
18.155 LECTURE 5, 19 SEPTEMBER, 2013

So, today I first want to prove the Schwartz’ structure theorem. Let me first
remind you of the Sobolev embedding theorem. What we notices is that

For v ∈ S ′(Rn), (1 + |ξ|2)s/2v ∈ L2(Rn) =⇒ v ∈ L1(Rn) if s > n/2.

Applying this to the Fourier transform of u ∈ Hs(Rn) we concluded that

(1) s > n/2 =⇒ u(x)(= u′(x)) = (2π)−n
∫
Rn
eix·ξû(ξ)dξ ∈ C0(Rn) ∩ L∞(Rn)

is a bounded and continuous function. You should be careful to understand what
is behind this – it really says that u ∈ Hs(Rn) ⊂ S ′(Rn) has a representative I(u′)
where u′ is the function in (1). Why is this true? The absolute convergence of the
integral in (1) means that u′C0(Rn) ∩ L∞(Rn) is defined from û (use Dominated
Convergence to get the continuity). So I(u′) is well defined and from the absolute
convergence of the integrals and the Fourier inversion formula on S(Rn),

(2) I(u′)(φ̂) = (2π)−n
∫ ∫

eix·ξû(ξ)φ̂(x) = û(φ) ∀ φ ∈ S(Rn).

Thus u and I(u′) represent the same distribution, which we now write as u = u′.
If s > n

2 + 1 then we can use the convergence of the difference quotient and
bound

(3) |e
i(x+tej)·ξ − eix·ξ

t
− iξjeix·ξ| ≤ |t||ξ|

to see that u′(x) has continuous and bounded first partial derivatives and that

these satisfy D̂ju
′ = ξj û. Now induction on the integer k shows the full Sobolev

embedding theorem

(4) u ∈ Hs(Rn), s >
n

2
+ k, k ∈ N =⇒ Dαu ∈ C0(Rn) ∩ L∞(Rn).

You should remind yourself that these derivatives actually vanish at infinity as well.
So, in short if u has Sobolev regularity n

2 + k then it has classical continouous,
bounded derivatives up to order k.

Let’s try the first form of the Schwartz Structure Theorem – that any u ∈ S ′(Rn)
can be written in the form

(5) u =
∑

|α|+|β|≤N

xαDβ
xuα,β , uα,β ∈ L2(Rn).

All we have to start from is that u is a tempered disbribution. This means that
for some k

(6) |u(φ)| ≤ C sup
x∈Rn

∑
|α|+|β|≤k

|Dβxαφ|

since it is a continuous linear functional (and I used the Pset1 to reverse the multi-
cplication and differentiation). However, from the Sobolev embedding theorem we
know that for s > n/2, which we will take to be an integer here

(7) sup |Dβφ| ≤ C‖φ|Hs+|β| , φ ∈ S(Rn) ⊂ Hs(Rn).
1
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Now, we can apply this to xαφ to see that

(8) sup |Dβ(xαφ)| ≤ C‖xαφ|Hs+|β| .

So we conclude that any distribution satisfies an estimate

(9) |u(φ)| ≤ C
∑
|α|≤N

‖xαφ‖HN .

Now, let’s multiply u by (1 + |x|2)−N . Since

(1 + |x|2)−Nu(φ) = u((1 + |x|2)−Nφ)

we can apply (9) to see that

(10) |(1 + |x|2)−Nu(φ)| ≤ C
∑
|α|≤N

‖xα(1 + |x|2)−Nu(φ)xαφ‖HN

Now, all the derivatives of xα(1 + |x|2)−N are bounded (since |α| ≤ N and the
Sobolev norm is equivalent to the sum of the L2 norms of the derivatives so in fact

(11) |(1 + |x|2)−Nu(φ)| ≤ C ′‖φ‖HN ∀ φ ∈ S(Rn).

for some N. We showed last time, from Riesz’ Representation Theorem, that this
implies that (1 + |x|2)−Nu ∈ H−N (Rn). Then from the characterization of the
negative Sobolev spaces it follows that

(12) u = (1 + |x|2)N
∑
|β|≤N

Dαuα.

Multiplying out the polynomial we get (5) (with N replaced by 2N but I have not
been counting anyway.

To get other ‘even more classical’ forms of the structure theorem, we can use
the fact that (1 + |D|2)k : H2k(Rn) −→ L2(Rn) is an isomorphism. Using this to
replace each of the uα in (12) by sums of derivatives of functions in H2k(Rn) and
choosing 2k > n/2 we find that any tempered distribution can also be written in
the form (for a yet larger N)

(13) u =
∑

|α|+|β|≤N

xαDβ
xuα,β , uα,β ∈ C0(Rn) ∩ L∞(Rn).

Next week I will start working out some examples. I want to devote the rest of the
lecture today to explaining the other big theorem about (tempered) distributions
and at least outlining the proof. We don’t really use this result later, but it is
important to know about it.

Namely we need fairly soon to start thinking about operators. We have in mind
(partial) differential operators with constant, polynomial or more general variable
coefficients – for instance if P is any polynomial in n variables then

(14) p(D) =
∑

0≤|α|≤m

cαD
α : S(Rn) −→ S(Rn).

It also maps S ′(Rn) to S ′(Rn). As an operator on S(Rn) it is continuous and so it
is on tempered distributions if we define an appropriate topology on them (at last).

The simplest topology to consider is the weak topology. This is defined by a
collection of seminorms, just not a countable number. Namely if φ ∈ S(Rn) then

(15) S ′(Rn) 3 u 7−→ |u(φ)| ∈ R
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is a seminorm. We want to choose a topology on S ′(Rn) so that these are continuous
functions. So the inverse images of open subsets of R under each of them should be
open. The coarsest topology on S ′(Rn) with this property is the weak topology –
an open subset of S ′(Rn) is an arbitrary union of finite intersections of such open
sets. Clearly this collection of (open) sets is closed under arbitrary unions and is
easily seen to be closed under finite intersections. So this is the weak topology.

The most general ‘operator’ one is likely to encounter in the setting of tempered
distributions is a linear map

(16) A : S(Rn) −→ S ′(Rm)

(maybe mapping to distributions on a space of different dimension) which is contin-
uous in terms of the metric topology on S(Rn) and the weak topology on S ′(Rm).
This actually just means that all the composites

(17) S(Rn) 3 φ 7−→ (Aφ,ψ) ∈ C, ψ ∈ S(Rm)

are continous. It is a lot of conditions, but each of them is pretty feeble! I leave it
as an exercise to check that this is actually equivalent to the continuity.

Now, the question arises as to how such operators might arise. There is a fairly
natural way you might construct some based on the fact that the exterior product
is a continous bilinear map

(18) S(Rm)× S(Rn) 3 (ψ, φ) 7−→ ψ(x)φ(y) ∈ S(Rm+n).

If you go back to the properties of bilinear maps, this is easy to check.
So, suppose that K ∈ S ′(Rm+n) is a tempered distribution on the product space.

The continuity above means that if we take φ ∈ S(Rn) and look at

(19) S(Rm) 3 ψ 7−→ K(ψ, φ) ∈ C

it is continuous, so defines a distribution in S ′(Rm) and hence a linear map

(20) A : S(Rn) −→ S ′(Rm).

Then A is said to have ‘Schwartz kernel’ K. The bilinear estimates give

(21) |A(φ)(ψ)| = |K(ψ � φ)| ≤ C‖ψ‖N‖φ‖N
for some N. You will easily check that this implies the continuity of (20) in the weak
topology on the range space – in fact it looks much stronger! However Schwartz’
Kernel theorem says:

Theorem 1. There is a linear bijection between operators A in (16), continuous
into the weak topology, and distributions in S ′(Rm+n).

Proof. We have to show that K 7−→ A is a bijection. The surjectivity follows from
the density of the linear span of products in S(Rm) � S(Rn) in S(Rm+n which is
straightfoward and I will mention below. The converse is the ‘hard part’ – how to
construct K from A. In fact we do get a bilinear map

(22) S(Rm)× S(Rn) 3 (ψ, φ) 7−→ (Aφ)(ψ) ∈ C.

The ‘hard part’ is to show that this is continous in the metric topology. In fact I
believe I outlined this in an notes for an earlier lecture. What we have is ‘separate
continuity’. Namely if we hold either φ or ψ fixed in (22) then we have continuity
as a lienar map in the other variable. One way round this is the fact that A takes
values in S ′(Rm) and the other is the weak continuity.



4 18.155 LECTURE 5, 19 SEPTEMBER, 2013

The problem then is to show that a separately continuous bilinear form (4) is
‘jointly continuous’ – meaning continuous in the metric topology on the product. I
hope I proved this in the earlier notes, it is basically Baire’s Theorem.

There is a bit more to do even after we show joint continuity. I will add it to
the notes when I get a chance, but do not plan to go through it in lecture (unless
I have a lot of spare time ...). �

One way of thinking about the Schwartz Kernel Theorem, which is indeed some-
times important, is that it says operators are just distributions. So the properties of
operators can be related to the properties of their kernels – even though in plactice
this can be decidedly tricky.

Last time I, probably unwisely, talked about isotropic Sobolev spaces. One
reason for doing that was to warm you that there are othe ‘global’ Sobolev spaces
that you might need to consider in a particular context. Here I will at least describe
some of the properties. For the moment, we only have integral order spaces and for
k ∈ N we define

(23) Hk
iso(Rn) = {u ∈ S ′(Rn);xαDβu ∈ L2(Rn) ∀ |α|+ |β| ≤ k‖}.

The ‘isotropic’ refers to the fact the the multiplication operators xj and differ-
entiation Di are ‘on the same footing’. This is a Hilbert space for each k with
norm

(24) ‖u‖2Hkiso =
∑

0≤|α|+|β|≤k

∫
|xαDβu|2.

Completeness follows as usual – for a Cauchy sequence all the xαDβun are Cauchy
in L2 and hence converge and the limits can be shown to be weak, and also strong,
derivatives of the limit of the sequence un in L2.

Since the conditions are stronger,

(25) Hk
iso(Rn) ⊂ Hk(Rn), ∀ k ∈ N.

Use of the Sobolev embedding theorem allows one to see that

(26) S(Rn) =
⋂
k

Hk
iso(Rn).

One can also define spaces of negative integral order but analogy with the result
shown above for ordinary Sobolev spaces and set

(27) H−kiso (Rn) = {u ∈ S ′(Rn);u =
∑

0≤|α|+|β|≤k

xαDβuα,β , uα,β ∈ L2(Rn).

It is not quite clear that this is a Hilbert, or even a normed, space since the expres-
sion as a sum like this is by no means unique. However, one can check that

(28) u ∈ H−k(Rn)⇐⇒ |u(φ)| ≤ C‖φ‖Hkiso ∀ φ ∈ S(Rn)

although it is not quite trivial to do so (as far as I can see). However, one can now
from the Schwartz structure theorem that

(29) S ′(Rn) =
⋃
k∈Z

Hk
iso(Rn).

Note that (25) is reversed for negative orders

H−k(Rn) ⊂ H−kiso (Rn), ∀ k ∈ N.
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So in some sense these isotropic spaces are more closely related to S and S ′ than
the usual Sobolev spaces. This is closely related to the (fairly straightforward)
result that

(30) F : Hk(Rn) −→ Hk(Rn) ∀ k ∈ Z.

For the ordinary Sobolev spaces we used the Fourier transform to define non-integral
order spaces but that does not work here. Still they can be defined! One way to
do so is to use the Spectral Theorem (from later in the semester) which allows us
to define powers of the operator which is essentially the harmonic oscillator:

(31) P = 1 + |D|2 + |x|2

and then to define

(32) u ∈ Hs
iso(Rn)⇐⇒ u ∈ S ′(Rn), P s/2u ∈ L2(Rn), s ∈ R.

Of course to see that this makes much sense – and is for instance consistent with
the definitions above – we need to do quite a bit of work. It is better to leave such
things until we have some more machinery to make life easier.

Just to reënforce this idea that there are more ‘global’ Sobolev spaces than just
the basic ones, although for the moment I cannot easily convince you of there
significance (but that will come later) note that the ‘ordinary’ Sobolev spaces are
defined by decay (and some regularity) of the Fourier transform. Said another way,
we can define ‘growth/decay’ spaces by

(33) H0,t(Rn) = {u ∈ L2
loc(Rn);u = (1 + |x|2)t/2v, v ∈ L2(Rn)}.

This is actually the standard convention (but not standard notation) but it might
be (or have been) more logical to change the sign of t since the definition of the
Sobolev spaces is just

(34) Hs(Rn) = {u ∈ S ′(Rn); û ∈ H0,−s(Rn)}

where you see the sign issue. Anyway, one can then define

(35) Hs,t(Rn) = {u ∈ S ′(Rn);u = (1 + |t|2)t/2v, v ∈ Hs(Rn)

which one could write somewhat dangerously as

(36) Hs,t(Rn) = (1 + |x|2)t/2Hs(Rn).

Now one needs to do some work, pretty each if at least one of s and t is an integer,
and show that

(37)

F : Hs,t(Rn) −→ H−t,−s(Rn) is an isomorphism

S(Rn) =
⋂
s,t

Hs,t(Rn)

S ′(Rn) =
⋃
s,t

Hs,t(Rn).

These spaces will reappear later – assuming they appeared at all in my lecture
which is not particularly likely.

Exercise 1. Think about the proof of (37). What would you need to do to show
that the operator

(38) Qs,t = (1 + |x|2)t(1 + |D|2)−s/2 = (1 + |x|2)tG(1 + |ξ|2)−s/2F
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is an isomorphism on S(Rn) and S ′(Rn) and also that

(39) Qs,t : Ha,b(Rn) −→ Ha+s,b+t(Rn)

is an isomorphism for all a, b, s and t ∈ R?


