
18.155 LECTURE 19: 12 NOVEMBER, 2013

As last time we consider B ⊂ Rn be a smoothly bounded domain.
Starting from the Sobolev spaces on Rn we define various Sobolev spaces associ-

ated to B. In fact it is convenient to consider the ‘unbounded domain’ B̃ = Rn \B
which has B ∩ B̃ = ∂B = ∂B̃ as well. Then for each m ∈ R we can define
(1)

Ḣm(B) = {u ∈ Hm(Rn); supp(u) ⊂ B},

Ḣm(B̃) = {u ∈ Hm(Rn); supp(u) ⊂ B̃},
Hm(B) = {u ∈ C−∞(B \ ∂B);∃ ũ ∈ Hm(Rn), u(φ) = ũ(φ) ∀ φ ∈ C∞c (B \ ∂B)},

Hm(B̃) = {u ∈ C−∞(Rn \B);∃ ũ ∈ Hm(Rn), u(φ) = ũ(φ) ∀ φ ∈ C∞c (Rn \B)}.

Then we have short exact sequences

(2)
Ḣm(B) −→ Hm(Rn) −→ Hm(B)

Ḣm(B̃) −→ Hm(Rn) −→ Hm(B̃)

since if u ∈ Hm(Rn) restricts to be zero in Rn \ B (resp. B \ ∂B) it has support

in B (resp. B̃). The ‘supported’ subspaces are closed, and hence the ‘extension’
subspaces are also Hilbert spaces, given as the quotients.

Proposition 1. There are dense subspaces of smooth dense functions

(3)

C∞c (B \ ∂B) ⊂ Ḣm(B),

C∞c (Rn \B) ⊂ Ḣm(B̃)

C∞(B) ⊂ Hm(B)

C∞c (B̃) ⊂ Hm(B̃)

and duality pairing

(4) Hm(B)× Ḣ−m(B) −→ C, ∀ m ∈ R

which extends the pairing between C∞(B) and C∞c (B \∂B) and allows us to identify

Hm(B) as the dual of Ḣ−m(B).

Proof. For the extension spaces this follows directly – extend the distribution, ap-
proximate the extension by compactly supported smooth functions and restrict.

For the supported spaces, more is involved. Use a partition of unity centred
on boundary points as discussed last lecture we may write u ∈ Ḣm(B) as a finite
sum of terms each supported in the interior or in a coordinate neighbourhoods.
Approximation by convolution works for the first term, with supports staying in
the interior. Using a ‘straightening’ diffeomorphism the other terms are transformed
to have support in yn ≥ 0. Now translation in xn by δn → 0 approximates these by a
sequence with support in the interior of B when fted nback by thge diffeomorphism,
so again convolution with an approximate identity gives a smooth approximating
sequence. �
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We are particularly interested in the case of Ḣ1(B). This is a Hilbert space with
the usual inner product:

〈u, v〉 =

∫
uv̄ +

n∑
i=1

∫
DiuDiv.

It is also a Hilbert space with the ‘homogeneous’ inner product where the L2 term
is dropped

(5) 〈Du,Dv〉 =

n∑
i=1

∫
DiuDiv.

Lemma 1 (Poincaré). For each smoothly bounded domain there is a constant C
such that

(6) ‖u‖2L2 ≤ C2
n∑

i=1

∫
|Diu|2 ∀ u ∈ Ḣ1(B).

Proof. Since we are not looking for the best constant here, we can replace B by any
bigger domain, since Ḣ1(B) increases. So it is enough to prove (6) for u ∈ Ḣ1(Rn)
with support in a fixed ball {|x| ≤ R}. Now any point except the origin is of the
form sω for a unit vector ω ∈ Sn−1 and we can integrate outwards along the radial
line to see that

(7) u(sω) = −
∫ R

s

du(rω)

dr
dr.

Since du(rω)/dr = ω · ∇u(rω) we can apply Cauchy-Schwartz to see that

(8) |u(sω)|2 ≤ CR

∫ R

s

|∇u(rω)|2dr, ∇u = (∂1u, . . . , ∂nu).

Integrating over s and using the fact s ≤ r and then changing the order of integra-
tion on the right gives

(9)

∫
|u(sω)|2sn−1ds ≤ C ′R

∫ R

s

|∇u(rω)|2rn−1dr

Now integrating over the unit sphere gives the Poincaré inequality

(10)

∫
B(R)

|u|2 ≤ C(R)

∫
B(R)

|Du|2.

�

This allows us to approach the Dirichlet problem via ‘abstract functional anal-
ysis’. Namely, suppose f ∈ (Ḣ1(B))′ = H−1(B) is in the dual space. Then

(11) Ḣ1(B) 3 u −→ 〈u, f〉

given by the distributional pairing (i.e. extension of the L2 pairing) is a continuous

linear functional. Thus, by Riesz’ representation theorem there exists v ∈ Ḣ1(B)
such that

(12) 〈u, v〉D =

∫
B

∑
i

DiuDiv = 〈u, f〉.
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Now v is uniquely determined by f and ‖v‖H1 ≤ C‖f‖H−1 so this defines a bounded
linear map

(13) A : H−1(B) −→ Ḣ1(B).

Notice that if v = φ ∈ C∞c (B \ ∂B) then in terms of the distributional pairing
over B \ ∂B,
(14) ∆Af = f on B \ ∂B, f ∈ H−1(B) ⊂ C−∞(B \ ∂B).

Thus we have constructed at least a right inverse of the Laplacian, with Af sat-
isfying the Dirichlet condition in the sense of restriction of Sobolev spaces to the
boundary.

Consider A restricted to a bounded operator

(15) A : Ḣ1(B) ↪→ Ḣ1(B).

If we restrict to f ∈ Ḣ1(B) in (12) then

(16) 〈Af, v〉D = 〈f, v〉L2 = 〈v, f〉L2 = 〈Av, f〉D = 〈f,Av〉D.
This shows that as an operator (15), A is self-adjoint.

Now, as an operator L2(B) −→ Ḣ1(B) ↪→ L2(B), by restriction, A is compact

since it maps into Ḣ1(B) which is compactly included into L2(B). Thus the spec-
trum of A on L2(B) is discrete, and of finite algebraic multiplicity, outside 0. If

A − t, t 6= 0 is invertible on L2 then solving (A − t)g = f with f ∈ Ḣ1(B) and

g ∈ L2(B) then Lg ∈ Ḣ1(B) and hence tg = Ag − f ∈ Ḣ1(B). So A also has

discrete spectrum outside 0 as a self-adjoint operator on Ḣ1(B). In fact the same

argument shows that the range of A−t is always closed on Ḣ1(B), as it is on L2(B)

for t 6= 0. From this we conclude that A is actually compact on Ḣ1(B) and has a

complete orthonormal basis of eigenfunctions in Ḣ1(B).
Using the definition of A again, if ei and ej correspond to different eigenvalues,

and hence are orthogonal in Ḣ1(B) they are orthogonal in L2(B)

〈ei, ej〉L2 = 〈Aei, ej〉D = si〈ei, ej〉D = 0.

From the density of their span in Ḣ1(B) it follows that, renormalized to have

(17) ‖ei‖L2 = 1, Aei = siei

these eigenvectors form an orthonormal basis of L2(B).
So in fact we have shown that for any smoothly bounded domain, L2(B) has a

complete orthonormal basis of eigenfunctions each in Ḣ1(B) and satisfying ∆ej =
λjej in the interior of B. What we have not shown is that these eigenfunctions are
smooth. The regularity result we want is that

A : Hk(B) −→ Hk+2B) ∩ Ḣ1(B) for k = 0, 1, 2, . . . .

By locally elliptic regularity for ∆ – which is a constant coefficient elliptic opera-
tor – we do know that the range of A on Hk(B) lie in Hk+2

loc (B \∂B). It is regularity
up to the boundary that we need to work for.


