
PROBLEM SET 1, 18.155
BRIEF SOLUTIONS

(1) Prove (probably by induction) the multi-variable form of Leib-
niz formula for the derivatives of the product of two (sufficiently
differentiable) functions:-

(1) ∂α(fg) =
∑
β≤α

(
α
β

)
∂βf · ∂α−βg.

Solution: One convenient way to see this is to think alge-
braically and separate out the variables to see that

∂xj(f(x)g(x)) =
(
∂xj + ∂yj)f(x)g(y)

) ∣∣
x=y

∂α(f(x)g(x)) =
(
∂xj + ∂yj)

αf(x)g(y)
) ∣∣

x=y
.

Then one can expand out the sum of the two commuting vari-
ables and use the standard formula in terms of the combinatorial
coefficients

(2)

(X + Y )α =
∑
β≤α

(
α
β

)
XβY α−β

(
α
β

)
=

(
α!

β!(α− β)!

)
=

n∏
i=1

(
αi!

βi!(ai − βi)!

)
.

To make this completely rigourous one can do it for S(Rn) using
the Fourier transform and then argue that it has to hold in
general.

Another way is to argue by induction that there has to be a
formula (1) for some coefficients and then apply it to monomials
to see what they must be.

Or just hammer it out!
(2) Consider the norms, for each N ∈ N, on S(Rn)

‖f‖N =
∑

|β|+|α|≤N

sup
x∈Rn

|xβ∂αf(x)|.

Show that

‖f‖′N =
∑

|β|+|α|≤N

sup
x∈Rn

|∂α(xβf(x))|

are equivalent norms, ‖f‖N ≤ CN‖f‖′N and ‖f‖′N ≤ C ′N‖f‖N .
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Solution: Use induction over N. We can apply Leibniz’ for-
mula to see that

∂α(xβf) = xβ∂αf +
∑

β′<β, α′<α

cα′,β′xβ
′
∂α

′
f

since as soon as one derivative falls on the coefficients the order
drops in both senses. Each of the terms in the sum is bounded
by the N − 1 norm, so, using the inductive hypothesis

|∂α(xβf)| ≤ |xβ∂αf |+ C‖f‖N−1, |xβ∂αf | ≤ |∂α(xβf)|+ C‖f‖′N−1.
Taking the supremum and summing over α and β gives the
inductive step.

(3) Consider F ∈ C∞(Rn) which is an infinitely differentiable func-
tion of polynomial growth, in the sense that for each α there
exists N(α) ∈ N and C(α) > 0 such that

|∂αF (x)| ≤ C(α)(1 + |x|)N(α).

Show that multiplication by F gives a map ×F : S(Rn) −→
S(Rn).

Solution: Again this is an application of Leibniz’ formula.
The product Fφ with φ ∈ S(Rn) is infinitely differentiable with

|xβ∂α(Fφ)| ≤
∑
α′≤α

cα′ |xβ∂α′
F ||∂α−α′

φ| ≤ C
∑
α′≤α

C(1+|x|)N∂α′
φ| ≤ ‖φ|M

where the power N is the max of |β| + N(α′) and this deter-
mines M. Taking the supremum, ×F : S(Rn) −→ S(Rn) is a
continuous linear map.

(4) Show that if s ∈ R then Fs(x) = (1 + |x|2)s/2 is a smooth
function of polynomial growth in the sense discussed above and
that multiplication by Fs is an isomorphism on S(Rn).

Solution: To see that this function is of polynomial growth,
prove the stronger symbol estimates

(3) |∂αFs(x)| ≤ Cs,αFs−|α|.

These follow by using induction to check that

(4) ∂αFs(x) = pα(x)Fs−2|α|

where pα is a polynomial of degree at most |α| so |pα| ≤ CαF|α|.
Now F0 = 1 and Ft+s = FsFt so the inverse of ×Fs is ×F−s

and it follows that multiplication is an isomorphism.
(5) Consider one-point, or stereographic, compactification of Rn.

This is the map T : Rn −→ Rn+1 obtained by sending x first to
the point z = (1, x) in the hyperplane z0 = 1 where (z0, . . . , zn)
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are the coordinates in Rn+1 and then mapping it to the point
Z ∈ Rn+1 with |Z| = 1 which is also on the line from the ‘South
Pole’ (−1, 0) to (1, x).

Derive a formula for T and use it to find a formula for the
inversion map I : Rn\{0} −→ Rn\{0} which satisfies I(x) = x′

if T (x) = (z0, z) and T (x′) = (−z0, z). That is, it correspond to
reflection across the equator in the unit sphere.

Solution: Since Z = Tx has |Z| = 1 and Z = (1−s)(−1, 0)+
s(1, x) for some s,

(2s− 1)2 + s2|x|2 = 1 =⇒ s =
4

4 + |x|2
,

Tx =

(
4− |x|2

4 + |x|2
,

4x

4 + |x|2

)
since the other root, s = 0, is the South Pole. Then

Tx′ =

(
−4− |x|2

4 + |x|2
,

4x

4 + |x|2

)
=⇒ x′ = Ix =

4x

|x|2
.

Show that if f ∈ S(Rn) then I∗f(x) = f(x′), defined for
x 6= 0, extends by continuity with all its derivatives across the
origin where they all vanish.

Solution: Certainly I is smooth and is a diffeomorphism of
the region Rn \ {0} to itself, since it has inverse I – from the
definition it is an involution so I∗f(x) = f(4x/|x|2) is smooth
outside the origin. As |x| → 0, |Ix| → ∞ and f ∈ S(Rn), so
I∗f extends continously up to 0 where it vanishes. The chain
rule gives the formula for the first derivatives of I∗f :

(5) ∂xjI
∗f =

n∑
k=1

gjk(x)I∗(∂ykf), gjk = ∂xj
4xk
|x|2

.

We can work out the coefficients, but the important thing is that
they are smooth functions in |x| > 0 which are homogeneous of
degree −2. Here the ∂ykf are the derivatives of f. Now, one can
get the higher derivatives by differentiating inductively and it
follows that

(6) ∂αx I
∗f =

∑
|β|≤|α|

gα,β(x)I∗(∂βy f)
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where the coefficients are smooth in |x| > 0 and homogeneous
of degree −2|α|+ |β|. This means we get estimates near 0

|∂αx I∗f(x)| ≤ C
∑
|β|≤|α|

|x|−2|α|+|β||I∗(∂βy f)|.

However, f being Schwartz means that |I∗f(x)| ≤ CN |x|N for
any N and the same thing applies to the derivatives. So in fact
we conclude that all the derivatives of I∗f extends continuously
across the origin and vanish there (to infinte order as follows
anyway). This means I∗f itself is smooth as claimed with all
derivatives vanishing at 0.

Conversely show that if f ∈ C∞(Rn) is a function with all
derivatives continuous, then f ∈ S(Rn) if I∗f has this property,
that all derivatives extend continuously across the origin and
vanish there – i.e. they all have limit zero at the origin.

Solution: Just reverse the argument. All we need so show is
that xβ∂αx is bounded for all α, β. Since I is its own inverse, (5)
gives

(7) ∂αy f(y) =
∑
|β|≤|α|

gα,β(y)∂βx (I∗f)

where the same statements apply, except now we are interested
in what is happening as |y| → ∞. However, using homogeneity
and now the fact that all derivatives of I∗f have bounds CN |x|N
for any N, we find that in |y| > 1,

(8) |∂αy f(y)| ≤ CM |y|−M

for any M. So indeed the converse is also true.


