PROBLEM SET 3 FOR 18.102, SPRING 2016 DUE ELECTRONICALLY BY FRIDAY 19 FEBRUARY

RICHARD MELROSE

Recall that we have defined a set $E \subset \mathbb{R}$ to be 'of measure zero' if there exists a sequence $f_n \in \mathcal{C}_c(\mathbb{R})$ with $\sum_n \int |f_n| < \infty$ such that

(1)
$$E \subset \{x \in \mathbb{R}; \sum_{n} |f_n(x)| = +\infty\}.$$

By Thursday 18 February I expect to show in class that if $f_n \in \mathcal{L}^1(\mathbb{R})$ is a sequence with $\sum_n \int |f_n| < \infty$ then $\sum_n f_n(x)$ converges a.e. and the limit, defined in any way off the set of convergence, is an element of $\mathcal{L}^1(\mathbb{R})$. You may, and probably should, use this below.

Problem 3.1

Suppose that $f : \mathbb{R} \longrightarrow \mathbb{R}$ is such that there is a sequence $v_n \in \mathcal{L}^1(\mathbb{R})$ with real values, such that $v_n(x)$ is increasing for each $x, \int v_n$ is bounded and

(2)
$$\lim_{n} v_n(x) = f(x)$$

whenever the limit exists. Show that $f \in \mathcal{L}^1(\mathbb{R})$. Hint: Write this sequence as the sequence of partial sums of another sequence which is absolutely summable.

Problem 3.2

(1) Suppose that $O \subset \mathbb{R}$ is a *bounded* open subset, so $O \subset (-R, R)$ for some R. Show that the characteristic function of O

(3)
$$\chi_O(x) = \begin{cases} 1 & x \in O \\ 0 & x \notin O \end{cases}$$

is an element of $\mathcal{L}^1(\mathbb{R})$. Hint: Recall the structure of an open set in \mathbb{R} and use the previous problem.

(2) If O is bounded and open define the length (or Lebesgue measure) of O to be $l(O) = \int \chi_O$. Show that if $U = \bigcup_j O_j$ is a (n at most) countable union of bounded open sets such that $\sum_j l(O_j) < \infty$ then $\chi_U \in \mathcal{L}^1(\mathbb{R})$; again we

set $l(U) = \int \chi_U$.

- (3) Conversely show that if U is open and $\chi_U \in \mathcal{L}^1(\mathbb{R})$ then $U = \bigcup_j O_j$ is the union of a countable collection of bounded open sets with $\sum_i l(O_j) < \infty$.
- (4) Show that if $K \subset \mathbb{R}$ is compact then its characteristic function is an element of $\mathcal{L}^1(\mathbb{R})$.

Problem 3.3

Suppose $F \subset \mathbb{R}$ has the following (well-known) property:-

 $\forall \epsilon > 0 \exists$ a countable collection of open sets O_i s.t.

(4)
$$\sum_{i} l(O_i) < \epsilon, \ F \subset \bigcup_{i} O_i.$$

Show that F is a set of measure zero in the sense above (the same sense as in lectures).

Problem 3.4

Suppose $f_n \in \mathcal{C}_{c}(\mathbb{R})$ is an absolutely summable sequence; set

(5)
$$E(f) = \{x \in \mathbb{R}; \sum_{n} |f_n(x)| = \infty\}.$$

(1) Show that if a > 0 then the set

(6)
$$\{x \in \mathbb{R}; \sum_{n} |f_n(x)| \le a\}$$

is closed.

- (2) Deduce that if $\epsilon > 0$ is given then there is an open set $O_{\epsilon} \supset E$ with $\sum_{n} |f_n(x)| > 1/\epsilon$ for each $x \in O_{\epsilon}$.
- (3) Deduce that the characteristic function of O_{ϵ} is in $\mathcal{L}^{1}(\mathbb{R})$ and that $l(O_{\epsilon}) \leq \epsilon C, C = \sum_{n} \int |f_{n}(x)|.$
- (4) Conclude that E(f) satisfies the condition (4).

Problem 3.5
Show that the function with
$$F(0) = 0$$
 and

$$F(x) = \begin{cases} 0 & x > 1\\ \exp(i/x) & 0 < |x| < 1\\ 0 & x < -1, \end{cases}$$

is an element of $\mathcal{L}^1(\mathbb{R})$.

Problem 3.6 – Extra

- (1) Recall the definition of a Riemann integrable function $g : [a, b] \longrightarrow \mathbb{R}$ that it is bounded and there exist a sequence of successively finer partitions for which the upper Riemann sum approaches the lower Riemann sum. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be the extension of this function to be zero outside the interval.
- (2) Translate this condition into a statement about two sequences of piecewiseconstant functions (with respect to the partition), u_n , l_n with $l_n(x) \le f(x) \le u_n(x)$ and conclude that $\int (u_n - l_n) \to 0$.
- (3) Deduce that $f \in \mathcal{L}^1(\mathbb{R})$ and the Lebesgue integral of f on \mathbb{R} is equal to the Riemann integral of g on [a, b].
- (4) Show that there is a Lebesgue integrable function $f : \mathbb{R} \longrightarrow \mathbb{R}$ which vanishes outside [a, b] but that no function equal to it a.e. can be Riemann integrable.

PROBLEMS 3

Problem 3.7 – Extra

Prove that the Cantor set has measure zero.

Department of Mathematics, Massachusetts Institute of Technology $E\text{-}mail\ address:\ \texttt{rbmQmath.mit.edu}$