18.155 LECTURE 19: 12 NOVEMBER, 2013

As last time we consider B C R™ be a smoothly bounded domain.

Starting from the Sobolev spaces on R™ we define various Sobolev spaces associ-
ated to B. In fact it is convenient to consider the ‘unbounded domain’ B = R\ B
which has BN B = B = dB as well. Then for each m € R we can define
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Then we have short exact sequences
H™(B) — H™(R") — H™(B)

<2) Hm » m(mn m(
(B) — H™(R") — H™(B)

since if w € H™(R™) restricts to be zero in R™ \ B (resp. B\ 0B) it has support
in B (resp. B). The ‘supported’ subspaces are closed, and hence the ‘extension’
subspaces are also Hilbert spaces, given as the quotients.

Proposition 1. There are dense subspaces of smooth dense functions
C(B\ 9B) c H™(B),
@) Ce(R™\ B) c H™(B)
C>*(B) Cc H™(B)
C(B) c H™(B)
and duality pairing
(4) H™B)x H™(B) — C, YmeR

which extends the pairing between C*°(B) and C2°(B\0B) and allows us to identify
H™(B) as the dual of H~™(B).

Proof. For the extension spaces this follows directly — extend the distribution, ap-
proximate the extension by compactly supported smooth functions and restrict.
For the supported spaces, more is involved. Use a partition of unity centred
on boundary points as discussed last lecture we may write u € H™(B) as a finite
sum of terms each supported in the interior or in a coordinate neighbourhoods.
Approximation by convolution works for the first term, with supports staying in
the interior. Using a ‘straightening’ diffeomorphism the other terms are transformed
to have support in y,, > 0. Now translation in z,, by §,, — 0 approximates these by a
sequence with support in the interior of B when fted nback by thge diffeomorphism,
so again convolution with an approximate identity gives a smooth approximating
sequence. [
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We are particularly interested in the case of H'(B). This is a Hilbert space with
the usual inner product:

(u,v) :/uﬁ+Z/Dium.
i=1

It is also a Hilbert space with the ‘homogeneous’ inner product where the L? term
is dropped

(5) (Du, Dv) = Z / D;uDjv.

Lemma 1 (Poincaré). For each smoothly bounded domain there is a constant C
such that

(6) w2 < C2 Z/|Diu\2 v ue i(B).
=1

Proof. Since we are not looking for the best constant here, we can replace B by any
bigger domain, since HI(B) increases. So it is enough to prove @ for u € HI(R”)
with support in a fixed ball {|z| < R}. Now any point except the origin is of the
form sw for a unit vector w € S*~! and we can integrate outwards along the radial
line to see that

B du(rw
(7) u(sw) = —/ d c(lr )dr.

Since du(rw)/dr = w - Vu(rw) we can apply Cauchy-Schwartz to see that
R
(8) lu(sw)|? < CR/ |Vu(rw)|?dr, Vu = (d1u,...,0u).

Integrating over s and using the fact s < r and then changing the order of integra-
tion on the right gives

R
9) /|u(sw)|23n—1ds < C;%/ |VU(Tw)|2r"_1dr

Now integrating over the unit sphere gives the Poincaré inequality

(10) [ we<cm [ o
B(R) B(R)
g

This allows us to approach the Dirichlet problem via ‘abstract functional anal-
ysis’. Namely, suppose f € (H'(B)) = H~!(B) is in the dual space. Then

(11) HY(B)>u— (u, f)

given by the distributional pairing (i.e. extension of the L? pairing) is a continuous
linear functional. Thus, by Riesz’ representation theorem there exists v € H'(B)
such that

(12) (u, o) p = /BZDWDTUZ (u, f).
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Now v is uniquely determined by f and ||[v||z1 < C|| f||z-1 so this defines a bounded
linear map

(13) A:H Y(B) — HY(B).

Notice that if v = ¢ € C°(B \ 0B) then in terms of the distributional pairing
over B\ 0B,

(14) AAf=fon B\OB, f€ H'(B)cC >™(B\0B).
Thus we have constructed at least a right inverse of the Laplacian, with Af sat-
isfying the Dirichlet condition in the sense of restriction of Sobolev spaces to the

boundary.
Consider A restricted to a bounded operator

(15) A: H'(B) — H\(B).
If we restrict to f € H'(B) in then

(16) (Af,v)p = (f,v)12 = (v, f)r2 = (Av, f)p = (f, Av)p.
This shows that as an operator , A is self-adjoint.

Now, as an operator L%(B) — H'(B) — L2?(B), by restriction, A is compact
since it maps into H'(B) which is compactly included into L?(B). Thus the spec-
trum of A on L?(B) is discrete, and of finite algebraic multiplicity, outside 0. If
A —t, t # 0 is invertible on L? then solving (A — t)g = f with f € H*(B) and
g € L?*(B) then Lg € H'(B) and hence tg = Ag — f € H'(B). So A also has
discrete spectrum outside 0 as a self-adjoint operator on H L(B). In fact the same
argument shows that the range of A—t is always closed on H'(B), as it is on L?(B)
for t # 0. From this we conclude that A is actually compact on H'(B) and has a
complete orthonormal basis of eigenfunctions in H*(B).

Using the definition of A again, if e; and e; correspond to different eigenvalues,
and hence are orthogonal in H!(B) they are orthogonal in L?(B)

<€i7 €j>L2 = <A€i7 €j>D = Si<€z’, €j>D = O
From the density of their span in H L(B) it follows that, renormalized to have
(17) ||6i||L2 = 1, Aei = S;€;

these eigenvectors form an orthonormal basis of L?(B).

So in fact we have shown that for any smoothly bounded domain, L?(B) has a
complete orthonormal basis of eigenfunctions each in H 1(B) and satisfying Ae; =
Aje; in the interior of B. What we have not shown is that these eigenfunctions are
smooth. The regularity result we want is that

A:H¥B) — H**"?B)nHY(B) for k=0,1,2,....
By locally elliptic regularity for A — which is a constant coefficient elliptic opera-

tor — we do know that the range of A on H*(B) lie in HF'T?(B\ 9B). It is regularity
up to the boundary that we need to work for.



