PROBLEM SET 7 FOR 18.102 DUE FRIDAY 8 APRIL, 2016.

RICHARD MELROSE

Problem 7.1

Give an example of a closed subset in an infinite-dimensional Hilbert space which is not weakly closed.

Problem 7.2

Let $A \in \mathcal{B}(H)$, H a separable Hilbert space, be such that for some orthonormal basis $\{e_i\}$

(5.1)
$$\sum_{i} \|Ae_i\|_H^2 < \infty.$$

Show that the same inequality is true for any other orthonormal basis and that A^* satisfies the same inequality.

Hint: For another basis, expand each norm $||Ae_i||^2$ using Bessel's identity and then use the adjoint identity and undo the double sum the opposite way.

Problem 7.3

The elements of $A \in \mathcal{B}(H)$ as in Problem 7.2 are called 'Hilbert-Schmidt operators'. Show that these form a 2-sided *-closed ideal HS(H), inside the compact operators and that

(5.2)
$$\langle A, B \rangle = \sum_{i} \langle Ae_i, Be_i \rangle,$$

for any choice of orthonormal basis, makes this into a Hilbert space.

Problem 7.4

Consider the 'shift' operators $S: l^2 \longrightarrow l^2$ and $T: l^2 \longrightarrow l^2$ defined by

$$S(\{a_k\}_{k=1}^{\infty}) = \{b_k\}_{k=1}^{\infty}, \ b_k = a_{k+1}, k \ge 1,$$
$$T(\{a_k\}_{k=1}^{\infty}) = \{c_k\}_{k=1}^{\infty}, \ c_1 = 0, \ c_k = a_{k-1}, \ k \ge 2.$$

Compute the norms of these operators and show that $ST = \text{Id} - \Pi_1$ and TS = Idwhere $\Pi_1(\{a_k\}_{k=1}^{\infty}) = \{d_k\}, d_1 = a_1, d_k = 0, k \ge 2.$

Problem 7.5

With the operators as defined in the preceding problem, show that for any $B \in \mathcal{B}(l^2)$ with ||B|| < 1, S + B is not invertible (and so conclude that the invertible operators are not dense in $\mathcal{H}(l^2)$.

Hint: Show that (S+B)T = Id + BT is invertible and so if S+B was invertible, with inverse G then so is G(S+B)T = T, as the product of invertibles.

Problem 7.6-extra

An operator T on a separable Hilbert space is said to be 'of trace class' (where this is just old-fashioned language) if it can be written as a finite sum

$$T = \sum_{i=1}^{N} A_i B_i$$

where all the A_i , B_i are Hilbert-Schmidt as diacussed above. Show that these trace class operators form a 2-sided ideal in the bounded operators, closed under passage to adjoints and that

$$\sup_{\{e_i\},\{f_i\}}\sum_i |\langle Te_i,f_i\rangle| < \infty$$

where the sup is over all pairs of orthonormal bases. Show that the trace functonal

$$\mathrm{Tr}(T) = \sum_{i} \langle Te_i e_i \rangle$$

is well-defined on trace class operators, independent of the orthonormal basis $\{e_i\}$ used to compute it.

Problem 7.7-extra

Suppose $K : L^2(0,1) \leftarrow L^2(0,1)$ is an integral operator (as considered in an earlier problem set) with a continuous kernel $k \in \mathcal{C}([0,1]^2)$,

(5.3)
$$Kf(x) = \int_{(0,1)} K(x,y)f(y)dy.$$

Show that K is Hilbert-Schmidt.

Department of Mathematics, Massachusetts Institute of Technology $E\text{-}mail \ address: rbm@math.mit.edu$