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These note were reconstructed some weeks after the lecture.
At this point I had decided to detour before proving boundary regularity for the

Dirichlet problem by examining the Laplacian, either for the induced or some other
metric, on the boundary M = ∂B of a smoothly bounded domain. This is a very
similar, but slightly simpler question. On the other hand setting up the (global)
definition of the Laplacian and distributional spaces on M on which it acts takes
some time. Perhaps this was not such a good idea!

Let me start by going through the ‘trivial’ differential geometry of Euclidean
space, Rn, as preparation for doing the same on M – which is an example of a
compact (oriented) manifold.

The basic object we have studied on Rn is the space C∞(Rn) of smooth, for the
moment real-evalued, functions. The tangent space TpRn of Rn at p is then defined
to be the space of derivations at p, meaning

(1) TpRn = {δ : C∞(Rn) −→ R; linear and satisfying

δ(fg) = f(p)δ(g) + g(p)δ(f) ∀ f, g ∈ C∞(Rn)}.

Clearly TpRn is a linear space over R.
The obvious examples of such maps are given by the partial derivatives at p :

(2) ∂i : C∞(Rn) 3 f 7−→ ∂f

∂xi
(p) ∈ R.

By the global form of Taylor’s theorem

(3) f(x) = f(p) +

n∑
i=1

∂if(p)(xi − pi) +

n∑
i,j=1

(xi − pi)(xf − pj)fij

with fij ∈ C∞(Rn). From the distribution law in (1) δc = 0 for any derivation and
constant function. Similarly, any derivation at p must annihilate each term in the
second sum in (3) so for any δ ∈ TpRn,

(4) δf =

n∑
i=1

∂if(p)δ(xi − pi) =

n∑
i=1

ci∂if(p), ci = δ(xi − pi).

Thus in fact, TpRn has dimension n with the ∂i being a ‘canonical’ basis.
So, one can just identify TpRn = Rn using this natural basis. The reason for not

doing so is the behaviour under diffeomorphism.

Exercise 1. If we replace C∞(Rn) by C∞(O) where p ∈ O ⊂ Rn is open, then the
definition (1) makes sense and so defines TpO. Show that under the restriction map
(not surjective) C∞(Rn) −→ C∞(O) derivations on C∞(O) define derivations on
C∞(Rn) and the resulting map is in fact a linear isomorphism TpRn −→ TpO.

In view of this we really do identify TpO and TpO
′ for any two open sets containing

p; this is not like the coordinate identification with Rn.
1
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So suppose F is a smooth map Rn −→ Rn, or in view of Exercise 1, just defined
on some open set containing p. Then there is a natural map

(5) F∗TpRn −→ TF (p)Rn,

F∗(δ)g = δ(g ◦ F ), g ∈ C∞(Rn).

Exercise 2. Using Taylor series as above, show that if F (x) = (F1(x), . . . Fn(x))
then

(6) F∗(∂i(p)) =

n∑
j=1

∂Fi

∂xj
(p)∂j(F (p)).

In particular the linear map in (5) is an isomorphism if and only if the Jacobian
determinant at p, det(∂Fi

∂xj
(p)) 6= 0 and conversely, if this is true, then by the Implicit

Function Theorem, F : B(p, ε) = O1 −→ O2 = F (O1) is a diffeomorphism from a
small ball around p to its image.

Dually there is a similar construction of the cotangent space at p ∈ Rn. From an
algebraic point of view, p can be identified with the prime ideal Ip ⊂ C∞(Rn) of
functions which vanish at p.

Exercise 3. Show that the only prime ideals (ideals without any proper subideals)
I ⊂ C∞(O) for O ⊂ Rn open are the Ip for p ∈ O.

The ‘square’ I2 of an ideal is the finite linear span of the products of elements
of I. Then we may define

(7) T ∗pRn = Ip/I2p .
Here the ∗ does not in principal mean dual, however what the notation suggests is
of course true:-

Exercise 4. The bilinear map

(8) Ip × TpRn 3 (f, δ) 7−→ δ(f) ∈ R
descends to a non-degenerate pairing which identifies T ∗pRn with the dual of TpRn.

You should also check that if F : O −→ Rn is a smooth map then F ∗ :
TF (p)∗Rn −→ T ∗p bbR

n is well defined from IF (p) 3 g −→ g ◦ F = F ∗g ∈ Ip
and that under the duality identification F ∗ is the dual map to F∗.

Of course you know all this, but it is worth going through it carefully at least once!
Why did I go through all this nonsense? The main point is that it extends directly

to M = ∂B for a smoothly bounded domain B, and indeed to a general manifold.
First we need to define the smooth functions on M. The obvious definition is

(9) C∞(M) = C∞(Rn)
∣∣
M
,

so a function on M is smooth if and only if it can be extended to a smooth function
on Rn. Recall that we have defined ‘adapted coordinates’ near a point p ∈ M in
terms of a diffeomorphism which strainghtens M to yn = 0.

Lemma 1. A function f : M −→ C (or R) is in C∞(M) if and only if for each
p ∈ M and ‘adapted coordinate system’ F : B(p, ε) −→ F (B(p, ε)) = Ω ⊂ Rn

(mapping p to 0 and B(p, ε)∩B to {yn > 0}) with inverse G, G◦f ∈ C∞({xn = 0}∩.
The smoothness of f follows from this regularity for and collection of such map Fp

for which the B(p, εp) cover M.



18.155 LECTURE 20: 19 NOVEMBER, 2013 3

Proof. If f ∈ C∞(M) and f̃ ∈ C∞(Rn) is such that f = F̃
∣∣
M

then the fact that F is

a diffeomorhism implies that g̃ = G∗f̃ = f̃ ◦G is smooth on Ω. Since G◦f = g̃
∣∣
yn=0

the smoothness of G ◦ f follows.
Conversely, if this smoothness holds for f for a covering of M by such ‘adapted

coordinates’ Fj then we can choose a finite partition of unity ρj ∈ C∞c (Rn) with ρj
supported in the ball B(pj , εj) and

∑
j

ρj = 1 in a neighbourhood of M = ∂B. If

ρ′j = G∗jρj it follows from the hypothesis that G∗jf ∈ C∞c (Ωj ∩{yn = 0}) which can

then be extended to g′j ∈ C∞(Ωj) and hence ρ′jg
′
j ∈ C∞c (Ωj) so f̃ =

∑
j

F ∗j (ρ′jg
′
j) ∈

C∞c (Rn). From the properties of the partition of unity f̃
∣∣
M

= f ∈ C∞(M). �

This is the general pattern with spaces of functions, and indeed of distributions,
on M we can define them either ‘extrinsically’ by some sort of restriction process
from Rn or ‘intrinsically’ in terms of the adapted coordinate maps F. Generally
speaking the latter approach is to be preferred since this extends directly to the
case of an arbitrary compact manifold.

Now we go back to basics. The tangent space to M at p ∈M is defined by

(10) TpM = {δ : C∞(M) −→ R; derivations at p}.
That is, δ ∈ TpM is a linear map satisfying δ(fg) = f(p)δ(g) + g(p)δ(f) for all
f, g ∈ C∞(M). Since we have defined C∞(M) by restriction, these actually define
derivations on C∞(Rn),

(11) TpM −→ TpRn, δ̃f̃ = δ(f̃
∣∣M).

Lemma 2. The extension map (11) identifies TpM with the subspace of TpRn

consisting of the derivations at p ‘tangent to M ’, namely this satisfying δ̃(f) = 0 if
f
∣∣
M

= 0.

Proof. Recall that local, and indeed global, defining functions exist for B and hence
M = ∂B. Using Taylor’s theorem it follows that any h ∈ C∞(Rn) which vanishes
on M is of the form h′Ψ where Ψ ∈ C∞(Rn) is a global defining function and
h′ ∈ C∞(Rn) is a (determined) element of C∞(Rn). This can be visualized as a
short exact sequence

(12) C∞(Rn) ·Ψ −→ C∞(Rn) −→ C∞(M)

from which the result follows (if necessary using the natural basis of TpRn. �

The cotangent space T ∗pM may be defined in terms of the ideal Ip ⊂ C∞(M)
and the arguments above show that there is a linear map T ∗pRn −→ T ∗pM which
is surjective with one-dimensional null space. Again the argument above showing
that T ∗pM is naturally the dual space of TpM carries over and this may be seen
more explicitly as follows:

Exercise 5. Show that under an ‘adapted coordinate’ diffeomorphism TqM for q ∈
M ∩ B(p, ε) is mapped isomorphically to TF (q)Rn−1 which is spanned by the ∂y1 ,
. . . , ∂yn−1 .

Both on Rn and on M we can define the differential of a (smooth) function at a
point. Namely, if f ∈ C∞(M) then f − f(p) ∈ Ip ⊂ C∞(M) since it vanishes at p.
The deRham differential of f is then the element this defines in the quotient

(13) df(p) = [f − f(p)] ∈ T ∗pM = Ip/I2p .
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This applies equally well on Rn where the linear functions xi define a basis at each
point

(14) dxi(p) = [xi − pi] ∈ T ∗pRn.

Exercise 6. Check that this is the dual basis to the basis ∂i of TpRn and for any
g ∈ C∞(Rn),

(15) dg(p) =

n∑
j=1

∂g

∂xj
(p)dxj .


