
The material here can be found in Hörmander’s Volume 1, Chapter VII – but
he has already done almost all of distribution theory by this point(!) – Joshi and
Friedlander Chapter 8.

• Recall that S(Rn) is a complete metric space.
• We know that convergence with respect to this metric represents conver-

gence with respect to each of the underlying norms

(1) ‖φ‖N = sup
x∈Rn, |α|≤N

|(1 + |x|)NDα
xφ|;

note that these norms increase with N.
• Consider the same sort of thing for continuity of maps

Lemma 1. (1) A linear map A : S(Rn) −→ B to a normed space is
continuous iff and only if there exist C and N such that

(2) ‖Aφ‖B ≤ C‖φ‖N ∀ φ ∈ S(Rn).

(2) A linear map P : S(Rn) −→ S(Rm) is continous if and only if for each
N ′ there exists C = C(N ′) and N = N(N ′) such that

(3) ‖Pφ‖N ′ ≤ C‖φ‖N ∀ φ ∈ S(Rn).

(3) A bilinear map B : S(Rn) × S(Rm) −→ B is continuous (for the
product topology) if and only if there exist C, N and M such that

(4) ‖B(φ, ψ)‖B ≤ C‖φ‖N‖ψ‖M .
(4) A bilinear map G : S(Rn) × S(Rm) −→ S(Rk) is continuous if and

only if for each N ′ there exist C, N and M such that

(5) ‖G(φ, ψ)‖N ′ ≤ C‖φ‖N‖ψ‖M
Proof. Let me quickly go through the proof for B, the others are similar.
First check that (4) implies continuity – we are in a metric space setting
so sequential continuity is the same thing. If (φn, ψn) → (φ, ψ) in the
product metric space then φn → φ and ψn → ψ (and conversely). Moreover,
convergence in S(Rn) implies (is equivalent to) convergence in each norm
‖ · ‖N since if ε > 0 is small, ε < 1, choosing δ = 2−N−1ε, then

d(φn, φ) < δ =⇒ ‖φn − φ‖N ≤
1

2
ε(1 + ‖φn − φ‖N ) =⇒ ‖φn − φ‖N ≤ ε.

In the other direction, use the topological definition. Continuity at 0 (which
is equivalent to continuity everywhere for a bilinear form) implies that there
exists δ > 0 such that

d(ψ, 0) < δ, d(φ, 0) < δ =⇒ ‖B(φ, ψ)‖B < 1.

Since 2−k+1 < δ for some k we can arrange the inequalities on the left by
demanding

(6) ‖ψ|k <
1

4
δ =⇒

∑
N

2−N
‖ψ‖N

1 + ‖ψ‖N
<

1

2
δ +

1

2
δ

splitting the sum in two at k. By scaling using the bilinearity it follows that

(7) ‖B(φ, ψ)‖B ≤ C‖φ‖+ k‖ψ‖k, C = 8δ−2.
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• So continuity for Fréchet spaces (or countably normed ones for that matter)
is just like continuity on normed spaces with extra qualifiers!
• (Didn’t do this) Even though we do not need to use it at the moment I want

to recall – because it is significant later – one thing completelness does for
us:

Proposition 1. A bilinear map B : S(Rn) × S(Rm) −→ C (or more
generally as above) is continuous if and only if it is separately continuous
– the maps B(·, ψ) : S(Rn) −→ C and B(φ, ·) : S(Rm) −→ C are continous
for each fixed φ and ψ.

Proof. I will not do it in class. The point is Baire’s Theorem (what used
to be called Baire Catergory argument) just like the uniform boundedness
principle. For each N look at the set

(8) D(N) = {φ ∈ S(Rn); |B(φ, ψ)| ≤ N‖φ‖N‖ψ‖N ∀ ψ ∈ S(Rm)}.

Continuity in the first variable shows this is closed and continuity in the
second shows that the D(N) cover S(Rn). Baire’s Theorem then shows that
one at least of the D(N) has non-empty interior and translating and scaling
around an interior point gives the continuity estimate. �

• Now, we know what tempered distributions are, they are the continuous
linear maps u : S(Rn) −→ C, such that for some N,

(9) C = sup
‖φ‖N=1

|u(φ)| <∞.

We denote the linear space – the dual space – as S ′(Rn). They are called
‘tempered’ or ‘temperate’ distributions (meaning in some sense they have
polynomial bounds but beware of this).
• The first point is that there is an injection

(10) I : L2(Rn) −→ S ′(Rn)

which is actually the transpose of the inclusion S(Rn) −→ L2(Rn). The
latter is continuous as follows from

(11) ‖φ‖L2 ≤ sup
(

(1 + |x|) 1
2 (n+1)|φ(x)|

)(∫
Rn

(1 + |x|)−n−1dx
) 1

2

since this integral is finite. Another way of putting this is that the L2 norm
is continuous on S(Rn)

‖φ‖L2 ≤ C‖φ‖k, k >
1

2
n.

Thus if u ∈ L2(Rn) we define

(12) I(u) ∈ S ′(Rn), I(u)(φ) =

∫
Rn

u(x)φ(x).

Not only is this well-defined but the map I is an injection. In fact we will
quite soon drop the I from the notation altogether and regard this map as
an identification.
•

Lemma 2. The map I in (11), (12) is an injection.
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Proof. I will give a direct proof a bit later on using convolution. How-
ever, you probably know that in one dimension the eigenfunctions of the
harmonic oscillator give an orthonormal basis of L2(R). They are all the
products of polynomials and a gaussian, so are in S(R) which is therefore
dense. Moreover, their products in n variable give an orthonormal basis of
L2(Rn) proving the density in higher dimensions. �

• You should go through a similar argument to see that L1(Rn) −→ S ′(Rn)
is injective using the same formula (12) – maybe leaving density of S(Rn)
in L1(Rn) until later!
• Now we can specialize to

(13) I : S(Rn) −→ S ′(Rn), I(ψ)(φ) =

∫
ψ(x)φ(x)

and this is really the heart of the matter.

Lemma 3. If ψ ∈ S(Rn) then for all φ ∈ S(Rn)

(14)

I(xαψ)(φ) = I(ψ)(xαφ),

I(∂βxψ)(φ) = I(ψ)((−1)|α|∂βxφ),

I(µψ)(φ) = I(ψ)(µφ), µ ∈ S(Rn).

Proof. This is just manipulation under the integral, in the second case
involving integration by parts |α| times. In fact it suffices to take α = ej
and iterate and in that case

(15)

∫
Rn

(∂jψ)φ = lim
R→∞

∫
[−R,R]n

(∂jψ)φ

= − lim
R→∞

∫
[−R,R]n

ψ(∂jφ) +

∫
[−R,R]n−1

(
ψφ|xj=R − ψφ|xj=−R

)
=

∫
Rn

ψ(−∂jφ)

since the integrand, and hence the n − 1 fold integral, vanishes rapidly at
infinity. �

• The second of these identities is what is called the ‘weak formulation of
differentiation’. We certainly know the map (13) is injective (because we
can evaluate at φ = ψ) and then ∂βψ ∈ S ′(Rn) is the unique point in the
image of S(Rn) which satisfies this identity – the right hand side determines
∂βψ ‘as a distibution’.

This is the fundamental point of distribution theory. We can use the
identities in (14) as definitions.

Definition 1. If u ∈ S ′(Rn) then there are uniquely defined elements ∂βu,
xαu and µu defined by the identities

(16)

(xαu)(φ) = u(xαφ),

(∂βxu)(φ) = u((−1)|α|∂βxφ),

(µu)(φ) = u(µφ), µ ∈ S(Rn)

for all φ ∈ S(Rn).
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Of course we need to note that these are indeed distributions, however
this follows from the fact that the maps

(17)

S(Rn) 3 φ 7−→ xαφ,

S(Rn) 3 φ 7−→ ∂βφ,

S(Rn)× S(Rn) 3 (µ, φ) −→ µφ ∈ S(Rn)

are all continuous – and this follows readily especially if you do this week’s
homework.
• The important point here is that this definition is consistent with the ‘point-

wise’ notions:

(18)

xαI(ψ) = I(xαψ)

∂βx I(ψ) = I(∂βψ),

µI(ψ) = I(µψ)

where on the left we use the distributional notions and on the right the
‘classical’ ones. This is why we can safely drop the ‘I’ a little bit later.
• So, we have now defined the differentiation of an arbitrary tempered dis-

tribution. For instance the derivatives of an element of L2 are well-defined,
they cannot in general be functions but they are distributions. We need
to improve on the embedding I to show that if a function has ‘classical’
derivatives in an appropriate sense then these are equal to its distributional
derivatives – so far this has only been shown for elements of S(Rn).

On Thursday I will prove the Fourier inversion formula and then come back to
properties of distributions.

• We define the Fourier transform of a function u ∈ L1(Rn) as

(19) F(u)(ξ) = û(ξ) =

∫
Rn

e−ix·ξu(x)dx.

The boundedness and continuity of the oscillating exponential means that
this exists as a Lebesgue integral for each ξ ∈ Rn and defines a bounded
function which is continuous and vanishes at infinity

(20) F : L1(R) −→ {û ∈ C0(Rn); sup
|x|≤R

|u(x)| → 0 as R→∞}.

The continuity of û follows from continuity-in-the-mean of L1 functions –
that lim|t|→0

∫
|f(x+ t)− f(x)|dx = 0 – and the vanishing at infinity from

a density argument below.
• For the moment we are interested rather in showing that

(21) F : S(Rn) −→ S(Rn)

is continuous, then that it is in fact an isomorphism with a continuous
inverse given by ‘the Fourier inversion formula’

(22) u = Gû, G(v)(x) = (2π)−n
∫
Rn

eix·ξv(ξ)dξ.

• First then, continuity of (21). We know that S(Rn) ⊂ L1(Rn) since (1 +
|x|)−n−1 ∈ L1(R) and

(23) |u(x)| ≤ ‖u‖n+1(1 + |x|)−n−1.
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• If we formally differentiate through the integral we find that

∂ξj û(ξ) =

∫
∂ξje

ix·ξu(x) = F(ixju)

and since xju ∈ S(Rn) the function on the right exists and is at least
bounded. So, how to justify the ‘exchange of limits’ involved in differen-
tiating under the integral? We can appeal to standard theorems (either
for the Riemann integral over big rectangles or directly for the Lebesgue
integral) or we can just do it. Namely, look at the difference quotient

(24)
û(ξ + sej)− u(x)

s
=

∫
eix·(ξ+sej) − eix·ξ

s
u(x) =

∫
eisxj − 1

s
eix·ξu(x).

Taylor’s formula with (Legendre’s?) remainder or an appropriate applica-
tion of the Fundamental Theorem of Calculus gives

eisxj − 1− isxj =

∫ 1

0

∫ r

0

d2

dt2
eistxjdtdr

and the integrand of the RHS is −s2x2jeistxj so the integral is globally (in

x) bounded by |s|2|x|2 and hence

(25) |e
isxj − 1− isxj

s
| ≤ s|x|2.

Since |x|2u(x) ∈ L1 we can pass to the limit and justify

(26) ∂ξj û(ξ) = F(ixju) ∀ u ∈ S(Rn)

meaning that the Fouier transform has partial derivatives, they are given
by this formula and hence are globally bounded. Now we can iterate and
conclude that derivatives of all orders exist, are continuous and are all
bounded:-

(27) u ∈ S(Rn) =⇒ û ∈ C∞(Rn), ∂αξ û = F(iαxαu).

• Next we need to do the same thing for ξβ û but that is quite a lot easier
since it just involves integration by parts.
• So now we can see that F : S(Rn) −→ S(Rn) is a continuous linear map.


