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Last time I talked about hypoellipticity, today I want to talk about ellipticity for
constant coefficient operators. By definition (from last week) a polynomial P (ξ) of
degree m in n variables is elliptic if its leading part has no real, non-zero, roots:-

(1)

P (ξ) =
∑
|α|≤m

cαξ
α, Pm(ξ) =

∑
|α|=m

cαξ
α,

P elliptic of order m iff Pm(ξ) 6= 0 on Rn \ {0}.

Now, the ellipticity of the principal part is equivalent to

(2) |Pm(ξ)| ≥ c|ξ|m, c > 0

since |Pm(ξ̂)| is a continous, non-vanishing, function on the unit sphere.

Lemma 1. P (ξ) is elliptic of order m if and only if there exists δ > 0 such that

(3) |ξ| ≥ 1/δ, ξ ∈ Rn \ {0} =⇒ |P (ξ)| ≥ δ|ξ|m.

Proof. Since P (ξ)− Pm(ξ) is of degree at most m− 1,

(4) |P (ξ)− Pm(ξ)| ≤ C(|ξ|m−1 + 1).

Since the right side is bounded above by 1
2c|ξ|

m for any c > 0 for |ξ| large enough, (3)
follows from (2) by choosing δ > 0 small enough. Conversely, (2) follows from (3) in
|ξ| ≥ C for some sufficiently large C. Then by homogeneity it holds in general. �

In particular of course, if P is elliptic then {ξ ∈ Rn;P (ξ) = 0} is compact. So,
for an elliptic polynomial if χ ∈ C∞c (Rn) is one in |x| ≤ 1 then for δ > 0 small
enough

(5) F (ξ) =

{
1−χ(δξ)
P (ξ) |ξ| > 1/δ

0 |ξ| ≤ 1/δ
∈ C∞(Rn).

In fact we can estimate the derivatives is a straightforward way, since for |ξ| ≥ C/δ
for some C > 0, F = 1/P and the by the usual inductive proof:

(6)
DαF =

Qα
P 1+|α| , Qα polynomial of degree at most (m− 1)|α|

=⇒ |DαF (ξ)| ≤ Cα(1 + |ξ|)−m−|α|.

Exactly as from the discussion last time it follows that if E ∈ S ′(Rn) is defined

by Ê = F then

(7) |x|2NE(x) ∈ Hk(Rn), if 2N > k +
n

2
−m

but in any case if N is large enough. So E(x) is smooth outside the origin, i.e.

(8) singsupp(E) ⊂ {0}.

It follows that P (D) is hypoelliptic, in terms of the definition from last lecture.
However, for elliptic operators we get something stronger:-
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Proposition 1. If P (D) is elliptic of order m then for any open subset Ω ⊂ Rn,
and any s ∈ R,

(9) u ∈ C−∞(Ω), P (D)u ∈ Hs
loc(Ω) =⇒ u ∈ Hs+m

loc (Ω).

This is elliptic regularity where any solution u has m more (Sobolev) derivatives
that the ‘forcing term’ P (D)u.

Proof. This follows from the same proof as last time, which I will write down here
since I did not write it down in the notes for last lecture. The big difference is that

(10) E∗ : Hs(Rn)←→ Hs+m(Rn) ∀ s ∈ R

where E is constructed above, Ê = F. That convolution by E is well-defined can be
seen by writing it as the sum χεE+(1−χε)E where χε(x) = χ(x/ε) and χ ∈ C∞c (Rn)
is equal to 1 near 0 – we take χ to have support in the unit ball. Alternatively, we
can just see that

(11) Ê ∗ u = Ê · û = F (ξ)û(ξ)

is well-defined on L2 since F is a bounded (and smooth) function. In fact |F | ≤
C(1 + |ξ|)−m from which it follows that

(12) (1 + |ξ|)sû ∈ L2 =⇒ (1 + |ξ|)m+sÊ ∗ u ∈ L2

and this is the content of (10).
So, now to the argument from last time. We only need to show that the Sobolev

regularity holds for ψu where ψ ∈ C∞c (Ω) is arbitrary, but fixed from now on. So,
choose ε > 0 such that supp(ψ) + B(0, ε) b Ω and then select φ ∈ C∞c (Ω) which is
equal to 1 in a neighbourhood of this larger compact subset of Ω. Thus

(13) P (D)φu = f + g, f = φP (D)u ∈ Hs(Rn), supp(g) ∩ supp(ψ) +B(0, ε) = ∅.

This last condition follows from the fact that g arises from all the terms in the
expansion of the action of the differential operator on the product in which φ is
differentiated at least once and these vanish where φ ≡ 1 in a neighbourhood of
supp(ψ) +B(0, ε).

Now, since φu has compact support we can write

(14) φu = (φu) ∗ δ0 = (φu) ∗ (P (D)E −G) = (P (D)(φu)) ∗ E − g′, g′ ∈ C∞(Rn)

since the error term G ∈ C∞(Rn). Now using (13),

(15) φu = f ∗ E + g ∗ (χεE) + g ∗ ((1− χε)E)− g′.

The third and fourth terms on the right are smooth. The first term we know to be
in Hs+m(Rn) and because of

(16) supp(g ∗ (χεE)) ⊂ supp(g) +Bε

the second term has support not meeting supp(ψ). So in fact

(17) ψu = ψf ∗ E + ψ(g ∗ ((1− χε)E))− ψg′ ∈ Hs+m(Rn) ∀ ψ ∈ C∞c (Ω)

which is what we were trying to prove. �

In fact the proof gives a bit more than just this regularity, since it also gives
estimates.
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Lemma 2. If P (D) is elliptic of order m, Ω ⊂ Rn is open and ψ ∈ C∞c (Ω) then
for any φ ∈ C∞c (Ω) with φ = 1 in a neighbourhood of supp(ψ) and any s, t ∈ R,
there exists a constant such that

(18) ‖ψu‖Hs+m ≤ C(‖φ(P (D)u)‖Hs + ‖φu‖Ht) ∀ u ∈ C−∞(Ω).

The convention here is that the inequality is ‘true’ if the right side is infinite. So,
if both terms on the right are finite – and for any distribution the second term IS
finite for some t, then the left is finite so ψu is in Hs+m.

Proof. The inequality (18) follows by using (17) to estimate ‖ψu‖Hs . The first
term on the right in (17) is is bounded by the first term on right in (18). Moreover,
once one fixes k convolution with a smooth function maps compactly supported
elements of Ht(Rn) into Hs+m

loc (Rn) for any t and any s so the norm of the second
term on the right in (17) is bounded by the second term on the right in (18). The
same is true of the third term. �

Now, what does this do for us? After our little Columbus Day vacation I will
talk for a while about operators on Hilbert space including Fredholm operators and
the Spectral Theorem for self-adjoint operators. Let me try to indicate how this
links up with our present concerns.

As a guide to where we will go next, consider the periodic Sobolev spaces. These
are really spaces of distributions or functions on the torus but we can define them
directly as

(19) Hs
per(Rn) = {u ∈ Hs

loc(Rn);u(x+ 2πk) = u(x) ∀ k ∈ Zn}.

It is not quite obvious that these are Hilbert spaces but one can do this quite
elegantly using Fourier series and the Poisson summation formula, or else one can
proceed directly as follows.

Choose a function 0 ≤ φ ∈ C∞c (Rn) with φ(x) > 0 on {x; 0 ≤ xi ≤ 2π} which
is a ‘fundamental cube’ (meaning every point in Rn can be translated into it by a
shift by an integral multiple of 2π in each direction). Then set

(20) ‖u‖Hs
per

= ‖φu‖Hs .

This is a preHilbert norm, since its vanising implies u = 0 in a neighbourhood of
the fundamental cube and hence u = 0 everywhere by periodicity. To see that the
space is complete note that one can recover u from φu. Namely define

(21) Φ(x) =
∑
k∈Zn

φ(x− 2πk).

Although this is an infinite sum, only a finite number of terms have support meeting
any given compact set so Φ ∈ C∞(Rn). It is also periodic and strictly positive. Now,
one can recover u from φu by using the same sort of sum:

(22) u = Φ−1
∑
k∈Zn

(φu)(· − 2πk).

From this one can see that if φuk → v in Hs then ψuk → ψu where u is defined
from v using (22). The completeness of the space follows.

So, seeing that these are Hilbert spaces, we want to analyze an operator such as

(23) P (D) : Hs+m
per (Rn) −→ Hs

per(Rn), s ∈ R.
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Once we have discussed the appropriate notions for bounded and unbounded oper-
ators on a Hilbert space we can see that, if elliptic, P (D) is a Fredholm operator
– this follows quite directly from the estimates above – and that if in addition
P (−ξ) = P (ξ) then it self-adjoint and has a complete orthonormal basis of eigen-
functions.

This is true for instance for the Laplacian ∆ = |D|2 and extends to the Laplace-
Beltrami operator for a Riemann metric on any compact manifold.


