PROBLEM SET 4, 18.155 DUE FRIDAY 4 OCTOBER, 2013

(1) Recall that for an open set $\Omega \subset \mathbb{R}^n$, $\mathcal{C}^{\infty}_{c}(\Omega) = \{\phi \in \mathcal{S}(\mathbb{R}^n); \operatorname{supp}(\phi) \Subset$

 Ω }. For an exhaustion $K_p \Subset \Omega$, $K_p \subset K_{p+1}$, $\Omega = \bigcup_p K_p$, we fix a topology on $\mathcal{C}^{\infty}_{c}(\Omega)$ by declaring a set to be open if it meets each $\mathcal{C}^{\infty}_{c}(K_p) = \{\phi \in \mathcal{C}^{\infty}_{c}(\Omega); \operatorname{supp}(\phi) \subset K_p\}$ in an open set with respect to the induced (metric) topology from $\mathcal{S}(\mathbb{R}^n)$.

Show that this topology is independent of the exhaustion used to define it.

Show that the supremum norm is continuous on $\mathcal{C}^{\infty}_{c}(\Omega)$.

Show that multiplication by a smooth function $\psi \in \mathcal{C}^{\infty}(\Omega)$ is continuous as a map from $\mathcal{C}^{\infty}_{c}(\Omega)$ to itself.

Show that if a sequence $\phi_j \in \mathcal{C}^{\infty}_{c}(\Omega)$ converges to $\phi \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^n)$, in the sense that $\phi_j \in \mathcal{O}$ for $j > J(\mathcal{O})$ if $\phi \in \mathcal{O}$ is open, then then $\phi_j \to \phi$ in some $\mathcal{C}^{\infty}_{c}(K_p)$.

- (2) Suppose we have shown that c/|x| is a fundamental solution for $\Delta = D_1^2 + D_2^2 + D_3^2$ on \mathbb{R}^3 for some constant c. Find all other tempered fundamental solutions.
- (3) Define the 'local' Sobolev spaces of non-negative integral order on an open set $\Omega \in \mathbb{R}^n$ by

 $H^s_{\rm loc}(\Omega) = \{ u \in \mathcal{C}^{-\infty}(\Omega); \phi u \in H^s(\mathbb{R}^n) \,\,\forall \,\, \phi \in \mathcal{C}^{\infty}_{\rm c}(\Omega) \}.$

Show that a differential operator with smooth coefficients

$$P(x,D) = \sum_{|\alpha| \le m} p_{\alpha}(x) D^{\alpha}, \ p_{\alpha} \in \mathcal{C}^{\infty}(\Omega)$$

defines a map $H^{s+m}_{\text{loc}}(\Omega) \longrightarrow H^s_{\text{loc}}(\Omega)$ for any non-negative integer s.

- (4) Show that if $u \in H^s_{loc}(\Omega)$ for all s then $u \in \mathcal{C}^{\infty}(\Omega)$.
- (5) Suppose that $P(x, D) = \sum_{k=0}^{m} p_k(x) D_x^k$ is an ordinary differential operator with smooth coefficients $p_k(x) \in \mathcal{C}^{\infty}(\mathbb{R})$. Show that if $p_m(x)$, has no zeros then $u \in \mathcal{C}^{-\infty}(\mathbb{R})$ and $P(x, D)u \in \mathcal{C}^{\infty}(\mathbb{R})$ implies $u \in \mathcal{C}^{\infty}(\mathbb{R})$.

Hint:

P1 (There are probably easier ways) For the last part, show that if not, then we can assume (by passing to a subsequence and relabelling) that there a sequenc $x_j \notin K_j$ without repeats and with $\phi_j(x_j) \neq 0$. Show that there exists $\psi \in \mathcal{C}^{\infty}(\Omega)$ such that $\psi(x_j)\phi_j(x_j) = j$ and deduce a contradiction.

- P2 It is enough to relate a general tempered fundamental solution to a harmonic polynomial – a polynomial in the null space of the operator, you don't have to describe all these (although that is possible).
- P5 Aim to get to a point where you can apply Problem 4. First show that if u is any distribution on \mathbb{R} then restricted to (-N, N)it is in some $H^s_{\text{loc}}(-N, N)$ (compare to ϕu where ϕ is a cutoff which is 1 on a bigger interval) where s may depend on N. Use the equation to show that $D^m_x u \in H^{s-m+1}(-N, N)$. Now cut off again and show that this implies $u \in H^{s+1}(-N, N)$. One way to do this is to choose two cutoffs, ϕ and ψ both supported in the interval with $\phi = 1$ in a neighbourhood of the support of ψ . Check that $\psi D^m(\phi u) = \psi D^m u$. After that, use induction on s.