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• We showed F : S(Rn) −→ S(Rn) is continuous, in fact

‖φ̂‖N ≤ C‖φ‖N+n+1.

• To prove it is an isomorphism we start with two Lemmas – the first is very
standard

Lemma 1. There exists ψ ∈ S(Rn), ψ(x) ≥ 0, ψ(x) = 1 in |x| < 1
2

ψ(x) = 0 in |x| > 1.

Proof. In one variable consider the function

µ(x) =

{
exp(−1/x) x > 0

0 x ≤ 0.

This is an example of a non-analytic but infinitely differentiable function.
It is certainly smooth in x > 0 and the derivatives are of the form

(1)
dk

dxk
µ(x) =

pk(x)

x2k
exp(−1/x),

with pk a polynomial. The convergence of the power series for es, all terms
in which are positive for s > 0 shows that for each N, es ≥ sn/n! – and
hence

dk

dxk
µ(x) ≤ Ck,NxN in 0 < x ≤ 1.

Thus all the derivatives, defined in x > 0, extend by continuity down to 0
where they vanish to infinite order. This includes µ itself which is therefore
given by the integral from −1 of its own derivative extended to be 0 in
x < 0. This argument iterates to show – or you could do it directly anyway
– that µ is infinitely differentiable across 0.

From this we can construct

(2) ψ′(x) = µ(1− |x|2) ∈ S(Rn), η(x) = µ(|x|2 − 1

2
) ∈ C∞(Rn)

which are respectively positive in |x| < 1 but zero in |x| ≥ 1 and zero near
x = 0 and positive in |x| > 3/4. Thus ψ + η is strictly positive everywhere
and then

(3) 0 ≤ ψ(x) =
ψ′(x)

ψ′(x) + η(x)
∈ S(Rn)

satisfies the conditions we want, since it is equal to 1 where η(x) = 0 and
0 where ψ′(x) = 0. �

•

Lemma 2. Any φ ∈ S(Rn) can be written in the form

(4) φ(x) = φ(0) exp(−|x|
2

2
) +

n∑
j=1

xjψj(x), ψ ∈ S(Rn).

1
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Proof. Taylor’s formula and then use of the cutoff from the previous lemma.
�

• Now, to back to the Forier transform. We consider the composite and then
restrict to 0 and claim that

(5) G(φ̂)(0) = cφ(0) ∀ φ ∈ S(Rn)

where c is a fixed constant independent of φ. Indeed to see this insert (4)
into the left side to get

(6) G(φ̂)(0) = cφ(0) +
∑
j

G(x̂jψj)(0), c = G(γ̂)(0), γ = exp(−|x|
2

2
).

However, x̂jψj(ξ) = i∂ξj ψ̂j(ξ) as we showed last time and since

(7) G(f)(0) = (2π)−n
∫
f,

so each of the terms in the sum vanishes. Thus we arrive at (5) where we
even no the constant in terms of the Gaussian.
• Now, we can also work out formulæ for the Fourier transform of translates

and multiples by exponentials:-

(8) F(φ(•+ y))(ξ) = eiy·ξψ̂, G(e−iy·•f)(x) = G(f)(x+ y).

Combining these two and (5) shows that

(9) GF = c Id .

• So we are reduced to working out the constant. This amounts to working
out the Fourier transform of the Gaussian and this is pretty standard. First
we only need do the 1-D case since

(10) F(exp(−|x|
2

2
) =

∏
j

F(exp(−x2j/2)

and then we can check that

(11) (
d

dξ
+ ξ)F(exp(−x2/2)(ξ) = 0 =⇒ F(exp(−x2/2)(ξ) = c′ exp(−ξ2/2)

where the constant is the value of the Fourier transform at 0, i.e.

(12) c′
∫
R

exp(−x2/2) =
√

2π.

Going back to (5) it follows that c = 1 and we have the Fourier inversion
formula

(13) G ◦ F = Id = F ◦ G on S(Rn)

where the second follows from the first by changing signs.
• So the Fourier transform is an isomorphism on S(Rn), a continuous linear

bijection with a continuous inverse.
• Computing with absolutely convergent Lebesgue integrals it also follows

directly that for any φ, ψ ∈ S(Rn),

(14)

∫
Rn

φ̂ψ =

∫
R2n

e−ix·ξφ(x)ψ(ξ) =

∫
Rn

φψ̂.
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This gives a weak formulation of the Fourier transform which we can write

(15) I(φ̂)(psi) = I(φ)(ψ̂)

and so for general u ∈ S ′(Rn) it is consistent to define

(16) û(ψ) = u(ψ̂) ∀ u ∈ S ′(Rn), ψ ∈ S(Rn).

This gives a linear bijection (so far we don’t have a topology to measure
continuity)

(17) F : S ′(Rn) −→ S ′(Rn).

• If we apply the identity (14) to ψ = η̂ for some η ∈ S(Rn) then η̂ = ψ so
by the inversion formula,

η(ξ) = G(ψ) = (2π)−nF(ψ)(−ξ) =⇒ η(ξ) = (2π)−nψ̂(ξ).

The result is Parseval’s formula

(18)

∫
Rn

φ̂η̂ = (2π)−n
∫
Rn

φη

the essential unitarity of the Fourier transform, i.e. (2π)−n/2F is preserves
the L2 inner product on S(Rn) and so, if we accept that S(Rn) is dense in
L2(Rn),

Proposition 1. The operators (2π)−n/2F extends by continuity to be uni-
tary on L2(Rn).

• So we have seen that the Fourier transform is an isomorphism on S(Rn),
and on S ′(Rn) which restricts to an isomorphism on the subspace L2(Rn).
• The L2-based Sobolev spaces are then defined for each real number s ∈ R :

(19) Hs(Rn) = {u ∈ S ′(Rn); (1 + |ξ|2)s/2û ∈ L2(Rn).

Note that in the homework this week you showed that (1 + |x|2)s/2 is a
‘multiplier’ on S(Rn), and hence on S ′(Rn) so the definition makes sense,
L2(Rn) being a well-defined subspace of S ′(Rn).
•

Lemma 3. For s = k ∈ N a positive integer,

(20) Hk(Rn) = {u ∈ L2(Rn);Dαu ∈ L2(Rn) ⊂ S ′(Rn), |α| ≤ k}
is also the space of L2 functions with strong derivatives up to order k in
L2 where successive strong derivatives are defined by convergence of the
difference quotient in L2 :

(21) ∂ju = lim
s→0

u(x+ sej)− u(x)

s
in L2(Rn).


