18.155 LECTURE 3: 12 SEPTEMBER, 2013

o We showed F : S(R") — S(R™) is continuous, in fact

[16llx < CllglInsnti-

e To prove it is an isomorphism we start with two Lemmas — the first is very

standard
Lemma 1. There exists 1 € S(R™), t(z) > 0, ¥(z) = 1 in |z| < 1
Y(x) =0 4n |z| > 1.
Proof. In one variable consider the function
exp(—1/z) x>0
plx) = .
0 x <0.

This is an example of a non-analytic but infinitely differentiable function.
It is certainly smooth in = > 0 and the derivatives are of the form

d* (@)

wy’(x) = 72k exp(fl/x),
with pg a polynomial. The convergence of the power series for e®, all terms
in which are positive for s > 0 shows that for each N, e® > s"/n! — and
hence

k

%u(x) < Ck7NxN in0<z<1.

Thus all the derivatives, defined in > 0, extend by continuity down to 0
where they vanish to infinite order. This includes p itself which is therefore
given by the integral from —1 of its own derivative extended to be 0 in
x < 0. This argument iterates to show — or you could do it directly anyway
— that p is infinitely differentiable across 0.

From this we can construct

V(@) = p(l = |2*) € SR™), n(z) = p(jz|* — %) € C=(R")

which are respectively positive in |z| < 1 but zero in |x| > 1 and zero near
x = 0 and positive in |z| > 3/4. Thus ¢ + 7 is strictly positive everywhere
and then

Y’ (x)
0<yY(x)=—F—"—= cSR"
= Ty e €S
satisfies the conditions we want, since it is equal to 1 where n(z) = 0 and
0 where ¢'(z) = 0. O

Lemma 2. Any ¢ € S(R™) can be written in the form
2 n
6(x) = 60 exp(~ )+ 3 a0y (), v € SR,
j=1

1
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Proof. Taylor’s formula and then use of the cutoff from the previous lemma.
O

Now, to back to the Forier transform. We consider the composite and then
restrict to 0 and claim that

G(9)(0) = cp(0) V ¢ € S(R")
where c¢ is a fixed constant independent of ¢. Indeed to see this insert
into the left side to get

G(9)(0) = c6(0) + 3 G(w;0;)(0), ¢ =G(3)(0), 7 = exp(~

jaf?
2 )

However, ng\J (§) = 0, ;(€) as we showed last time and since

G(£)(0) = (2m)~" / 7,

so each of the terms in the sum vanishes. Thus we arrive at where we
even no the constant in terms of the Gaussian.

Now, we can also work out formulee for the Fourier transform of translates
and multiples by exponentials:-

F(d(o+9)(€) = €4, Gle ™ f)(z) = G(f)(= +y).
Combining these two and shows that
GF =cld.

So we are reduced to working out the constant. This amounts to working
out the Fourier transform of the Gaussian and this is pretty standard. First
we only need do the 1-D case since

Flesp(=75) =[] Flexp(=a3/2)

and then we can check that

(e +EF(exp(=2/2)(€) = 0 — Flexpl(~a*/2)(€) = ¢ exp(~€*/2)

where the constant is the value of the Fourier transform at 0, i.e.
c’/ exp(—2?/2) = V2r.
R

Going back to it follows that ¢ = 1 and we have the Fourier inversion
formula

GoF=Id=FoGonSR")
where the second follows from the first by changing signs.
So the Fourier transform is an isomorphism on S(R™), a continuous linear
bijection with a continuous inverse.

Computing with absolutely convergent Lebesgue integrals it also follows
directly that for any ¢, ¢ € S(R"),

[oav= [ eowpute = [ o0
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This gives a weak formulation of the Fourier transform which we can write

1(¢)(psi) = 1(4)(¢)

and so for general u € S'(R™) it is consistent to define
() =u(@) ¥V u e S'R"), § € SR").

This gives a linear bijection (so far we don’t have a topology to measure
continuity)

F:S'R") — S'(R™).
If we apply the identity to ¢ = 7 for some n € S(R™) then /) = ¢ so
by the inversion formula,

n(€) = G() = 2m) "F()(=€) = 7(§) = (2m) " (§).
The result is Parseval’s formula
on=(2m)™" [ 41
R R
the essential unitarity of the Fourier transform, i.e. (27r)*”/ 2F is preserves

the L? inner product on S(R™) and so, if we accept that S(R™) is dense in
L?(R™),

Proposition 1. The operators (27r)*”/2]: extends by continuity to be uni-
tary on L?(R™).
So we have seen that the Fourier transform is an isomorphism on S(R"),

and on &’(R™) which restricts to an isomorphism on the subspace L?(R").
The L%-based Sobolev spaces are then defined for each real number s € R :

HO(RY) = {u € 8'(BY); (1 + [¢%)"/%0 € I2(R").
Note that in the homework this week you showed that (1 + |z|?)%/? is a

‘multiplier’ on S(R™), and hence on §’(R™) so the definition makes sense,
L?(R"™) being a well-defined subspace of S’(R™).

Lemma 3. For s =k € N a positive integer,
H*R") = {u € L*(R"); D*u € L*(R") C S'(R"), |a| < k}
is also the space of L? functions with strong derivatives up to order k in

L? where successive strong derivatives are defined by convergence of the
difference quotient in L2 :

d;u = lim u(z + se;) — u(x)

in L2 (R™).
s—0 S i ( )



