
LECTURE 14, 18.155, 24 OCTOBER 2013

Operators on Hilbert space, continued.

(1) For a compact operator the spectrum is of the form D ∪ {0}
where D ⊂ C \ {0} is a discrete set (possibly empty) consisting
of eigenvalues; {0} may or may not be an eigenvalue. In par-
ticular there are quasi-nilpotent compact operators which have
spectrum just consisting of {0} but have no eigenvalues. The
generalized eigenspace for A ∈ K(H) and z 6= 0,

(1) {u ∈ H; (A− z Id)Nu = 0 for some N} is finite-dimensional.

Proof: This follows from the approximation by finite rank oper-
ators. It suffices to consider the case that H is separable, since
the closure of the range and the orthocomplement of the null
space are both separable. Given ε > 0, choose a projection onto
a finite dimensional space P such that ‖(Id−P )A(Id−P )‖ < ε
and consider the decomposition of A into a ‘2× 2 matrix’

(2) A =

(
PAP PA(Id−P )

(Id−P )AP (Id−P )A(Id−P )

)
which acts on the ‘vectors’ in PH ⊕ (Id−P )H. If |z| > ε then
T (z) = ((Id−P )A(Id−P )−zP )−1 is a holomorphic function of
z as a bounded operator on the Hilbert space (Id−P )H. This
allows one to write

(3)

(
P −PA(Id−P )T (z)
0 T (z)

)
(A− z Id)

=

(
PAP − zP − PA(Id−P )T (z)(Id−P )AP 0

M(z) Id−P

)
where M(z) is holomorphic in |z| > ε. The matrix on the
left is invertible in |z| > ε and the matrix on the right is
invertible, since it is lower semi-triangular, if PAP − zP −
PA(Id−P )T (z)(Id−P )AP is invertible. This is a finite dimen-
sional matrix depending holomorphically on z. It is invertible if
and only if its determinant (with respect to some chosen basis)
is non-vanishing. The determinant is a holomorphic function in
|z| > ε which is non-vanishing when |z| > ‖A‖, since both terms
on the left are invertible then. Thus it, and hence A − z Id, is
invertible outside the zeros of the determinant which form a
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discrete set in |z| > ε. Since this works for each ε > 0 the dis-
creteness of the spectrum follows. You can readily check from
(3) that near a point ζ ∈ spec(A) \ {0} the inverse must look
like

(4) (A− z Id)−1 =
N∑
j=1

(z − ζ)−jBj +R(z), BN 6= 0,

where the matrices Bj are finite rank and R(z) is holomorphic
near z = ζ.

In fact using the ‘resolvent identity’ (A− z Id)(A− z Id)−1 =
Id it follows from (4) that

(5) (A− ζ)BN = 0 = BN(A− ζ),

(A− ζ)Bj = Bj+1 = Bj(A− ζ), 1 ≤ j < N,

(A− ζ)R(ζ) = Id +B1 = R(ζ)(A− ζ).

Thus the range of BN consists of eigenvectors with eigenvalue
ζ and the range of Bj for 1 ≤ j < N consists of generalized
eigenvectors, satisfying (A − ζ)N−j+1Bj = 0. Indeed, the null
spaces of the Bj increase with increasing j and their ranges de-
crease. The range of A−ζ has a finite dimensional complement,
namely the range of B1. We will come back to these properties
later!

(2) For any B ∈ B(H) the closure of the range of B is the ortho-
complement of Nul(B∗) :

H = B(H)⊕ Nul(B∗).

Proof: Certainly if v ∈ Nul(B∗), i.e. B∗v = 0, then 〈Bu, v〉 =
〈u,B∗v〉 = 0 so Nul(B∗) is orthogonal to the range of B, and
hence to its closure. Conversely, if 〈Bu, v〉 = 0 for all u ∈ H,
i.e. v ⊥ BH, then B∗v = 0 so (2) holds.

(3) If A ∈ B(H) is self-adjoint then spec(A) ⊂ [−‖A‖, ‖A‖] is con-
tained in the real axis and one of ±‖A‖ ∈ spec(A).

Proof: Certainly if A∗ = A and z ∈ C \ R then A − z is
injective, since

Im〈A− zu, u〉 = − Im z‖u‖2.

The adjoint is A − z̄ so it follows that the range (A − z)H is
dense. If fj = (A− z)uj is in the range then from (3)

| Im z|‖uj‖2 ≤ ‖fj‖‖uj‖.
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Applying this inequality to (A− z)(uj−uk) = fj− fk it follows
that if fj → f then uj → u (using completeness) and hence the
range is closed. Thus it follows that spec(A) ⊂ [−‖A‖, ‖A‖] ⊂
R.

Now, to see that at least one of ±‖A‖ is in the spectrum note
that for a self-adjoint operator

(6) ‖A‖ = α, α = sup
‖u‖=1

|〈Au, u〉|.

Certainly α ≤ ‖A‖. It u, v ∈ H then

(7) 4〈Au, v〉 = 〈A(u+ v), u+ v〉 − 〈A(u− v), u− v〉
+ i〈A(u+ iv), u+ iv〉 − i〈A(u− iv), u− iv〉.

If 〈Au, v〉 = Reiθ with R ≥ 0 then

|〈Au, v〉| = R = 〈Au′, v〉, u′ = e−iθu.

Thus it suffices to suppose that the left side in (7) is positive, in
which case the second two terms on the right can be dropped,
since they are not real, and

4|〈Au, v〉| = 〈A(u′ + v), u′ + v〉 − 〈A(u′ − v), u′ − v〉
≤ ‖A‖(‖u′ + v‖2 + ‖u′ − v‖2) = 2‖A‖(‖u‖2 + ‖v‖2)

from which the opposite inequality follows and (6) is proved.
Thus there is a sequence un, which we can assume converges

weakly, un ⇀ u, with ‖un‖ = 1 with one of 〈Aun, un〉 → ±‖A‖;
suppose 〈Aun, un〉 → ‖A‖. Then

‖(A− ‖A‖)un‖2 = ‖Aun‖2 − 2‖A‖〈Aun, un〉+ ‖A‖2.

The middle term converges to −2‖A‖2 so the limit supremum
of the right side is 0 and hence the left side converges to 0
from which it follows that A− ‖A‖ is not invertible. A similar
argument applies for the opposite sign, so indeed one of A±‖A‖
is not invertible so one of ±‖A‖ is in spec(A).

(4) This is the key to the functional caculus for self-adjoint oper-
ators and hence the spectral theorem. We are still supposing
that A∗ = A ∈ B(H). Consider a polynomial p(z) with real
coefficients. Then we can define, unambigously

p(A) =
n∑
j=0

cjA
j, p(z) =

n∑
j=0

cjz
j
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where n is the degree, so cn 6= 0. Since the coefficients are real,
p(A) ∈ B(H). What can we say about the spectrum of p(A)?
For each λ ∈ C we can factorize the polynomial p(z)− λ :

p(A)− λ = cn

n∏
j=1

(A− λj), p(z)− λ = cn

n∏
j=1

(z − λj)

where the λj are the roots of p(z)−λ (repeated with multiplicity
of course). Since spec(A) ⊂ [−‖A‖, ‖A‖] it follows that if no λj
is in this interval then p(A)− λ is invertible. That is

res(p(A)) ⊃ {λ; p(z)− λ does not vanish on [−‖A‖, ‖A‖}.
Reversing this and using the fact that the spectrum is in the
reals

spec(p(A)) ⊂ p([−‖A‖, ‖A‖)
– only points in the range of p on this interval can be in the
spectrum.

Now, this actually gives an estimate on the norm of p(A),
since we know that the spectum containes one of ±‖p(A)‖ :

‖p(A)‖ ≤ sup
[−‖A‖,‖A‖]

|p|.

The RHS is the supremum norm in p as an element of C([−‖A‖, ‖A‖])
so this map from polynomials with real coefficients in B(H) is
continous.

(5) Recall the Stone-Weierstrass Theorem, that polynomials re-
stricted to a closed interval are dense in continous functions in
the supremum norm. From this it follows that the map extends
by continuiy to

(8) C([−‖A‖, ‖A‖]) 3 f 7−→ f(A) ∈ B(H).

We can extend to complex-valued functions by separately defin-
ing the real and imaginary parts. Observe it follows by conti-
nuity from the explict case of polynomials that

(9) f(A)g(A) = g(A)f(A) = fg(A),

So the map (8) is actually a map of algebras – the image consists
of a commutative subalgebra of B(H) associated to the given
self-adjoint operator.

(6) Going back to (7) we see that we can recover the whole oper-
ator A from its ‘diagonal’ part 〈Au, u〉. So it is reasonable to
consider, for f real-valued, the function

(10) H × C([−‖A‖, ‖A‖];R) 3 (u, f) 7−→ 〈f(A)u, u〉 ∈ R.
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For each fixed u this is a continuous linear functional on con-
tinuous functions – which is to say it is given by a measure.

As long as I can quite Riesz’ Representation theory for mea-
sures in this sense – which says that these really are given by
integrals against a Borel measure (with some more properties)
then if you fix a set (−∞, t] the map (10) can be extended to
the characteristic function and defines a bounded, self-adjoint
operator

(11) Pt(A) ∈ B(H), Pt(A)∗ = Pt(A).

This is the spectral projection onto the interval and

(12) spec(APt(A)) ⊂ [−‖A‖, t].
I will not go into detail about the properties of these spectral
projections, but it is certainly important to understand. In
particular one can interpret Pt, which is a function defined on
intervals with values in projections, as a measure and then write
the functional calculus as

(13) f(A) =

∫
R
f(t)dPt

since continous functions are integrable in this sense.
(7) Of course you should think about the relationship between this

form of the spectral theorem and the discussion above of the
spectrum of compact operators. For a self-adjoint compact op-
erator the spectrum outside 0 must consist of real points of
course, and the generalized eigenspace (1) is the eigenspace –
so N = 1. To see this just apply (3) to (4) for z = ζ + it where
ζ 6= 0 is an eigenvalue and t > 0 is small, this shows that all the
Bj for j > 1 must vanish. Then −B1 is just the orthogonal pro-
jection onto the null space. In this case the ‘spectral measure’
in (13) becomes a countable (possibly finite) sum involving a
real sequence λj → 0 and a sequence of mutually commuting
finite rank projections Pj such that

(14) f(A) =
∑
j

f(λj)Pj, dPt =
∑
λj≤t

δ(t− λj)Pj.

The series for f(A) here converges in norm.
(8) Although I will not discuss the full measure-theoretic spectral

theorem, you should not think that there is anything misterious
here. In general the spectral measure can behave rather badly
– see the book(s) of Reed and Simon for instance. For us the
two most important examples are the discrete case – basically
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(14) – and in the opposite extreme, the ‘continuous’ (or even
smooth) case.

Consider for instance H = L2([0, 1]) and a continuous real-
valued function g(t) ∈ C([0, 1]). Multiplication by g defines a
bounded self-adjoint operator and its spectral decomposition is
easy to arrive at. Namely the spectrum occupies the interval
[inf g, sup g] and the spectral projection is

(15) Ptu = χ({g(t) ≤ t})u.
Namely it is just the function which is u where g(t) ≤ t and
0 elsewhere. In this case there are no eigenfunctions at all,
although there are ‘generalized eigenfunctions’ – in this case
δ(x− t) is a generalized eigenfunction.


