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Last time week I talked about the Laplace-Beltrami operator on the boundary
of a smoothly bounded domain and in particular proved elliptic regularity by using
convolution in local coordinate patches and regularity estimates on the commutator.
This was by way of a short detour before doing the same for the Dirichlet problem
itself.

Recall the set up:- We have a smoothly bounded domain B and we defined

(1) Ḣ1(B) = {u ∈ H1(Rn); supp(u) ⊂ B}
and then showed, using Poincaré’s inequality, that

(2) 〈u, v〉 =

n∑
j=1

∫
B

DjuDjvdx

is a Hilbert inner product on Ḣ1(B) with norm equivalent to the usual H1 norm.

The dual of Ḣ1(B) with respect to the real L2 pairing we showed to be H−1(B) =
H−1(Rn)

∣∣
B\∂B the subspace of C−∞(B \ ∂B) given by the restriction of elements

of H−1(Rn). Then the Riesz’ Representation Theorem gives us a linear (because
we use the real pairing) isomorphism

(3) A : H−1(B) −→ Ḣ1(B)

which is a distributional right inverse of the Laplacian:

(4) ∆Af = f in B \ ∂B
and which solves the Dirichlet problem in a weak sense.

We showed that A restricted to L2(B) is a self-adjoint compact operator with a

complete orthonormal basis ej ∈ Ḣ1(B) (orthonormalized in L2(B)) satisfying

(5) ∆ej = λjej , λj > 0, λj →∞, ej
∣∣
∂B

= 0

where the weak form of the Dirichlet condition corresponds to the fact that there
is a restriction map H1(Rn) −→ H

1
2 (∂B) (by working in local flattenings of the

boundary) which vanishes for on Ḣ1(B).
Now, what we wanted to prove is that the solution to the Dirichlet problem is

regular if the data is regular, the first step of which is to show

(6) u ∈ Ḣ1(B), ∆u ∈ L2(B) =⇒ u ∈ H2(B)

which is also shows that ∆ with domain D = H2(B) ∩ Ḣ1(B) is an unbounded
self-adjoint operator on L2(B).

The idea is the same as for the Laplacian on the boundary – differentiate the
equation to get an equation satisfied by the derivative of the solution. As there we
first have to smooth the solution, so that it stays in the range of the isomorphism
A. Here we have an additional problem, namely the boundary. We cannot use
convolution directly since this would not preserve the boundary, and hence not the
boundary condition. In brief the idea is to straighten out the boundary and use
convolution in the ‘tangential variables’ to get a partially smoothed solution which
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we can then differentiate in these tangential directions. We have to do a little more
after that.

Proposition 1. If u ∈ Ḣ1(B) and ∆u
∣∣
B\∂B ∈ L

2(B) then u ∈ H2(B).

Proof. Since ∆ is a constant coefficient elliptic operator we do have elliptic regu-
larity which shows that

(7) ∆u ∈ L2(B \ ∂B) =⇒ u ∈ H2
loc(B \ ∂B).

So it is only regularity ‘up to’ the boundary that we need to show.
As before, we can localize u. If we multiply by any ρ ∈ C∞(B) then ρu ∈ Ḣ1(B)

and

(8) ∆(ρu) = ρ∆u+ [∆, ρ]u ∈ L2(B)

since the commutator is a differential operator of first order.
So, take ρ to have support in the ball B(p, ε) around a point p ∈ ∂B on which we

have a diffeomorphism F : B(p, ε) −→ Ω to an open neighbourhood of F (p) = 0 ∈
Rn which flattens ∂B to {xn = 0} ∩ Ω. If the inverse of F is G then v = G∗(ρu) ∈
H1(Rn) has compact support in {xn ≥ 0}∩Ω (by coordinate-invariance of Sobolev
spaces) and satisfies

(9) PF v = g ∈ L2 on Ω ∩ {xn > 0}.

Here PF is the local coordinate form of the Laplacian – we know it is a second-
order elliptic differential operator with smooth, but variable, coefficients but not
much more. It follows that it can be written

(10) PF = a(x)QF , QF = D2
xn

+ L(x,D′)Dn +R(x,D′)

where L is a first order and R is a second order differential operator in the tangential
variables (but with coefficients depending on xn as well.) The fact that the smooth
coefficient a(x) 6= 0 (so we can divide by it) follows from ellipticity, since it is
p2(x, (0, . . . , 0, 1) in terms of the principal symbol p2 of PF .

So now, Qfv ∈ L2(B) as well, since v has compact support in Ω. To proceed
further we need to ‘smooth’ v. We cannot do this directly in all variables since the
equation only holds in xn > 0. So we apply a usual approximate identity but just
in the x′ variables and set

(11) wε = φε ∗′ v(,̇xn), φε(x
′) = ε−n+1φ(x′/ε), φ ≥ 0,

∫
φ = 1.

The result is a smooth function (for ε sufficiently small) of x′ with values in
H1({xn ≥ 0} in the remaining variable.

We proceed to investigate wj(ε) = Dxj
wε, where 1 ≤ j < n corresponds to one

of the tangential variables and proceed to show that

(12) PFwj(ε) is bounded in H−1(B) as ε→ 0.

This is the same statement as the boundedness of QFwj(ε) which we can write out
as

(13) QFwj(ε) = [QF , Dj ]wε +Dj [QF , φε∗′]v + φε ∗′ DjQF v(,̇xn).

Here the first term on the right is bounded in H−1(B) since [QF , Dj ] is a second-

order differential operator and wω is bounded in Ḣ1({xn ≥ 0}). The reason for
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removing the factor a in (10) is so that term D2
xn

in QF commutes with convolution
in the x′ variables and so the commutator on the second term can be written

(14) Dj [QF , φε∗′]v = Dj [L(x,D′), φε∗′]Dxn
v +Dj [R(x,D′, φε∗′]v.

The results we proved about such commutators last week show that the commutator
in the first term is uniformly bounded on L2 (in all variables) and the second term
uniformly ‘loses one (tangential) Sobolev derivative’. Since v is in H1 it follows
that both terms are uniformly bounded in H−1({xn ≥ 0}). The last term in (13)
is also bounded in H−1 since QF v is by assumption in L2.

Now, multiplying by a again and moving back to B we conclude from the in-
vertibility of the Dirichlet problem in the weak sense, from Ḣ1(B) to H−1(B) that

wj(ε) is bounded in Ḣ1({xn ≥ 0}) and hence that the weak limit Dxjv ∈ H1 for
each 1 ≤ j < n. So we have tangential regularity – all the second order derivatives
DjDkv ∈ L2 except if both j = k = n. However, we are saved by the equation itself
which shows that

(15) D2
xn
v = −L(x,D′)Dnv −R(x,D′)v +QF v ∈ L2 in xn ≥ 0

so in fact v = ρu ∈ H2(B) for any cut-off supported in a coordinate patch and
hence, using a partition of unity, u ∈ H2(B) as claimed. �

So the difference here is that we can only directly recover tangential regularity.
The argument above can be iterated directly. If we assume that ∆u ∈ Hk(B) then
proceeding by induction, we can assume that in the local coordinate patches

(16) Dα
x′G∗j (ρju), H1 for all |α| ≤ k.

Going through the same commutation arguments as above, applying another tan-
gential derivative, we conclude that (16) holds for |α| ≤ k+ 1 so gaining tangential
derivatives. To gain the normal deriviatives just write out the same equation (15)
and differentiate with respect to xn up to k times. It follows that

(17) u ∈ Ḣ1(B), ∆u ∈ Hk(B) =⇒ u ∈ Hk+1(B), k ∈ N.
From this we deduce that the eigenfunctions (which we obtained from the com-

pact operator A which solves the weak form of the Dirichlet problem) are in fact
smooth. There is a lot more known about all this of course but it is still an active
area of research. One thing people are currently working on is the structure of the
zero sets of the Dirichlet eigenfunctions (asymptotically as the eigenvalue tends to
∞.)


