18.155 LECTURE 7, 26 SEPTEMBER, 2013

Last time I showed that if K € 2 is a compact subset of an open subset of R"
and K C oK' C K’ @ Q is another compact subset which contains K in its interior
then there exists 0 < ¢ € C°(2) C C°(R™) which has support in K" and ¢ =1 in
some neighbourhood of K, which we can express as

(1) supp(¢) C K', supp(l —¢) N K = 0.

So in fact  plays no role here, except that we an find such a K.

N

Lemma 1. Suppose Q = 3" Q; is a finite union of open sets and 1) € C2°(Q) then
j=1

there exist ; € C°(8;) such that

N
(2) ¢=Z¢j~

Proof. 1 did this last time for 7 = 2. Namely, each point of supp(v) € 1 U Qs is
the centre of an open ball contained in either €2y or Q5. By compactness, a finite
collection of the balls of half the radius cover K. Take the finite number of points at
the centres of those balls which lie in 7 and let K; be the intersection of K with
the union of the closures of these balls (of half the original radius) and similarly
form K5 from the remaining balls. Thus K; € Q; and K = K; U K5. Then choose
@1 € C°(21) with ¢1 = 1 in a neighbourhood of K;. It follows that

(3) V=019 + (1 — 1)y
is a decomposition as desired, since the first term has compact support in €; and
the second has support in Ky C 5 because the second factor vanishes outside K
and the first factor vanishes outside a neighbourhood of K.

The general case follows by induction over the number of open sets, since we can

N
apply this result to Q; and ) Wj. O
j=2

As a corollary of this we find that
(4) For each u € S8'(R") there exists a unique largest open set on which u = 0.

Recall that u = 0 on an open set {2 means that u(¢) = 0 for all ¢ € C°(Q). The
largest open set in is the union of all open sets on which u vanishes provided we
show that u does indeed vanish on this set. However, if ¢ € C2°(R™) has support
in this union, then by compactness, its support is contained in a finite subunion.
Thus it can be split up as in and it follows that

N

(5) u(y) =Y u(th;) =0

J=1

since by assumption u vanishes on each of the sets in the union.
1
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Thus, for a tempered distribution we can define the support by
(6) R™ \ supp(u) = The largest open set on which u = 0.

Notice that this is consistent with the definition for continuous (and actually for
integrable) functions and has properties such as

(7) ¢ € S(R"), supp(¢) Nsupp(u) = 0 = u(¢) =0

as follows directly from the definition if supp(¢). If supp(¢) is not compact then it
is not quite so obvious but if ) € C°(R"™) then u(¢¢) = 0. However, we can choose
a sequence 1, € C°(R™) such that ¢¥n,¢ — ¢ in S(R™) so by the continuity of w it
follows that u(¢) = 0.

You might well take this proof to heart in thinking about the problem for this
week where you seem to have to invert a polynomial which is just known to be
non-zero on R™. In fact the inverse is of slow growth, which is what you need, but
it is not necessary to know this! Just multiply by any smooth function of compact
support, you can certainly invert the function on a neighourhood of its support,
and then pass to the limit as above.

Thus supp(u) is closed. Let me use the notation, somewhat suggestively

(8) Co>(Q) = {u € S'(R");supp(u) € Q}.

So we are thinking of these as ‘infinitely undifferentiable functions’ of compact
support in €.

Now, as I said last time we want to consider the space C*°(2) of smooth functions
on the open set 2. We can always choose a compact ezhaustion of 2. That is an

(o]
increasing sequence of compact subsets K,, € K11 C K, 1 €  such that
9) =K.
n

Indeed, let K,, consist of the points satisfying |z| < n and at distance at least 1/n
from C€2. For n large this is non-empty and clearly @D holds. A compact exhaustion
has the property that any K € € is contained in one of the K, since the interiors
of the K,, must cover K and so have a finite subcover.

Now, given such a compact exhaustion we can consider the seminorms on C*(2) :

(10) o= > 1D%(x).

0<|a|<n, zeK,

These are never norms, since ¢ might be non-zero with support disjoint from K,.
However, if all the norms vanish, then ¢ vanishes identically.

Proposition 1. The seminorms for any exhaustion make C>*(Q) into a
Fréchet space with the distance

) Ao, 02) = Yo 10— 02l

14 |lo1 — d2ln

The topology does not depend on the choice of compact exhaustion. Indeed, each
of the norms for one exhaustion is bounded by the norms from some point onwards
of the other. We know that a set is open if and only if it contains a ball around
each of its points with respect to one of the seminorms (possibly depending on the
point). Similarly we know that a linear function

(12) U :C*(Q) — C is continuous iff 3 C, N s.t. |[U(¢)| < C||¢||n-
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I did mention this when I carried out the proof for S(R™) — it is a general fact for
Fréchet spaces (and the completeness is not used for this either).

So, I leave it up to you to at least mumble a proof to yourself.

Now, as [ mentioned last time we can map

(13) 1:C7%°(Q) — C=(Q).

Here I am reusing I since we have dropped its earlier use! To define U = I(u) for
u € C*°(Q), recall this means v € S’'(R™) and supp(u) € Q. So we can choose
P € C(R2) such that ¢ = 1 in a neighbourhood of supp(u). Thus ¥u = u which
means that for any ¢ € S(R™)

(14) u(@) = u(ye).
But xt: C*(Q2) «— C(2) C S(R™) so we can legally define
(15) I(u)(¢) = u(yg) ¥V ¢ € C™(Q).

Moreover, this does not depend on the choice of ¢ since if ¢’ € C2°(2) also has ¢ =1
in a neighbourhood of supp(u) then the same is true of ¥’ and Yu = ¢'u = Pyp'u
allows one to shift from one to the other in :

(16) u(¥'¢) = Yu(i'e) = u(Vy'¢) = P'u(d) = u(ye)

where the argument is always in S (in fact C2°(£2)) so this makes sense.
It also follows that I(u) € C*(£2)’ since

(17) [1(u)(®)] = [u(ye)] < Wy 2 sup [z D | < Cylléllw

for one of the seminorms on C*>(£2), where Ky D supp® and N is large enough to
control the derivatives. Thus I in is well-defined.

Proposition 2. The map I is a bijection.

Proof. If I(u) = 0 then certainly u(¢) = 0 for all ¢ € C°(2). This means that
supp(u) C R™\ Q, by the definition of support. Since supp(u) € 2 by assumption,
this means supp(u) = @) which is another way of saying v = 0 in §'(R"). Thus [ is
injective.

To prove surjectivity just use the continuity condition which means that if U €
C>(Q)’ then

(18) U(o)l < Cliglln

for some N corresponding to a compact set Ky € 2. In particular, if ¢ € C2°(9)
and ¢ = 1 in a neighbourhood of K (and we know that such a function exists)
then ||(1 —v)dl|lxy =0 so

(19) U(g) =U(¥e), ¢ € CT(Q).

However, makes sense for any ¢ € S(R™) as well, since ¢ € C°(R™) so we
can define

(20) u(¢) =U(vg).

I leave it to you to check that v € §'(R™), that supp(u) € © and that I(u) = U,
but none of these is hard. Thus I is also surjective. [
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This is all very amusing, but we really want to define distributions on arbitrary
open sets. To do this we need to consider the space

(21) C=(2) = {¢ € S(R");supp(¢) € 2}

the space of test functions with compact support in €2. As I mentioned last time,
we can think of these functions as only defined on 2, so

(22) C(Q) cCc=(Q)

but since each of them vanishes outside a compact subset of €2, we can unambigu-
ously extend it as zero outside €2 and arrive at . It is convention to ignore this
nicety and think of these functions either way as the mood takes us.

Now, although gives an inclusion into S(R™) we will want the topology on
C(€2) to be stronger than the induced, subspace, topology so that it is appro-
priately complete. In particular we need a topology which for a convergent (or
Cauchy) sequence will force the supports to remain in some compact subset of 2.
I hope by this stage you can at least guess what this topolgy might be — it cannot
be metrizable, but that is just the way things are. The topology corresponds to
writing

(23) CE () = UC?(K;'), CE(K;) = {o € S(R");supp(¢) C K}

for a compact exhaustion K;. So we have replaced the one open set by many
compact sets (with non-empty interior of large j.) However, C°(K;) is actually a
closed subspace of S(R™), since a convergent sequence with respect to the topology
of S(R™) certainly converges uniformly on compact sets, so the limit must also have
support in C°(Kj;).

So it is reasonably to give C°(K ;) the metric topology from S(R™) and this just
corresponds to uniform convergence of all derivatives — it is the same topology as
inherited from C*°() for any Q2 K. Then we say (as in inductive limit) that a
subset O C C°(2) is open if and only if each of the intersections O N CX(K,) is
open. I leave it to you in the problem set next week to check that

(24)  wvp — v in CF(Q) <= supp(vi) C K, for some j and vy — v in C°(Kj).

We can rather easily see when a maps on C2°(2) is continuous into a topological
space. Namely if the inverse image of each open set is open. But this just means
that the inverse of each open set when the map is restricted to C°(K;) is open
there. So, this just means that a map is continuous if restricted to each C°(K) it
is continous with respect to the metric topology. For a linear maps

(25) v:CP () —C
this means that for each K € Q) there exist N = N(K) and C = C(K) such that
(26) (@) <C sup |D¥¢(z)|.

|a| <N,z

I denote the space of such, the dual of C°(2) as C~°°(€2). The traditional nota-
tion (which seems to me to waste perfectly useful letters) is do denote

£(Q) = C®(Q) with dual £'(Q) = C7=(Q)

27) D(Q) = C2(R) with dual D'(Q) = C~(Q).
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Notice that there is a duality between compact and unrestricted supports as well
as smoothness and the quality of being a distribution.
There is a long list of things one should check. Let me write a short list of some
truths, there are many more.
(1) € (R™) C S(R™) C C°°(R™) each and inclusion and dense.
(2) Dually C;*°(R™) C 8’'(R"™) € C~*°(R") each an inclusion and appropriately
weakly dense — note that duality flips the inclusions too.
(3) In fact we can aggrandize this to a commutative diagram with all maps
inclusions and appropriately dense

(28) C(R") ——S(R") ——C>(R")

]

C®(R") —> S'(R") ——> C~(R™).

C

(4) For a general open set we have a bit less of course, but still

(29) C2(Q) —= S(R™) ——= ()

b

Ce= () —= S'(R") —=C">(Q)

where the vertical maps are dense inclusions and the left horizontal maps
are, non-dense, inclusions while the right ones are have dense ranges but
are restriction maps, not inclusions and are neither injective nor surjective.
(5) There is an (obvious) action of D* on each space in which commutes
with all the maps.
(6) Multiplication by an element of C*(Q2) is defined on the spaces in the
smaller square (consistent with (29)) commuting with the maps

(30) C&(Q) ——=C=(Q)

L

Co> () —=C=(Q).
(7) Combining these, a linear differential operator with smooth coeficients
(31) P(z,D)= Y pa(z)D® pa €C>(Q)
la|<m

acts on all the spaces in commuting with the maps.

Now, let’s talk about something more practical. We know that the delta ‘func-
tion’ at a point p makes sense as an element of S'(R™) and it also makes sense as
an element of C~°°(R"™) provided p € Q2 :

(32) 5, C(Q) 56— (p) € C.

I put this in to confuse you a little, because clearly it is defined on all smooth
functions on € :

(33) 5,:C®(Q) 3 ¢ — d(p) € C =>4, € C°(Q).
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Now, we can see that the support of a distribution on €2 is well-defined as a closed
subset of () and that

(34) supp(dp) = {p} C Q.

Theorem 1. Any distribution in v € C~°°(Q) with supp(u) = {p} for some p € Q
8 a finite sum

(35) u= Y caDp, ca€C.
la|<N

That is we can say that any distribution with support a point is the image of the
delta function under a constant coefficient differential operator.



