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Trace class operators Cont

Last time I define and operator to be of ‘trace class’ if it is a finite
sum of products of Hilbert-Schmidt operators

(1) T =
N∑
i=1

AiBi, Ai, Bi ∈ HS(H).

from which it follows that

(2) ‖T‖TC = sup
∑
j

|〈Tej, fj〉| <∞

where the supremum is over pairs of orthonormal bases. From this it
follows that

(3) ‖T‖ = sup
‖u‖=‖v‖=1

|〈Tu, v〉| ≤ ‖T‖TC and

‖BT‖ ≤ ‖B‖‖T‖, B ∈ B(H), T ∈ TC(H).

Conversely, it follow that if ‖T‖TC <∞ then T has polar decompo-
sition

(4) T = V A, A = (T ∗T )
1
2 .

with A
1
2 Hilbert Schmidt, so T ∈ TC(H). If Tj is Cauchy with respect

to ‖·‖TC then it is Cauchy, and hence convergent, in B(H). The bound-
edness of the sequence in TC(H) implies that the limit is in TC(H)
and convergence with respect to the trace class norm follows. Thus
TC(H) is a Banach space with respect to the trace norm.

Furthermore the trace functional

(5) Tr(T ) =
∑
i

〈Tei, ei〉

is continuous on TC(H) and is independent of the orthonormal basis
used to define it since if T = AB is a product of Hilbert-Schmidt
operators then

(6) Tr(T ) = 〈B,A∗〉.
Moreover, the fundamental trace identity

(7) Tr([T,B]) = 0 if T ∈ TC(H), B ∈ B(H)
1
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holds,
To prove (7) it suffices to prove it for finite rank operators and then

use continuity in the trace norm on T. Since we know that Hilbert-
Schmidt operators are the closure of the finite rank operators with
respect to the Hilbert-Schmidt nor we can just use the observation
that

‖AB‖TC ≤ ‖A‖HS‖B‖HS

to see that finite rank operatos are dense in the trace class operators
with respect to the trace norm.

Since the identity is clearly linear in T it is enough to assume tht T
has rank one and then use linearity. So consider a non-zero operator
of rank one Tu = 〈u, v〉w. Its trace can be computed by taking an
orthonormal basis with first element v̂ = v/‖v‖ then

Tr(T ) = 〈v̂, v〉〈w, v̂〉 = 〈w, v〉

since all other terms in the sum (5) vanish. So

TBu = 〈u,B∗v〉w, BTu = 〈u, v〉Bw =⇒
Tr(TB) = 〈w,B∗v〉 = Tr(BT ) = 〈Bw, v〉.

Notice that (??) means that if A ∈ GL(H) is invertible then

(8) Tr(ATA−1) = Tr(T ), since ATA−1 − T = [A, TA−1].

This means that in a certain sense, which I am not making precise, (5)
remains true if ei is replaced by a ‘non-orthogonal basis’. In fact there
is a not-so-simple result in this direction

Theorem 1. [Lidskii – without proof] If T ∈ TC(H) and its non-zero
eigenvalues λj are repeated in a sequence with algebraic multiplicity
(meaning according to the dimension of the generalized eigenspace, see
the discussion of the spectrum of a compact operator) say with |λj|
non-increasing then

(9) Tr(T ) =
∑
j

λj.

I will not use Lidskii’s theorem – see for instance [1] for a proof.
Now, back to the result about Fredholm operators. We defined the

index of a Fredholm operator in terms of its generalized inverse G
satisfying (??). Note that finite rank operators are of trace class and
for a self-adjoint operator we know that the trace is the sum of the
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eigenvalues. Thus

(10) ind(B) = dim Nul(B)− dim Nul(B∗)

= Tr(ΠNul(B))− Tr(ΠNul(B∗) = Tr(Id−GB)− Tr(Id−BG).

Note the apparent conundrum here that the last two operators are of
trace class, in view of (??) and hence we may write

(11) ind(B) = Tr([B,G])

so you might think the index always vanishes (which we know it doesn’t).
Of course the point here is that neither of the operators in the commu-
tator is of trace class, so (7) does not apply.

The formula (11) generalizes as follows

Lemma 1 (Calderón?). If B is Fredholm and L ∈ B(H) is any gen-
eralized inverse modulo trace class operators, so LB − Id and BL− Id
are both of trace classe, then

(12) ind(B) = Tr([B,L]).

Proof. Let G be the generalized inverse of B and consider the segment
Ls = (1− s)G+ sL in B(H). Computing both composites

LSB = (1− s)GB + sLB

=(1− s) Id−(1− s)ΠNul(B) + s Id +sT1 = Id +(sT1 − (1− s)ΠNul(B),

BLS = (1− s)BG+ sBL

=(1− s) Id−(1− s)ΠNul(B∗) + s Id +sT2 = Id +(sT2 − (1− s)ΠNul(B∗)

shows that Ls consists of two-sided inverses modulo trace class opera-
tors. Now consider the commutator [B,Ls] – this is a linear map into
trace class operators so its trace is a linear function with derivative

(13)
d

ds
Tr([B,Ls]) = Tr([B,L−G]) = 0

Here we use the identity (??) which applied in the case of the trace
ideal shows that the two inverses modulo trace class operators must
differ by a trace class operator, then (7) does apply and we conclude
that Tr([B,Ls]) is constant in s and so (12) follows from (??) in the
form of (11). �

We wish to show that the index is constant on each component of
the Fredholm operators. Since this is a metric space, it is enough
to show that it is locally constant near 0 on any (continuous) curve
B(t); (−1, 1) −→ F(H). Start with the generalized inverse G(0) of
B(0),

(14) G(0)B(t) = Id−ΠNul(0)+E+(t), B(t)G(0) = Id−ΠNul∗(0)+E−(t)
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where E±(t) are continous with small norm, ‖E±(t)‖ < 1 in |t| < ε.
Thus Id +E+(t) is invertible and

(15)
(Id +E+(t))−1G(0)B(t) = Id−F+(t), B(t)G(0)(Id +E−(t))−1 = Id−F−(t)

where F±(t) are continuous in t with values in TC(H). As above, the
difference between these left and righ inverses modulo trace class op-
erators is
(16)
D(t) = (Id +E+(t))−1G(0)−G(0)(Id +E−(t))−1 = (Id +E+(t))−1F−(t)−F+(t)(Id +E−(t))−1

which is also continous as a map into TC(H). Thus in fact G(t) =
(Id +E+(t))−1G(0) is a curve of 2-sided inverses modulo a continuous
error with values in trace class. It follows from the discussion of the
index above that

(17) ind(B(t)) = Tr([B(t), G(t)]) is continous near 0.

However, we know this takes values in the integers so it must be locally,
and hence globally, constant.

Thus the index is constant on (path) components of F(H).
Conversely, we wish to show that if two elements of F(H) have

the same index then they can be connected by a path in F(H). First
observe that it is enough to treat the operators with ind = 0 and show
they are connected to Id .

If ind(B) < 0 consider B∗ which has index k = − ind(B) > 0 and
if we connect B∗ to T k, the k-fold downward shift, the B is connected
to Sk = (T k)∗, the k-fold upward shift. Similarly, if k = ind(B) > 0 it
suffices to connect SkB to Id since then T kSkB = B is connected to
T k as desired.

Thus we may suppose that ind(B) = 0. Then Nul(B) and Nul(B∗)
have the same dimensions, so there is an isomorphism E : Nul(B) −→
Nul(B∗). The operator B + sE is invertible for small s 6= 0 since we
know it is Fredholm, of index 0 and has no null space.

Finally then, it is enough to show that GL(H), the group of invertible
operators on H is connected, since we have shown that every element
of F(H) of index 0 can be connected to point in GL(H) withing F(H).

I will see who comes up with the best proof that GL(H) is connected
from Problems8!

Note that although I have been talking about Fredholm operators on
a fixed separable Hilbert space, this discussion immediately carries over
to the Fredholm operators between two separable Hilbert spaces, both
infinite-dimensional to avoid triviality. Namely invertible operators are
Fredholm and products of Fredholm operators is Fredholm, so to say
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B ∈ F(H1, H2) is just to say UB ∈ F(H1) for U : H2 −→ H1 an
isomorphism, since the conclusion does not depend on the choice of U.

Another thing I wanted to mention is the space if semi-Fredholm
operators. These are the bounded operators B ∈ B(H) which have
closed range and either Nul(B) or Nul(B∗) finite dimensional. So of
course Fredholm operators are semi-Fredholm.

Lemma 2. The semi-Fredholm operators form and open dense subset
of B(H).

Proof. If B is semi-Fredholm then
(18)

dim Nul(B) <∞ =⇒ B : H −→ Ran(B) is Fredholm and surjective

dim Nul(B∗) <∞ =⇒ B : Nul(B)⊥ −→ H is Fredholm and injective.

Now, consider B + A where A ∈ B(H) has ‖A‖ < ε to be chosen.
In the first case above, B + ΠRan(B)A is Fredholm from H to Ran(B)
provided ‖A‖ is small enough. In particular the null space of B + A
is finite-dimensional and of the same dimension. Moreover the range
of B + A is of the form w = (B + ΠRan(B)A)u + (Id−ΠRan(B))u for
u ∈ H. If GA is the generalized inverse of (B + ΠRan(B)A) then u =
GA(B + ΠRan(B)A)u+ u′, (B + ΠRan(B)A)u′ = 0 and hence

w = f + (Id− ΠRan(B)A)GAf + (Id−ΠRan(B)A) Nul(B + ΠRan(B)A).

The last, finite-dimensional, part is closed as is the first part – since
f = ΠRan(B)w. Thus in the first case in (18) the range remains closed
under perturbation by a small bounded operator.

The second case is similar but perhaps simpler. Namely, A = AΠNul(B)⊥+
A(Id−ΠNul(B)⊥). The first part perturbs the Fredholm operator which
therefore remains Fredholm and injective, provided ‖A‖ is small. Thus
the range of the whole operator is closed and of finite codimension,
since it must contain the range of the restriction to Nul(B)⊥.

To see that semi-Fredholm operators are dense, observe that any B ∈
B(H) projects to a bounded operator with dense range from Nul(B)⊥

to Ran(B), so these two Hilbert spaces are either of the same finite
dimension or both infinite dimensional. Then B can be perturbed to
be invertible as an operator between these two spaces, by perturbing the
self-adjoint part of its polar decomposition to be invertible on Nul(B)⊥.
If one of Nul(B) or Ran(B)⊥ is finite dimensional, then this gives a
semi-Fredholm perturbation. If not, both are infinite dimensional and
hence there is an isomorphism between them. Adding a small multiple
of this perturbs the original operator to be invertible.
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Thus the semi-Fredholm operators are dense in the bounded opera-
tors. �
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