PROBLEM SET 1, 18.155 BRIEF SOLUTIONS

(1) Prove (probably by induction) the multi-variable form of Leibniz formula for the derivatives of the product of two (sufficiently differentiable) functions:-

(1)
$$\partial^{\alpha}(fg) = \sum_{\beta \leq \alpha} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \partial^{\beta} f \cdot \partial^{\alpha-\beta} g.$$

Solution: One convenient way to see this is to think algebraically and separate out the variables to see that

$$\partial_{x_j}(f(x)g(x)) = \left(\partial_{x_j} + \partial_{y_j}\right)f(x)g(y)\right)\Big|_{x=y}$$
$$\partial^{\alpha}(f(x)g(x)) = \left(\partial_{x_j} + \partial_{y_j}\right)^{\alpha}f(x)g(y)\Big|_{x=y}.$$

Then one can expand out the sum of the two commuting variables and use the standard formula in terms of the combinatorial coefficients

$$(X+Y)^{\alpha} = \sum_{\beta \le \alpha} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} X^{\beta} Y^{\alpha-\beta}$$
$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \alpha! \\ \beta!(\alpha-\beta)! \end{pmatrix} = \prod_{i=1}^{n} \begin{pmatrix} \alpha_i! \\ \beta_i!(a_i-\beta_i)! \end{pmatrix}.$$

(2)

To make this completely rigourous one can do it for
$$\mathcal{S}(\mathbb{R}^n)$$
 using
the Fourier transform and then argue that it has to hold in
general.

Another way is to argue by induction that there has to be a formula (1) for *some* coefficients and then apply it to monomials to see what they must be.

Or just hammer it out!

(2) Consider the norms, for each $N \in \mathbb{N}$, on $\mathcal{S}(\mathbb{R}^n)$

$$||f||_N = \sum_{|\beta|+|\alpha| \le N} \sup_{x \in \mathbb{R}^n} |x^{\beta} \partial^{\alpha} f(x)|.$$

Show that

$$\|f\|'_N = \sum_{|\beta|+|\alpha| \le N} \sup_{x \in \mathbb{R}^n} |\partial^{\alpha}(x^{\beta}f(x))|$$

are equivalent norms, $||f||_N \leq C_N ||f||'_N$ and $||f||'_N \leq C'_N ||f||_N$.

Solution: Use induction over N. We can apply Leibniz' formula to see that

$$\partial^{\alpha}(x^{\beta}f) = x^{\beta}\partial^{\alpha}f + \sum_{\beta' < \beta, \ \alpha' < \alpha} c_{\alpha',\beta'}x^{\beta'}\partial^{\alpha'}f$$

since as soon as one derivative falls on the coefficients the order drops in both senses. Each of the terms in the sum is bounded by the N-1 norm, so, using the inductive hypothesis

$$|\partial^{\alpha}(x^{\beta}f)| \leq |x^{\beta}\partial^{\alpha}f| + C||f||_{N-1}, \ |x^{\beta}\partial^{\alpha}f| \leq |\partial^{\alpha}(x^{\beta}f)| + C||f||_{N-1}'.$$

Taking the supremum and summing over α and β gives the inductive step.

(3) Consider $F \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ which is an infinitely differentiable function of polynomial growth, in the sense that for each α there exists $N(\alpha) \in \mathbb{N}$ and $C(\alpha) > 0$ such that

$$|\partial^{\alpha} F(x)| \le C(\alpha)(1+|x|)^{N(\alpha)}.$$

Show that multiplication by F gives a map $\times F : \mathcal{S}(\mathbb{R}^n) \longrightarrow \mathcal{S}(\mathbb{R}^n)$.

Solution: Again this is an application of Leibniz' formula. The product $F\phi$ with $\phi \in \mathcal{S}(\mathbb{R}^n)$ is infinitely differentiable with

$$|x^{\beta}\partial^{\alpha}(F\phi)| \leq \sum_{\alpha' \leq \alpha} c_{\alpha'} |x^{\beta}\partial^{\alpha'}F| |\partial^{\alpha-\alpha'}\phi| \leq C \sum_{\alpha' \leq \alpha} C(1+|x|)^{N}\partial^{\alpha'}\phi| \leq ||\phi|_{M}$$

where the power N is the max of $|\beta| + N(\alpha')$ and this determines M. Taking the supremum, $\times F : \mathcal{S}(\mathbb{R}^n) \longrightarrow \mathcal{S}(\mathbb{R}^n)$ is a continuous linear map.

(4) Show that if $s \in \mathbb{R}$ then $F_s(x) = (1 + |x|^2)^{s/2}$ is a smooth function of polynomial growth in the sense discussed above and that multiplication by F_s is an isomorphism on $\mathcal{S}(\mathbb{R}^n)$.

Solution: To see that this function is of polynomial growth, prove the stronger *symbol estimates*

(3)
$$|\partial^{\alpha} F_{s}(x)| \leq C_{s,\alpha} F_{s-|\alpha|}$$

These follow by using induction to check that

(4)
$$\partial^{\alpha} F_s(x) = p_{\alpha}(x) F_{s-2|\alpha|}$$

where p_{α} is a polynomial of degree at most $|\alpha|$ so $|p_{\alpha}| \leq C_{\alpha}F_{|\alpha|}$. Now $F_0 = 1$ and $F_{t+s} = F_sF_t$ so the inverse of $\times F_s$ is $\times F_{-s}$ and it follows that multiplication is an isomorphism.

(5) Consider one-point, or stereographic, compactification of \mathbb{R}^n . This is the map $T : \mathbb{R}^n \longrightarrow \mathbb{R}^{n+1}$ obtained by sending x first to the point z = (1, x) in the hyperplane $z_0 = 1$ where (z_0, \ldots, z_n) are the coordinates in \mathbb{R}^{n+1} and then mapping it to the point $Z \in \mathbb{R}^{n+1}$ with |Z| = 1 which is also on the line from the 'South Pole' (-1, 0) to (1, x).

Derive a formula for T and use it to find a formula for the inversion map $I : \mathbb{R}^n \setminus \{0\} \longrightarrow \mathbb{R}^n \setminus \{0\}$ which satisfies I(x) = x' if $T(x) = (z_0, z)$ and $T(x') = (-z_0, z)$. That is, it correspond to reflection across the equator in the unit sphere.

Solution: Since Z = Tx has |Z| = 1 and Z = (1-s)(-1,0) + s(1,x) for some s,

$$(2s-1)^2 + s^2 |x|^2 = 1 \Longrightarrow s = \frac{4}{4+|x|^2},$$
$$Tx = \left(\frac{4-|x|^2}{4+|x|^2}, \frac{4x}{4+|x|^2}\right)$$

since the other root, s = 0, is the South Pole. Then

$$Tx' = \left(-\frac{4-|x|^2}{4+|x|^2}, \frac{4x}{4+|x|^2}\right) \Longrightarrow x' = Ix = \frac{4x}{|x|^2}.$$

Show that if $f \in \mathcal{S}(\mathbb{R}^n)$ then $I^*f(x) = f(x')$, defined for $x \neq 0$, extends by continuity with all its derivatives across the origin where they all vanish.

Solution: Certainly I is smooth and is a diffeomorphism of the region $\mathbb{R}^n \setminus \{0\}$ to itself, since it has inverse I – from the definition it is an involution so $I^*f(x) = f(4x/|x|^2)$ is smooth outside the origin. As $|x| \to 0$, $|Ix| \to \infty$ and $f \in \mathcal{S}(\mathbb{R}^n)$, so I^*f extends continuously up to 0 where it vanishes. The chain rule gives the formula for the first derivatives of I^*f :

(5)
$$\partial_{x_j} I^* f = \sum_{k=1}^n g_{jk}(x) I^*(\partial_{y_k} f), \ g_{jk} = \partial_{x_j} \frac{4x_k}{|x|^2}$$

We can work out the coefficients, but the important thing is that they are smooth functions in |x| > 0 which are homogeneous of degree -2. Here the $\partial_{y_k} f$ are the derivatives of f. Now, one can get the higher derivatives by differentiating inductively and it follows that

(6)
$$\partial_x^{\alpha} I^* f = \sum_{|\beta| \le |\alpha|} g_{\alpha,\beta}(x) I^*(\partial_y^{\beta} f)$$

where the coefficients are smooth in |x| > 0 and homogeneous of degree $-2|\alpha| + |\beta|$. This means we get estimates near 0

$$|\partial_x^{\alpha} I^* f(x)| \le C \sum_{|\beta| \le |\alpha|} |x|^{-2|\alpha| + |\beta|} |I^*(\partial_y^{\beta} f)|.$$

However, f being Schwartz means that $|I^*f(x)| \leq C_N |x|^N$ for any N and the same thing applies to the derivatives. So in fact we conclude that all the derivatives of I^*f extends continuously across the origin and vanish there (to infinite order as follows anyway). This means I^*f itself is smooth as claimed with all derivatives vanishing at 0.

Conversely show that if $f \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ is a function with all derivatives continuous, then $f \in \mathcal{S}(\mathbb{R}^n)$ if I^*f has this property, that all derivatives extend continuously across the origin and vanish there – i.e. they all have limit zero at the origin.

Solution: Just reverse the argument. All we need so show is that $x^{\beta}\partial_x^{\alpha}$ is bounded for all α , β . Since *I* is its own inverse, (5) gives

$$\partial_y^{\alpha} f(y) = \sum_{|\beta| \le |\alpha|} g_{\alpha,\beta}(y) \partial_x^{\beta}(I^*f)$$

where the same statements apply, except now we are interested in what is happening as $|y| \to \infty$. However, using homogeneity and now the fact that all derivatives of I^*f have bounds $C_N|x|^N$ for any N, we find that in |y| > 1,

(8)
$$|\partial_u^{\alpha} f(y)| \le C_M |y|^{-M}$$

for any M. So indeed the converse is also true.

(7)