LECTURE 15, 18.155, 29 OCTOBER 2013

Fredholm and Trace class operators

PARIAL ISOMETRIES

A unitary operator is an inner-product preserving bijection — possibly
between two different Hilbert spaces. More generally a partial isometry
is a bounded operator V : H; — H, which satisfies

(1) IVl = lullm ¥ u € Nul(V)*.

It follows directly that the range is closed and the resulting map V' :

Nul(V)* — Ran(V) C H,, is a norm-preserving bijection and hence

is a unitary isomorphism, since

(2) (V'u,V'u) = (u,u) = (V')'V' = Idyu)r, V'(V')" = Idranv) -
One of the important examples of partial isometry is the shift oper-

ator. If e;, ¢ > 0, is an orthonormal basis of a separable Hilbert space

then there are uniquely defined bounded operators S and T determined
by

(3) Sei = €i+1 ) Z 0, Tej = €51 VJ Z ]_, T€0 = 0.

POLAR DECOMPOSITION

If B € B(H) then we can think of B as a 2 x 2 matrix between the
two decompositions H = (Nul B)* @ (Nul B) with 7y projection off the

null space and Ran(B) @& Nul(B*) with 7 projection onto the closure
of the range:

()

Then B*B is self-adjoint and can be considered as an operator on
Nul(B)*. Since it is non-negative, its square-root A = (B*B)2 € B(H)
is also well-defined as an operator on H which maps Nul(B)* to itself
and is otherwise zero. Then we can define a linear map

V : Ran(B) — Nul(B)*, V(Bu) = Au.
In fact V' extends by continuity to a bounded operator on the closure

since

IV (Bu)|? = || Aul®* = (Au, Au) = (u, B*Bu) = (Bu, Bu) = || Bul®
1
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So in fact V : Ran(B) — Nul(B)* is an isometry. If we extend it as
zero to Ran(B)t and take W = V* we get the polar decomposition of
B:
(5)

B =W A, A non-negative and W a partial isometry with Ran(W) = Ran(B).

FREDHOLM OPERATORS

An operator, B € B(H), is said to be Fredholm if

(1) It has a finite dimensional null space Nul(B) C H.
(2) It has closed range, Ran(B) = Ran(B)
(3) It adjoint has a finite dimensional null space Nul(B*).

Of course we know that H = Ran(B) @ Nul(B*) so the second two
conditions can be combined by saying that the range has a finite-
dimensional complement. It is just that this is a little too easy to
interpret as saying that the closure of the range has a finite dimen-
sional complement, which is by no means enough to guarantee that the
operator is Fredholm.

The operators of the form Id + K, K € K(B) compact are Fredholm.
Indeed, the null space of Id +K consists of vectors v € H such that
v + Kv = 0 which means that the unit ball in Nul(Id +K) is mapped
onto itself by K, and hence is precompact — so the null space is finite
dimensional.

Since K is compact there is a finite rank operator F' such that ||F'—
K|l < 3. Then

(6) (Id+K)=1d+(K—F)+F = (Id+F(Id+K—-F) " H)(Id+K-F).

So Id+K has the same range as Id +F’ where F' = F(Id+K — F)™*
is finite rank. So the range contains the null space of F’ which is a
closed subspace of finite codimension, so itself is closed and of finite
codimension.

These examples proved a useful restatement of the Fredholm prop-
erty.

Lemma 1. An operator B € B(H) is Fredholm if and only if it has
a right and a left inverse modulo compact operators, i.e. there exist L
and R € B(H) such that

(7) LB=1d+K,, BR=1d+Kp, K., Kp € K(H).

Note that as is the case for left and right inverses in a ring, in this
case if B has both a left and a right inverse modulo compacts (an ideal)
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then either of them is both a left and a right inverse modulo that ideal.
Namely, they differ by a compact operator:
(8) L=L(BR)— LKgr=(LB)R— LKr=R+ K, R— LKp

= L—-ReK(H).

It follows from this criterion that the adjoint of a Fredholm operator
is Fredholm and that the product of two Fredholm operators is Fred-
holm. It also follows directly that if A, B € B(H) and the product
AB € F(H) then both A and B € F(H). This is all saying that the
property of being Fredholm is a sort of invertibility, namely invertibility
modulo compact operators.

Proof. The existence of a right inverse modulo compacts shows that
(9) Ran(B) D Ran(BR) = Ran(Id +K)
is closed with finite-dimensional complement

and hence so is Ran(B). Similarly, the existence of a left inverse modulo
compact implies that

(10) Nul(B) € Nul(LB) = Nul(Id +K'L) is finite dimensional.

Conversely, if B is Fredholm then it defines a continuous bijection
between the Hilbert spaces

(11) B : (Nul(B))* — Ran(B)

which therefore has a continuous inverse G : Ran(B) — (Nul(B))* C
H. Extending G as zero to (Ran(B))* therefore gives a bounded oper-
ator and

(12) GB - Id _HNul(B)u BG - Id _HNul(B*)'

This is the generalized inverse of B and is certainly both a left and
right inverse modulo compacts. It also follows that B is Fredholm,
since B is its generalized inverse. 0

Proposition 1. The Fredholm operators F(H) C B(H) form an open
set with components labelled by the integer

(13) ind(B) = dim Nul(B) — dim Nul(B*)
and which is stable under the addition of compact operators,

(14) F(H)+K(H) =F(H).
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Partial proof, not including index. The fact that the Fredholm opera-
tors form an open set follows directly from Lemma [1| above. Namel, if
G is the generalized inverse of a Fredholm operator B and A € B(H)
has ||A]| < 1/||G]| then
(15)

G(B + A) =Id+GA — HNul(B) -

(Id+GA)'G)(B + A) = Id —(1d +GA) ' xu(s),
(B + A)G =1d+AG — HNul(B*) —
(B+ A)(GId+AG) ™) = Id —Inyp (Id +AG) !

gives left and right inverses for B + A modulo compact (in fact finite
rank) operators.

Similarly holds since an inverse modulo compact operators for
B is also an inverse modulo compact operators for B + K for any

K e K(H). O

It is certainly possible to go through the remainder of the proof,
which is to show that two Fredholm operators By and B; have the same
index (13)) if and only if they are in the same component of F(H), i.e.
can be joined by a curve, a continuous map B : [0,1] — F(H), with
B(0) = By and B(1) = By. However, this is a bit painful without using
the trace functional, so I will complete the proof of Proposition (1] after
discussing the trace and trace-class operators.

HILBERT-SCHMIDT OPERATORS

If H is a separable Hilbert space then an operator A € B(H) is
Hilbert-Schmidt if for (any) one orthonormal basis {e;},

(16) 1Al = Z [ Aes]|* < oo.

Using Bessel’s identity and the fact that the (double) series are abso-
lutely convergent, if f; is another orthonormal basis then

> e < oo = ZZ (Aei, ;)
= ZD (er, A* ;)2 Z A" £5]12.

Applying this twice shows that the sum defining (16]) is indeed inde-
pendent of the orthonormal basis used and also that A* is Hilbert-
Schmidt. It follows that the Hilbert-Schmidt operators form a 2-sided
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*-ideal HS(H) since if B € B(H), ||BAe;|| < || B||||Ae;]| so
(18) [1BAllus < [|B[[[Allus, AB = (B*A")".

In fact the Hilbert-Schmidt operators form a Hilbert space, with the
inner product given in terms of any choice of orthonormal basis by

(19) (A, Addus = ) _(Aser, Agey).

7

The completeness follows from the fact that the finite-rank operators
are dense in HS(H), since directly from Ally — A, in HS(H)
where Il is projection onto the span of the first V elements of the
orthonormal basis {e;} and that

[ < [ Alus-

Indeed, there is a sequence w; € H with [Ju;|| = 1 such that ||A] =
lim; || Au;|| and each u; can be extended to an orthonormal basis, so
|Au;|| < ||Al|lus. Thus of A, is Cauchy in HS(H) it is Cauchy, and
hence convergent, in norm and the limit, from the boundedness of
|Anllms is in HS(H) and the sequence converges to it in HS(H). Of
course it also follows from this, and the density of finite rank operators
in HS(H) that HS(H) C K(H).

Ezercise 1. Show that for the case of H = L*(R") that HS(H) may be
identified with L?(R" x R™) with the function on the product giving
the operator as an integral operatorL

(20) Au() = / A, y)uly)dy.

TRACE CLASS OPERATORS

Now the ‘trace class’ operators are by definition those compact op-
erators which can be written in the form of a finite sum of products of
Hilbert-Schmidt operators

N
(21) T =Y ABi, A;, B;€HS(H).
i=1
This is a more complicated definition since the presentation is
clearly not unique. On the other hand it follows that TC(H) is a
2-sided *-ideal contained in the compact operators.
Now, notice that using a presentation it follows that for any
two orthonormal bases e; and f;,

(22) D UTej f)l <D0 ) [Bies, ALf)l < D I Billwsl| Al
j T i
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Thus for any 7' € TC(H),
(23) ITllre = sup Y _ [(Tej, f;)] < oo.

J

Here the supremum is over all pairs of orthonormal bases. That this is
indeed a norm follows directly — with the triangle inequality following
from the fact that for any pair of orthonormal bases

(24) > KT+ Ta)es, )] < | Tillve + [ T2llre-
J
Note that as for the Hilbert-Schmidt norm

(25) 1Tl =~ sup  [(Tu,v)] < [|Trc.

l[ull=[lv]=1
Again by looking at T'Py it follows that TC(H) C K(H).

Now, in fact TC(H) is a Banach space with respect to the trace norm
(23). To see this, apply the polar decomposition to some T for which
the norm is finite:

(26) T=VA, A= (T*T)z.

Then let f; be an orthonormal basis containing the eigenvectors for A
(which is compact) and e; one that includes the Ve;. It follows that if
Aj > 0 are the eigenvalues of A repeated with multiplicity then

(27) ST < T e < .

J

Then if we define £ = A%, with eigenvalues /\f and use an orthonormal
basis including an eigenbasis, £ € HS(H) since is just the Hilbert-
Schmidt norm of E. Thus in fact

(28) T =(VE)E € TC(H).

Summing all this up we have shown most of:

Proposition 2. The operators for which the Trace Class norm 18
finite form the Banach space of Trace class operators, each of which can

be written in the form or and satisfy ||BT||rc < || B|||IIT||Tc;
the trace functional

(29) To(T) = ) (Teie; =

is continuous on TC(H ), independent of the orthonormal basis used to
define it and satisfies

(30) Te([T, B]) = 0 if T € TC(H), B € B(H).
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