ V be a closed non-empty convex subset, meaning
v, w ∈ C ⇒ (v + w)/2 ∈ C. Show that there exists a unique
v ∈ C minimizing the norm, i.e. such that

‖v‖ = inf
w∈C
‖w‖.

Hint: Use the parallelogram law to show that a norm min-
imizing sequence is Cauchy.

v) Let u : H → C be a continuous linear functional on a Hilbert
space, so |u(ϕ)| ≤ C‖ϕ‖ ∀ ϕ ∈ H. Show that N = {ϕ ∈
H;u(ϕ) = 0} is closed and that if v0 ∈ H has u(v0) 6= 0 then
each v ∈ H can be written uniquely in the form

v = cv0 + w, c ∈ C, w ∈ N.

vi) With u as in v), not the zero functional, show that there exists
a unique f ∈ H with u(f) = 1 and 〈w, f〉 = 0 for all w ∈ N .

Hint: Apply iv) to C = {g ∈ V ;u(g) = 1}.
vii) Prove the Riesz Representation theorem, that every continu-

ous linear functional on a Hilbert space is of the form

uf : H 3 ϕ 7→ 〈ϕ, f〉 for a unique f ∈ H.

Problem 57. Density of C∞c (Rn) in Lp(Rn).

i) Recall in a few words why simple integrable functions are dense
in L1(Rn) with respect to the norm ‖f‖L1 =

∫
Rn |f(x)|dx.

ii) Show that simple functions
∑N

j=1 cjχ(Uj) where the Uj are

open and bounded are also dense in L1(Rn).
iii) Show that if U is open and bounded then F (y) = v(U ∩ Uy),

where Uy = {z ∈ Rn; z = y + y′, y′ ∈ U} is continuous in
y ∈ Rn and that

v(U ∩ U {y ) + v(U { ∩ Uy)→ 0 as y → 0.

iv) If U is open and bounded and ϕ ∈ C∞c (Rn) show that

f(x) =

∫
U

ϕ(x− y)dy ∈ C∞c (Rn).

v) Show that if U is open and bounded then

sup
|y|≤δ

∫
|χU(x)− χU(x− y)|dx→ 0 as δ ↓ 0.
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vi) If U is open and bounded and ϕ ∈ C∞c (Rn), ϕ ≥ 0,
∫
ϕ = 1

then

fδ → χU in L1(Rn) as δ ↓ 0

where

fδ(x) = δ−n
∫
ϕ
(y
δ

)
χU(x− y)dy.

Hint: Write χU(x) = δ−n
∫
ϕ
(
y
δ

)
χU(x) and use v).

vii) Conclude that C∞c (Rn) is dense in L1(Rn).
viii) Show that C∞c (Rn) is dense in Lp(Rn) for any 1 ≤ p <∞.

Problem 58. Schwartz representation theorem. Here we (well you)
come to grips with the general structure of a tempered distribution.

i) Recall briefly the proof of the Sobolev embedding theorem and
the corresponding estimate

sup
x∈Rn
|φ(x)| ≤ C‖φ‖Hm ,

n

2
< m ∈ R.

ii) For m = n + 1 write down a(n equivalent) norm on the right
in a form that does not involve the Fourier transform.

iii) Show that for any α ∈ N0

|Dα
(
(1 + |x|2)Nφ

)
| ≤ Cα,N

∑
β≤α

(1 + |x|2)N |Dβφ|.

iv) Deduce the general estimates

sup
|α|≤N
x∈Rn

(1 + |x|2)N |Dαφ(x)| ≤ CN‖(1 + |x|2)Nφ‖HN+n+1 .

v) Conclude that for each tempered distribution u ∈ S ′(Rn) there
is an integer N and a constant C such that

|u(φ)| ≤ C‖(1 + |x|2)Nφ‖H2N ∀ φ ∈ S(Rn).

vi) Show that v = (1 + |x|2)−Nu ∈ S ′(Rn) satisfies

|v(φ)| ≤ C‖(1 + |D|2)Nφ‖L2 ∀ φ ∈ S(Rn).

vi) Recall (from class or just show it) that if v is a tempered
distribution then there is a unique w ∈ S ′(Rn) such that (1 +
|D|2)Nw = v.

vii) Use the Riesz Representation Theorem to conclude that for
each tempered distribution u there exists N and w ∈ L2(Rn)
such that

(3.10) u = (1 + |D|2)N(1 + |x|2)Nw.
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viii) Use the Fourier transform on S ′(Rn) (and the fact that it is
an isomorphism on L2(Rn)) to show that any tempered distri-
bution can be written in the form

u = (1 + |x|2)N(1 + |D|2)Nw for some N and some w ∈ L2(Rn).

ix) Show that any tempered distribution can be written in the
form

u = (1+|x|2)N(1+|D|2)N+n+1w̃ for some N and some w̃ ∈ H2(n+1)(Rn).

x) Conclude that any tempered distribution can be written in the
form

u = (1 + |x|2)N(1 + |D|2)MU for some N,M

and a bounded continuous function U

Problem 59. Distributions of compact support.

i) Recall the definition of the support of a distribution, defined
in terms of its complement

Rn\supp(u) =
{
p ∈ Rn;∃ U ⊂ Rn, open, with p ∈ U such that u

∣∣
U

= 0
}

ii) Show that if u ∈ C−∞(Rn) and φ ∈ C∞c (Rn) satisfy

supp(u) ∩ supp(φ) = ∅
then u(φ) = 0.

iii) Consider the space C∞(Rn) of all smooth functions on Rn,
without restriction on supports. Show that for each N

‖f‖(N) = sup
|α|≤N, |x|≤N

|Dαf(x)|

is a seminorn on C∞(Rn) (meaning it satisfies ‖f‖ ≥ 0, ‖cf‖ =
|c|‖f‖ for c ∈ C and the triangle inequality but that ‖f‖ = 0
does not necessarily imply that f = 0.)

iv) Show that C∞c (Rn) ⊂ C∞(Rn) is dense in the sense that for
each f ∈ C∞(Rn) there is a sequence fn in C∞c (Rn) such that
‖f − fn‖(N) → 0 for each N.

v) Let E ′(Rn) temporarily (or permanantly if you prefer) denote
the dual space of C∞(Rn) (which is also written E(Rn)), that
is, v ∈ E ′(Rn) is a linear map v : C∞(Rn) −→ C which is
continuous in the sense that for some N

(3.11) |v(f)| ≤ C‖f‖(N) ∀ f ∈ C∞(Rn).

Show that such a v ‘is’ a distribution and that the map E ′(Rn) −→
C−∞(Rn) is injective.



224 10. MONOPOLES

vi) Show that if v ∈ E ′(Rn) satisfies (3.11) and f ∈ C∞(Rn) has
f = 0 in |x| < N + ε for some ε > 0 then v(f) = 0.

vii) Conclude that each element of E ′(Rn) has compact support
when considered as an element of C−∞(Rn).

viii) Show the converse, that each element of C−∞(Rn) with com-
pact support is an element of E ′(Rn) ⊂ C−∞(Rn) and hence
conclude that E ′(Rn) ‘is’ the space of distributions of compact
support.

I will denote the space of distributions of compact support by C−∞c (R).

Problem 60. Hypoellipticity of the heat operator H = iDt +∆ =

iDt +
n∑
j=1

D2
xj

on Rn+1.

(1) Using τ to denote the ‘dual variable’ to t and ξ ∈ Rn to denote
the dual variables to x ∈ Rn observe that H = p(Dt, Dx) where
p = iτ + |ξ|2.

(2) Show that |p(τ, ξ)| > 1
2

(|τ |+ |ξ|2) .
(3) Use an inductive argument to show that, in (τ, ξ) 6= 0 where

it makes sense,

(3.12) Dk
τD

α
ξ

1

p(τ, ξ)
=

|α|∑
j=1

qk,α,j(ξ)

p(τ, ξ)k+j+1

where qk,α,j(ξ) is a polynomial of degree (at most) 2j − |α|.
(4) Conclude that if φ ∈ C∞c (Rn+1) is identically equal to 1 in a

neighbourhood of 0 then the function

g(τ, ξ) =
1− φ(τ, ξ)

iτ + |ξ|2

is the Fourier transform of a distribution F ∈ S ′(Rn) with
sing supp(F ) ⊂ {0}. [Remember that sing supp(F ) is the com-
plement of the largest open subset of Rn the restriction of F
to which is smooth].

(5) Show that F is a parametrix for the heat operator.
(6) Deduce that iDt +∆ is hypoelliptic – that is, if U ⊂ Rn is an

open set and u ∈ C−∞(U) satisfies (iDt + ∆)u ∈ C∞(U) then
u ∈ C∞(U).

(7) Show that iDt −∆ is also hypoelliptic.

Problem 61. Wavefront set computations and more – all pretty
easy, especially if you use results from class.

i) Compute WF(δ) where δ ∈ S ′(Rn) is the Dirac delta function
at the origin.
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ii) Compute WF(H(x)) where H(x) ∈ S ′(R) is the Heaviside
function

H(x) =

{
1 x > 0

0 x ≤ 0
.

Hint: Dx is elliptic in one dimension, hit H with it.
iii) Compute WF(E), E = iH(x1)δ(x′) which is the Heaviside in

the first variable on Rn, n > 1, and delta in the others.
iv) Show that Dx1E = δ, so E is a fundamental solution of Dx1 .
v) If f ∈ C−∞c (Rn) show that u = E ? f solves Dx1u = f.
vi) What does our estimate on WF(E ?f) tell us about WF(u) in

terms of WF(f)?

Problem 62. The wave equation in two variables (or one spatial
variable).

i) Recall that the Riemann function

E(t, x) =

{
−1

4
if t > x and t > −x

0 otherwise

is a fundamental solution of D2
t −D2

x (check my constant).
ii) Find the singular support of E.
iii) Write the Fourier transform (dual) variables as τ, ξ and show

that

WF(E) ⊂ {0} × S1 ∪ {(t, x, τ, ξ);x = t > 0 and ξ + τ = 0}
∪ {(t, x, τ, ξ);−x = t > 0 and ξ = τ} .

iv) Show that if f ∈ C−∞c (R2) then u = E?f satisfies (D2
t−D2

x)u =
f.

v) With u defined as in iv) show that

supp(u) ⊂ {(t, x); ∃
(t′, x′) ∈ supp(f) with t′ + x′ ≤ t+ x and t′ − x′ ≤ t− x}.

vi) Sketch an illustrative example of v).
vii) Show that, still with u given by iv),

sing supp(u) ⊂ {(t, x); ∃ (t′, x′) ∈ sing supp(f) with

t ≥ t′ and t+ x = t′ + x′ or t− x = t′ − x′}.

viii) Bound WF(u) in terms of WF(f).

Problem 63. A little uniqueness theorems. Suppose u ∈ C−∞c (Rn)
recall that the Fourier transform û ∈ C∞(Rn). Now, suppose u ∈
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C−∞c (Rn) satisfies P (D)u = 0 for some non-trivial polynomial P, show
that u = 0.

Problem 64. Work out the elementary behavior of the heat equa-
tion.

i) Show that the function on R× Rn, for n ≥ 1,

F (t, x) =

{
t−

n
2 exp

(
− |x|

2

4t

)
t > 0

0 t ≤ 0

is measurable, bounded on the any set {|(t, x)| ≥ R} and is
integrable on {|(t, x)| ≤ R} for any R > 0.

ii) Conclude that F defines a tempered distibution on Rn+1.
iii) Show that F is C∞ outside the origin.
iv) Show that F satisfies the heat equation

(∂t −
n∑
j=1

∂2
xj

)F (t, x) = 0 in (t, x) 6= 0.

v) Show that F satisfies

(3.13) F (s2t, sx) = s−nF (t, x) in S ′(Rn+1)

where the left hand side is defined by duality “F (s2t, sx) = Fs”
where

Fs(φ) = s−n−2F (φ1/s), φ1/s(t, x) = φ(
t

s2
,
x

s
).

vi) Conclude that

(∂t −
n∑
j=1

∂2
xj

)F (t, x) = G(t, x)

where G(t, x) satisfies

(3.14) G(s2t, sx) = s−n−2G(t, x) in S ′(Rn+1)

in the same sense as above and has support at most {0}.
vii) Hence deduce that

(3.15) (∂t −
n∑
j=1

∂2
xj

)F (t, x) = cδ(t)δ(x)

for some real constant c.
Hint: Check which distributions with support at (0, 0) sat-

isfy (3.14).
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viii) If ψ ∈ C∞c (Rn+1) show that u = F ? ψ satisfies

(3.16) u ∈ C∞(Rn+1) and

sup
x∈Rn, t∈[−S,S]

(1 + |x|)N |Dαu(t, x)| <∞ ∀ S > 0, α ∈ Nn+1, N.

ix) Supposing that u satisfies (3.16) and is a real-valued solution
of

(∂t −
n∑
j=1

∂2
xj

)u(t, x) = 0

in Rn+1, show that

v(t) =

∫
Rn
u2(t, x)

is a non-increasing function of t.
Hint: Multiply the equation by u and integrate over a slab

[t1, t2]× Rn.
x) Show that c in (3.15) is non-zero by arriving at a contradiction

from the assumption that it is zero. Namely, show that if c = 0
then u in viii) satisfies the conditions of ix) and also vanishes
in t < T for some T (depending on ψ). Conclude that u = 0 for
all ψ. Using properties of convolution show that this in turn
implies that F = 0 which is a contradiction.

xi) So, finally, we know that E = 1
c
F is a fundamental solution of

the heat operator which vanishes in t < 0. Explain why this
allows us to show that for any ψ ∈ C∞c (R × Rn) there is a
solution of

(3.17) (∂t −
n∑
j=1

∂2
xj

)u = ψ, u = 0 in t < T for some T.

What is the largest value of T for which this holds?
xii) Can you give a heuristic, or indeed a rigorous, explanation of

why

c =

∫
Rn

exp(−|x|
2

4
)dx?

xiii) Explain why the argument we used for the wave equation to
show that there is only one solution, u ∈ C∞(Rn+1), of (3.17)
does not apply here. (Indeed such uniqueness does not hold
without some growth assumption on u.)
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Problem 65. (Poisson summation formula) As in class, let L ⊂ Rn

be an integral lattice of the form

L =

{
v =

n∑
j=1

kjvj, kj ∈ Z

}

where the vj form a basis of Rn and using the dual basis wj (so wj ·vi =
δij is 0 or 1 as i 6= j or i = j) set

L◦ =

{
w = 2π

n∑
j=1

kjwj, kj ∈ Z

}
.

Recall that we defined

(3.18) C∞(TL) = {u ∈ C∞(Rn);u(z + v) = u(z) ∀ z ∈ Rn, v ∈ L}.

i) Show that summation over shifts by lattice points:

(3.19) AL : S(Rn) 3 f 7−→ ALf(z) =
∑
v∈L

f(z − v) ∈ C∞(TL).

defines a map into smooth periodic functions.
ii) Show that there exists f ∈ C∞c (Rn) such that ALf ≡ 1 is the

costant function on Rn.
iii) Show that the map (3.19) is surjective. Hint: Well obviously

enough use the f in part ii) and show that if u is periodic then
AL(uf) = u.

iv) Show that the infinite sum

(3.20) F =
∑
v∈L

δ(· − v) ∈ S ′(Rn)

does indeed define a tempered distribution and that F is L-
periodic and satisfies exp(iw · z)F (z) = F (z) for each w ∈ L◦
with equality in S ′(Rn).

v) Deduce that F̂ , the Fourier transform of F, is L◦ periodic,
conclude that it is of the form

(3.21) F̂ (ξ) = c
∑
w∈L◦

δ(ξ − w)

vi) Compute the constant c.
vii) Show that AL(f) = F ? f.

viii) Using this, or otherwise, show that AL(f) = 0 in C∞(TL) if

and only if f̂ = 0 on L◦.
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Problem 66. For a measurable set Ω ⊂ Rn, with non-zero measure,
set H = L2(Ω) and let B = B(H) be the algebra of bounded linear
operators on the Hilbert space H with the norm on B being

(3.22) ‖B‖B = sup{‖Bf‖H ; f ∈ H, ‖f‖H = 1}.
i) Show that B is complete with respect to this norm. Hint (prob-

ably not necessary!) For a Cauchy sequence {Bn} observe that
Bnf is Cauchy for each f ∈ H.

ii) If V ⊂ H is a finite-dimensional subspace and W ⊂ H is a
closed subspace with a finite-dimensional complement (that is
W + U = H for some finite-dimensional subspace U) show
that there is a closed subspace Y ⊂ W with finite-dimensional
complement (in H) such that V ⊥ Y, that is 〈v, y〉 = 0 for all
v ∈ V and y ∈ Y.

iii) If A ∈ B has finite rank (meaning AH is a finite-dimensional
vector space) show that there is a finite-dimensional space V ⊂
H such that AV ⊂ V and AV ⊥ = {0} where

V ⊥ = {f ∈ H; 〈f, v〉 = 0 ∀ v ∈ V }.
Hint: Set R = AH, a finite dimensional subspace by hypoth-
esis. Let N be the null space of A, show that N⊥ is finite
dimensional. Try V = R +N⊥.

iv) If A ∈ B has finite rank, show that (Id−zA)−1 exists for all
but a finite set of λ ∈ C (just quote some matrix theory).
What might it mean to say in this case that (Id−zA)−1 is
meromorphic in z? (No marks for this second part).

v) Recall that K ⊂ B is the algebra of compact operators, defined
as the closure of the space of finite rank operators. Show that
K is an ideal in B.

vi) If A ∈ K show that

Id +A = (Id +B)(Id +A′)

where B ∈ K, (Id +B)−1 exists and A′ has finite rank. Hint:
Use the invertibility of Id +B when ‖B‖B < 1 proved in class.

vii) Conclude that if A ∈ K then

{f ∈ H; (Id +A)f = 0} and
(
(Id +A)H

)⊥
are finite dimensional.

Problem 67. [Separable Hilbert spaces]

i) (Gramm-Schmidt Lemma). Let {vi}i∈N be a sequence in a
Hilbert space H. Let Vj ⊂ H be the span of the first j elements
and set Nj = dimVj. Show that there is an orthonormal se-
quence e1, . . . , ej (finite if Nj is bounded above) such that Vj is
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the span of the first Nj elements. Hint: Proceed by induction
over N such that the result is true for all j with Nj < N. So,
consider what happens for a value of j with Nj = Nj−1 +1 and
add element eNj ∈ Vj which is orthogonal to all the previous
ek’s.

ii) A Hilbert space is separable if it has a countable dense subset
(sometimes people say Hilbert space when they mean separa-
ble Hilbert space). Show that every separable Hilbert space
has a complete orthonormal sequence, that is a sequence {ej}
such that 〈u, ej〉 = 0 for all j implies u = 0.

iii) Let {ej} an orthonormal sequence in a Hilbert space, show
that for any aj ∈ C,

‖
N∑
j=1

ajej‖2 =
N∑
j=1

|aj|2.

iv) (Bessel’s inequality) Show that if ej is an orthormal sequence
in a Hilbert space and u ∈ H then

‖
N∑
j=1

〈u, ej〉ej‖2 ≤ ‖u‖2

and conclude (assuming the sequence of ej’s to be infinite)
that the series

∞∑
j=1

〈u, ej〉ej

converges in H.
v) Show that if ej is a complete orthonormal basis in a separable

Hilbert space then, for each u ∈ H,

u =
∞∑
j=1

〈u, ej〉ej.

Problem 68. [Compactness] Let’s agree that a compact set in a
metric space is one for which every open cover has a finite subcover.
You may use the compactness of closed bounded sets in a finite dimen-
sional vector space.

i) Show that a compact subset of a Hilbert space is closed and
bounded.

ii) If ej is a complete orthonormal subspace of a separable Hilbert
space and K is compact show that given ε > 0 there exists N
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such that

(3.23)
∑
j≥N

|〈u, ej〉|2 ≤ ε ∀ u ∈ K.

iii) Conversely show that any closed bounded set in a separable
Hilbert space for which (3.23) holds for some orthonormal basis
is indeed compact.

iv) Show directly that any sequence in a compact set in a Hilbert
space has a convergent subsequence.

v) Show that a subspace of H which has a precompact unit ball
must be finite dimensional.

vi) Use the existence of a complete orthonormal basis to show that
any bounded sequence {uj}, ‖uj‖ ≤ C, has a weakly conver-
gent subsequence, meaning that 〈v, uj〉 converges in C along
the subsequence for each v ∈ H. Show that the subsequnce
can be chosen so that 〈ek, uj〉 converges for each k, where ek
is the complete orthonormal sequence.

Problem 69. [Spectral theorem, compact case] Recall that a bounded
operator A on a Hilbert space H is compact if A{‖u‖ ≤ 1} is precom-
pact (has compact closure). Throughout this problem A will be a
compact operator on a separable Hilbert space, H.

i) Show that if 0 6= λ ∈ C then

Eλ = {u ∈ H;Au = λu}.
is finite dimensional.

ii) If A is self-adjoint show that all eigenvalues (meaning Eλ 6=
{0}) are real and that different eigenspaces are orthogonal.

iii) Show that αA = sup{|〈Au, u〉|2}; ‖u‖ = 1} is attained. Hint:
Choose a sequence such that |〈Auj, uj〉|2 tends to the supre-
mum, pass to a weakly convergent sequence as discussed above
and then using the compactness to a furhter subsequence such
that Auj converges.

iv) If v is such a maximum point and f ⊥ v show that 〈Av, f〉 +
〈Af, v〉 = 0.

v) If A is also self-adjoint and u is a maximum point as in iii)
deduce that Au = λu for some λ ∈ R and that λ = ±α.

vi) Still assuming A to be self-adjoint, deduce that there is a finite-
dimensional subspace M ⊂ H, the sum of eigenspaces with
eigenvalues ±α, containing all the maximum points.

vii) Continuing vi) show that A restricts to a self-adjoint bounded
operator on the Hilbert space M⊥ and that the supremum in
iii) for this new operator is smaller.
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viii) Deduce that for any compact self-adjoint operator on a sep-
arable Hilbert space there is a complete orthonormal basis of
eigenvectors. Hint: Be careful about the null space – it could
be big.

Problem 70. Show that a (complex-valued) square-integrable func-
tion u ∈ L2(Rn) is continuous in the mean, in the sense that

(3.24) lim
ε↓0

sup
|y|<ε

∫
|u(x+ y)− u(x)|2dx = 0.

Hint: Show that it is enough to prove this for non-negative functions
and then that it suffices to prove it for non-negative simple functions
and finally that it is enough to check it for the characteristic function
of an open set of finite measure. Then use Problem 57 to show that it
is true in this case.

Problem 71. [Ascoli-Arzela] Recall the proof of the theorem of
Ascoli and Arzela, that a subset of C0

0(Rn) is precompact (with respect
to the supremum norm) if and only if it is equicontinuous and equi-
small at infinity, i.e. given ε > 0 there exists δ > 0 such that for all
elements u ∈ B
(3.25)
|y| < δ =⇒ sup

x∈Rn
|u(x+ y) = u(x)| < ε and |x| > 1/δ =⇒ |u(x)| < ε.

Problem 72. [Compactness of sets in L2(Rn).] Show that a subset
B ⊂ L2(Rn) is precompact in L2(Rn) if and only if it satisfies the
following two conditions:

i) (Equi-continuity in the mean) For each ε > 0 there exists δ > 0
such that

(3.26)

∫
Rn
|u(x+ y)− u(x)|2dx < ε ∀ |y| < δ, u ∈ B.

ii) (Equi-smallness at infinity) For each ε > 0 there exists R such
that

(3.27)

∫
|x|>R|

|u|2dx < ε ∀ u ∈ B.

Hint: Problem 70 shows that (3.26) holds for each u ∈ L2(Rn); check
that (3.27) also holds for each function. Then use a covering argument
to prove that both these conditions must hold for a compact subset
of L2(R) and hence for a precompact set. One method to prove the
converse is to show that if (3.26) and (3.27) hold then B is bounded
and to use this to extract a weakly convergent sequence from any given
sequence in B. Next show that (3.26) is equivalent to (3.27) for the
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set F(B), the image of B under the Fourier transform. Show, possi-
bly using Problem 71, that if χR is cut-off to a ball of radius R then
χRG(χRûn) converges strongly if un converges weakly. Deduce from
this that the weakly convergent subsequence in fact converges strongly
so B̄ is sequently compact, and hence is compact.

Problem 73. Consider the space Cc(Rn) of all continuous functions
on Rn with compact support. Thus each element vanishes in |x| > R
for some R, depending on the function. We want to give this a toplogy
in terms of which is complete. We will use the inductive limit topology.
Thus the whole space can be written as a countable union
(3.28)

Cc(Rn) =
⋃
n

{u : Rn;u is continuous and u(x) = 0 for |x| > R}.

Each of the space on the right is a Banach space for the supremum
norm.

(1) Show that the supreumum norm is not complete on the whole
of this space.

(2) Define a subset U ⊂ Cc(Rn) to be open if its intersection with
each of the subspaces on the right in (3.28) is open w.r.t. the
supremum norm.

(3) Show that this definition does yield a topology.
(4) Show that any sequence {fn} which is ‘Cauchy’ in the sense

that for any open neighbourhood U of 0 there exists N such
that fn − fm ∈ U for all n,m ≥ N, is convergent (in the
corresponding sense that there exists f in the space such that
f − fn ∈ U eventually).

(5) If you are determined, discuss the corresponding issue for nets.

Problem 74. Show that the continuity of a linear functional u :
C∞c (Rn) −→ C with respect to the inductive limit topology defined in
(1.17) means precisely that for each n ∈ N there exists k = k(n) and
C = Cn such that

(3.29) |u(ϕ)| ≤ C‖ϕ‖Ck , ∀ ϕ ∈ Ċ∞(B(n)).

The point of course is that the ‘order’ k and the constnat C can both
increase as n, measuring the size of the support, increases.

Problem 75. [Restriction from Sobolev spaces] The Sobolev em-
bedding theorem shows that a function in Hm(Rn), for m > n/2 is
continuous – and hence can be restricted to a subspace of Rn. In fact
this works more generally. Show that there is a well defined restriction
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map

(3.30) Hm(Rn) −→ Hm− 1
2 (Rn) if m >

1

2
with the following properties:

(1) On S(Rn) it is given by u 7−→ u(0, x′), x′ ∈ Rn−1.
(2) It is continuous and linear.

Hint: Use the usual method of finding a weak version of the map on
smooth Schwartz functions; namely show that in terms of the Fourier
transforms on Rn and Rn−1

(3.31) û(0, ·)(ξ′) = (2π)−1

∫
R
û(ξ1, ξ

′)dξ1, ∀ ξ′ ∈ Rn−1.

Use Cauchy’s inequality to show that this is continuous as a map on
Sobolev spaces as indicated and then the density of S(Rn) in Hm(Rn)
to conclude that the map is well-defined and unique.

Problem 76. [Restriction by WF] From class we know that the
product of two distributions, one with compact support, is defined
provided they have no ‘opposite’ directions in their wavefront set:

(3.32) (x, ω) ∈WF(u) =⇒ (x,−ω) /∈WF(v) then uv ∈ C−∞c (Rn).

Show that this product has the property that f(uv) = (fu)v = u(fv)
if f ∈ C∞(Rn). Use this to define a restriction map to x1 = 0 for
distributions of compact support satisfying ((0, x′), (ω1, 0)) /∈ WF(u)
as the product

(3.33) u0 = uδ(x1).

[Show that u0(f), f ∈ C∞(Rn) only depends on f(0, ·) ∈ C∞(Rn−1).

Problem 77. [Stone’s theorem] For a bounded self-adjoint opera-
torA show that the spectral measure can be obtained from the resolvent
in the sense that for φ, ψ ∈ H

(3.34) lim
ε↓0

1

2πi
〈[(A− t− iε)−1 − (A+ t+ iε)−1]φ, ψ〉 −→ µφ,ψ

in the sense of distributions – or measures if you are prepared to work
harder!

Problem 78. If u ∈ S(Rn) and ψ′ = ψR + µ is, as in the proof of
Lemma 7.5, such that

supp(ψ′) ∩ Css(u) = ∅
show that

S(Rn) 3 φ 7−→ φψ′u ∈ S(Rn)
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is continuous and hence (or otherwise) show that the functional u1u2

defined by (7.20) is an element of S ′(Rn).

Problem 79. Under the conditions of Lemma 7.10 show that
(3.35)

Css(u∗v)∩Sn−1 ⊂ { sx+ ty

|sx+ ty|
, |x| = |y| = 1, x ∈ Css(u), y ∈ Css(v), 0 ≤ s, t ≤ 1}.

Notice that this make sense exactly because sx + ty = 0 implies that
t/s = 1 but x + y 6= 0 under these conditions by the assumption of
Lemma 7.10.

Problem 80. Show that the pairing u(v) of two distributions u, v ∈
bS ′(Rn) may be defined under the hypothesis (7.50).

Problem 81. Show that under the hypothesis (7.51)

(3.36)

WFsc(u∗v) ⊂ {(x+y, p); (x, p) ∈WFsc(u)∩(Rn×Sn−1), (y, p) ∈WFsc(v)∩(Rn×Sn−1)}

∪ {(θ, q) ∈ Sn−1 × Bn; θ =
s′θ′ + s′′θ′′

|s′θ′ + s′′θ′′|
, 0 ≤ s′, s′′ ≤ 1,

(θ′, q) ∈WFsc(u) ∩ (Sn−1 × Bn), (θ′′, q) ∈WFsc(v) ∩ (Sn−1 × Bn)}.

Problem 82. Formulate and prove a bound similar to (3.36) for
WFsc(uv) when u, v ∈ S ′(Rn) satisfy (7.50).

Problem 83. Show that for convolution u ∗ v defined under con-
dition (7.51) it is still true that

(3.37) P (D)(u ∗ v) = (P (D)u) ∗ v = u ∗ (P (D)v).

Problem 84. Using Problem 80 (or otherwise) show that integra-
tion is defined as a functional

(3.38) {u ∈ S ′(Rn); (Sn−1 × {0}) ∩WFsc(u) = ∅} −→ C.
If u satisfies this condition, show that

∫
P (D)u = c

∫
u where c is the

constant term in P (D), i.e. P (D)1 = c.

Problem 85. Compute WFsc(E) where E = C/|x−y| is the stan-
dard fundamental solution for the Laplacian on R3. Using Problem 83
give a condition on WFsc(f) under which u = E ∗ f is defined and
satisfies ∆u = f. Show that under this condition

∫
f is defined using

Problem 84. What can you say about WFsc(u)? Why is it not the case
that

∫
∆u = 0, even though this is true if u has compact support?
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4. Solutions to (some of) the problems

Solution 4.1 (To Problem 10). (by Matjaž Konvalinka).
Since the topology on N, inherited from R, is discrete, a set is

compact if and only if it is finite. If a sequence {xn} (i.e. a function
N→ C) is in C0(N) if and only if for any ε > 0 there exists a compact
(hence finite) set Fε so that |xn| < ε for any n not in Fε. We can
assume that Fε = {1, . . . , nε}, which gives us the condition that {xn}
is in C0(N) if and only if it converges to 0. We denote this space by c0,
and the supremum norm by ‖ ·‖0. A sequence {xn} will be abbreviated
to x.

Let l1 denote the space of (real or complex) sequences x with a
finite 1-norm

‖x‖1 =
∞∑
n=1

|xn|.

We can define pointwise summation and multiplication with scalars,
and (l1, ‖ · ‖1) is a normed (in fact Banach) space. Because the func-
tional

y 7→
∞∑
n=1

xnyn

is linear and bounded (|
∑∞

n=1 xnyn| ≤
∑∞

n=1 |xn||yn| ≤ ‖x‖0 ‖y‖1) by
‖x‖0, the mapping

Φ: l1 7−→ c∗0
defined by

x 7→

(
y 7→

∞∑
n=1

xnyn

)
is a (linear) well-defined mapping with norm at most 1. In fact, Φ is
an isometry because if |xj| = ‖x‖0 then |Φ(x)(ej)| = 1 where ej is
the j-th unit vector. We claim that Φ is also surjective (and hence an
isometric isomorphism). If ϕ is a functional on c0 let us denote ϕ(ej)
by xj. Then Φ(x)(y) =

∑∞
n=1 ϕ(en)yn =

∑∞
n=1 ϕ(ynen) = ϕ(y) (the

last equality holds because
∑∞

n=1 ynen converges to y in c0 and ϕ is
continuous with respect to the topology in c0), so Φ(x) = ϕ.

Solution 4.2 (To Problem 29). (Matjaž Konvalinka) Since

DxH(ϕ) = H(−Dxϕ) = i

∫ ∞
−∞

H(x)ϕ′(x) dx =

i

∫ ∞
0

ϕ′(x) dx = i(0− ϕ(0)) = −iδ(ϕ),

we get DxH = Cδ for C = −i.
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Solution 4.3 (To Problem 40). (Matjaž Konvalinka) Let us prove
this in the case where n = 1. Define (for b 6= 0)

U(x) = u(b)− u(x)− (b− x)u′(x)− . . .− (b− x)k−1

(k − 1)!
u(k−1)(x);

then

U ′(x) = −(b− x)k−1

(k − 1)!
u(k)(x).

For the continuously differentiable function V (x) = U(x)−(1−x/b)kU(0)
we have V (0) = V (b) = 0, so by Rolle’s theorem there exists ζ between
0 and b with

V ′(ζ) = U ′(ζ) +
k(b− ζ)k−1

bk
U(0) = 0

Then

U(0) = − bk

k(b− ζ)k−1
U ′(ζ),

u(b) = u(0) + u′(0)b+ . . .+
u(k−1)(0)

(k − 1)!
bk−1 +

u(k)(ζ)

k!
bk.

The required decomposition is u(x) = p(x) + v(x) for

p(x) = u(0) + u′(0)x+
u′′(0)

2
x2 + . . .+

u(k−1)(0)

(k − 1)!
xk−1 +

u(k)(0)

k!
xk,

v(x) = u(x)− p(x) =
u(k)(ζ)− u(k)(0)

k!
xk

for ζ between 0 and x, and since u(k) is continuous, (u(x) − p(x))/xk

tends to 0 as x tends to 0.
The proof for general n is not much more difficult. Define the

function wx : I → R by wx(t) = u(tx). Then wx is k-times continuously
differentiable,

w′x(t) =
n∑
i=1

∂u

∂xi
(tx)xi,

w′′x(t) =
n∑

i,j=1

∂2u

∂xi∂xj
(tx)xixj,

w(l)
x (t) =

∑
l1+l2+...+li=l

l!

l1!l2! · · · li!
∂lu

∂xl11 ∂x
l2
2 · · · ∂x

li
i

(tx)xl11 x
l2
2 · · · x

li
i
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so by above u(x) = wx(1) is the sum of some polynomial p (od degree
k), and we have

u(x)− p(x)

|x|k
=
vx(1)

|x|k
=
w

(k)
x (ζx)− w(k)

x (0)

k!|x|k
,

so it is bounded by a positive combination of terms of the form∣∣∣∣ ∂lu

∂xl11 ∂x
l2
2 · · · ∂x

li
i

(ζxx)− ∂lu

∂xl11 ∂x
l2
2 · · · ∂x

li
i

(0)

∣∣∣∣
with l1 + . . . + li = k and 0 < ζx < 1. This tends to zero as x → 0
because the derivative is continuous.

Solution 4.4 (Solution to Problem 41). (Matjž Konvalinka) Obvi-
ously the map C0(Bn)→ C(Bn) is injective (since it is just the inclusion
map), and f ∈ C(Bn) is in C0(Bn) if and only if it is zero on ∂Bn, ie. if
and only if f |Sn−1 = 0. It remains to prove that any map g on Sn−1 is
the restriction of a continuous function on Bn. This is clear since

f(x) =

{
|x|g(x/|x|) x 6= 0

0 x = 0

is well-defined, coincides with f on Sn−1, and is continuous: if M is
the maximum of |g| on Sn−1, and ε > 0 is given, then |f(x)| < ε for
|x| < ε/M.

Solution 4.5. (partly Matjaž Konvalinka)
For any ϕ ∈ S(R) we have

|
∫ ∞
−∞

ϕ(x)dx| ≤
∫ ∞
−∞
|ϕ(x)|dx ≤ sup((1+x|2)|ϕ(x)|)

∫ ∞
−∞

(1+|x|2)−1dx

≤ C sup((1 + x|2)|ϕ(x)|).

Thus S(R) 3 ϕ 7−→
∫
R ϕdx is continous.

Now, choose φ ∈ C∞c (R) with
∫
R φ(x)dx = 1. Then, for ψ ∈ S(R),

set

(4.1) Aψ(x) =

∫ x

−∞
(ψ(t)− c(ψ)φ(t)) dt, c(ψ) =

∫ ∞
−∞

ψ(s) ds.

Note that the assumption on φ means that

(4.2) Aψ(x) = −
∫ ∞
x

(ψ(t)− c(ψ)φ(t)) dt

Clearly Aψ is smooth, and in fact it is a Schwartz function since

(4.3)
d

dx
(Aψ(x)) = ψ(x)− cφ(x) ∈ S(R)
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so it suffices to show that xkAψ is bounded for any k as |x| → ±∞.
Since ψ(t)− cφ(t) ≤ Ckt

−k−1 in t ≥ 1 it follows from (4.2) that

|xkAψ(x)| ≤ Cxk
∫ ∞
x

t−k−1dt ≤ C ′, k > 1, in x > 1.

A similar estimate as x → −∞ follows from (4.1). Now, A is clearly
linear, and it follows from the estimates above, including that on the
integral, that for any k there exists C and j such that

sup
α,β≤k

|xαDβAψ| ≤ C
∑

α′,β′≤j

sup
x∈R
|xα′Dβ′ψ|.

Finally then, given u ∈ S ′(R) define v(ψ) = −u(Aψ). From the
continuity of A, v ∈ S(R) and from the definition of A, A(ψ′) = ψ.
Thus

dv/dx(ψ) = v(−ψ′) = u(Aψ′) = u(ψ) =⇒ dv

dx
= u.

Solution 4.6. We have to prove that 〈ξ〉m+m′û ∈ L2(Rn), in other
words, that ∫

Rn
〈ξ〉2(m+m′)|û|2 dξ <∞.

But that is true since∫
Rn
〈ξ〉2(m+m′)|û|2 dξ =

∫
Rn
〈ξ〉2m′(1 + ξ2

1 + . . .+ ξ2
n)m|û|2 dξ =

=

∫
Rn
〈ξ〉2m′

∑
|α|≤m

Cαξ
2α

 |û|2 dξ =
∑
|α|≤m

Cα

(∫
Rn
〈ξ〉2m′ξ2α|û|2 dξ

)
and since 〈ξ〉m′ξαû = 〈ξ〉m′D̂αu is in L2(Rn) (note that u ∈ Hm(Rn)
follows from Dαu ∈ Hm′(Rn), |α| ≤ m). The converse is also true since
Cα in the formula above are strictly positive.

Solution 4.7. Take v ∈ L2(Rn), and define subsets of Rn by

E0 = {x : |x| ≤ 1},

Ei = {x : |x| ≥ 1, |xi| = max
j
|xj|}.

Then obviously we have 1 =
∑n

i=0 χEj a.e., and v =
∑n

j=0 vj for vj =

χEjv. Then 〈x〉 is bounded by
√

2 on E0, and 〈x〉v0 ∈ L2(Rn); and on
Ej, 1 ≤ j ≤ n, we have

〈x〉
|xj|
≤ (1 + n|xj|2)1/2

|xj|
=
(
n+ 1/|xj|2

)1/2 ≤ (2n)1/2,
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so 〈x〉vj = xjwj for wj ∈ L2(Rn). But that means that 〈x〉v = w0 +∑n
j=1 xjwj for wj ∈ L2(Rn).

If u is in L2(Rn) then û ∈ L2(Rn), and so there exist w0, . . . , wn ∈
L2(Rn) so that

〈ξ〉û = w0 +
n∑
j=1

ξjwj,

in other words

û = û0 +
n∑
j=1

ξjûj

where 〈ξ〉ûj ∈ L2(Rn). Hence

u = u0 +
n∑
j=1

Djuj

where uj ∈ H1(Rn).

Solution 4.8. Since

DxH(ϕ) = H(−Dxϕ) = i

∫ ∞
−∞

H(x)ϕ′(x) dx = i

∫ ∞
0

ϕ′(x) dx = i(0−ϕ(0)) = −iδ(ϕ),

we get DxH = Cδ for C = −i.

Solution 4.9. It is equivalent to ask when 〈ξ〉mδ̂0 is in L2(Rn).
Since

δ̂0(ψ) = δ0(ψ̂) = ψ̂(0) =

∫
Rn
ψ(x) dx = 1(ψ),

this is equivalent to finding m such that 〈ξ〉2m has a finite integral over
Rn. One option is to write 〈ξ〉 = (1 + r2)1/2 in spherical coordinates,
and to recall that the Jacobian of spherical coordinates in n dimensions
has the form rn−1Ψ(ϕ1, . . . , ϕn−1), and so 〈ξ〉2m is integrable if and only
if ∫ ∞

0

rn−1

(1 + r2)m
dr

converges. It is obvious that this is true if and only if n−1−2m < −1,
ie. if and only if m > n/2.

Solution 4.10 (Solution to Problem31). We know that δ ∈ Hm(Rn)
for any m < −n/1. Thus is just because 〈ξ〉p ∈ L2(Rn) when p < −n/2.
Now, divide Rn into n+1 regions, as above, being A0 = {ξ; |ξ| ≤ 1 and
Ai = {ξ; |ξi| = supj |ξj|, |ξ| ≥ 1}. Let v0 have Fourier transform χA0

and for i = 1, . . . , n, vi ∈ S; (Rn) have Fourier transforms ξ−n−1
i χAi .

Since |ξi| > c〈ξ〉 on the support of v̂i for each i = 1, . . . , n, each term
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is in Hm for any m < 1 + n/2 so, by the Sobolev embedding theorem,
each vi ∈ C0

0(Rn) and

(4.4) 1 = v̂0

n∑
i=1

ξn+1
i v̂i =⇒ δ = v0 +

∑
i

Dn+1
i vi.

How to see that this cannot be done with n or less derivatives? For
the moment I do not have a proof of this, although I believe it is true.
Notice that we are actually proving that δ can be written

(4.5) δ =
∑
|α|≤n+1

Dαuα, uα ∈ Hn/2(Rn).

This cannot be improved to n from n + 1 since this would mean that
δ ∈ H−n/2(Rn), which it isn’t. However, what I am asking is a little
more subtle than this.





Bibliography

[1] G.B. Folland, Real analysis, Wiley, 1984.
[2] F. G. Friedlander, Introduction to the theory of distributions, second ed., Cam-

bridge University Press, Cambridge, 1998, With additional material by M. Joshi.
MR 2000g:46002

[3] J. Hadamard, Le problème de Cauchy et les èquatons aux dérivées partielles
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