
CHAPTER 4

Differential equations

The last part of the course includes some applications of Hilbert space and
the spectral theorem – the completeness of the Fourier basis, some spectral theory
for second-order differential operators on an interval or the circle and enough of a
treatment of the eigenfunctions for the harmonic oscillator to show that the Fourier
transform is an isomorphism on L2(R). Once one has all this, one can do a lot more,
but there is no time left. Such is life.

1. Fourier series and L2(0, 2π).

Let us now try applying our knowledge of Hilbert space to a concrete Hilbert
space such as L2(a, b) for a finite interval (a, b) ⊂ R. You showed that this is indeed a
Hilbert space. One of the reasons for developing Hilbert space techniques originally
was precisely the following result.

Theorem 18. If u ∈ L2(0, 2π) then the Fourier series of u,

(4.1)
1

2π

∑
k∈Z

cke
ikx, ck =

∫
(0,2π)

u(x)e−ikxdx

converges in L2(0, 2π) to u.

Notice that this does not say the series converges pointwise, or pointwise almost
everywhere. In fact it is true that the Fourier series of a function in L2(0, 2π)
converges almost everywhere to u, but it is hard to prove! In fact it is an important
result of L. Carleson. Here we are just claiming that

(4.2) lim
n→∞

∫
|u(x)− 1

2π

∑
|k|≤n

cke
ikx|2 = 0

for any u ∈ L2(0, 2π).
Our abstract Hilbert space theory has put us quite close to proving this. First

observe that if e′k(x) = exp(ikx) then these elements of L2(0, 2π) satisfy

(4.3)

∫
e′ke
′
j =

∫ 2π

0

exp(i(k − j)x) =

{
0 if k 6= j

2π if k = j.

Thus the functions

(4.4) ek =
e′k
‖e′k‖

=
1√
2π
eikx

form an orthonormal set in L2(0, 2π). It follows that (4.1) is just the Fourier-Bessel
series for u with respect to this orthonormal set:-

(4.5) ck =
√

2π(u, ek) =⇒ 1

2π
cke

ikx = (u, ek)ek.
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112 4. DIFFERENTIAL EQUATIONS

So, we already know that this series converges in L2(0, 2π) thanks to Bessel’s in-
equality. So ‘all’ we need to show is

Proposition 43. The ek, k ∈ Z, form an orthonormal basis of L2(0, 2π), i.e.
are complete:

(4.6)

∫
ueikx = 0 ∀ k =⇒ u = 0 in L2(0, 2π).

This however, is not so trivial to prove. An equivalent statement is that the
finite linear span of the ek is dense in L2(0, 2π). I will prove this using Fejér’s
method. In this approach, we check that any continuous function on [0, 2π] sat-
isfying the additional condition that u(0) = u(2π) is the uniform limit on [0, 2π]
of a sequence in the finite span of the ek. Since uniform convergence of continu-
ous functions certainly implies convergence in L2(0, 2π) and we already know that
the continuous functions which vanish near 0 and 2π are dense in L2(0, 2π) this is
enough to prove Proposition 43. However the proof is a serious piece of analysis,
at least it seems so to me! There are other approaches, for instance we could use
the Stone-Weierstrass Theorem. On the other hand Fejér’s approach is clever and
generalizes in various ways as we will see.

So, the problem is to find the sequence in the span of the ek which converges
to a given continuous function and the trick is to use the Fourier expansion that
we want to check. The idea of Cesàro is close to one we have seen before, namely
to make this Fourier expansion ‘converge faster’, or maybe better. For the moment
we can work with a general function u ∈ L2(0, 2π) – or think of it as continuous if
you prefer. The truncated Fourier series of u is a finite linear combination of the
ek :

(4.7) Un(x) =
1

2π

∑
|k|≤n

(

∫
(0,2π)

u(t)e−iktdt)eikx

where I have just inserted the definition of the ck’s into the sum. Since this is a
finite sum we can treat x as a parameter and use the linearity of the integral to
write it as

(4.8) Un(x) =

∫
(0,2π)

Dn(x− t)u(t), Dn(s) =
1

2π

∑
|k|≤n

eiks.

Now this sum can be written as an explicit quotient, since, by telescoping,

(4.9) 2πDn(s)(eis/2 − e−is/2) = ei(n+ 1
2 )s − e−i(n+ 1

2 )s.

So in fact, at least where s 6= 0,

(4.10) Dn(s) =
ei(n+ 1

2 )s − e−i(n+ 1
2 )s

2π(eis/2 − e−is/2)

and the limit as s→ 0 exists just fine.
As I said, Cesàro’s idea is to speed up the convergence by replacing Un by its

average

(4.11) Vn(x) =
1

n+ 1

n∑
l=0

Ul.
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Again plugging in the definitions of the Ul’s and using the linearity of the integral
we see that

(4.12) Vn(x) =

∫
(0,2π)

Sn(x− t)u(t), Sn(s) =
1

n+ 1

n∑
l=0

Dl(s).

So again we want to compute a more useful form for Sn(s) – which is the Fejér
kernel. Since the denominators in (4.10) are all the same,

(4.13) 2π(n+ 1)(eis/2 − e−is/2)Sn(s) =

n∑
l=0

ei(l+
1
2 )s −

n∑
l=0

e−i(l+
1
2 )s.

Using the same trick again,

(4.14) (eis/2 − e−is/2)

n∑
l=0

ei(l+
1
2 )s = ei(n+1)s − 1

so

(4.15)

2π(n+ 1)(eis/2 − e−is/2)2Sn(s) = ei(n+1)s + e−i(n+1)s − 2

=⇒ Sn(s) =
1

n+ 1

sin2( (n+1)
2 s)

2π sin2( s2 )
.

Now, what can we say about this function? One thing we know immediately is
that if we plug u = 1 into the disucssion above, we get Un = 1 for n ≥ 0 and hence
Vn = 1 as well. Thus in fact

(4.16)

∫
(0,2π)

Sn(x− ·) = 1, ∀ x ∈ (0, 2π).

Looking directly at (4.15) the first thing to notice is that Sn(s) ≥ 0. Also, we
can see that the denominator only vanishes when s = 0 or s = 2π in [0, 2π]. Thus
if we stay away from there, say s ∈ (δ, 2π − δ) for some δ > 0 then – since sin(t) is
a bounded function

(4.17) |Sn(s)| ≤ (n+ 1)−1Cδ on (δ, 2π − δ).

We are interested in how close Vn(x) is to the given u(x) in supremum norm,
where now we will take u to be continuous. Because of (4.16) we can write

(4.18) u(x) =

∫
(0,2π)

Sn(x− t)u(x)

where t denotes the variable of integration (and x is fixed in [0, 2π]). This ‘trick’
means that the difference is

(4.19) Vn(x)− u(x) =

∫
(0,2π)

Sn(x− t)(u(t)− u(x)).

For each x we split this integral into two parts, the set Γ(x) where x− t ∈ [0, δ] or
x− t ∈ [2π − δ, 2π] and the remainder. So
(4.20)

|Vn(x)− u(x)| ≤
∫

Γ(x)

Sn(x− t)|u(t)− u(x)|+
∫

(0,2π)\Γ(x)

Sn(x− t)|u(t)− u(x)|.

Now on Γ(x) either |t−x| ≤ δ – the points are close together – or t is close to 0 and
x to 2π so 2π−x+ t ≤ δ or conversely, x is close to 0 and t to 2π so 2π− t+x ≤ δ.
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In any case, by assuming that u(0) = u(2π) and using the uniform continuity of a
continuous function on [0, 2π], given ε > 0 we can choose δ so small that

(4.21) |u(x)− u(t)| ≤ ε/2 on Γ(x).

On the complement of Γ(x) we have (4.17) and since u is bounded we get the
estimate

(4.22) |Vn(x)−u(x)| ≤ ε/2
∫

Γ(x)

Sn(x−t)+(n+1)−1C ′(δ) ≤ ε/2+(n+1)−1C ′(δ).

Here the fact that Sn is non-negative and has integral one has been used again to
estimate the integral of Sn(x− t) over Γ(x) by 1. Having chosen δ to make the first
term small, we can choose n large to make the second term small and it follows
that

(4.23) Vn(x)→ u(x) uniformly on [0, 2π] as n→∞

under the assumption that u ∈ C([0, 2π]) satisfies u(0) = u(2π).
So this proves Proposition 43 subject to the density in L2(0, 2π) of the contin-

uous functions which vanish near (but not of course in a fixed neighbourhood of)
the ends. In fact we know that the L2 functions which vanish near the ends are
dense since we can chop off and use the fact that

(4.24) lim
δ→0

(∫
(0,δ)

|f |2 +

∫
(2π−δ,2π)

|f |2
)

= 0.

This proves Theorem 18.

2. Dirichlet problem on an interval

I want to do a couple more ‘serious’ applications of what we have done so
far. There are many to choose from, and I will mention some more, but let me
first consider the Diriclet problem on an interval. I will choose the interval [0, 2π]
because we looked at it before but of course we could work on a general bounded
interval instead. So, we are supposed to be trying to solve

(4.25) −d
2u(x)

dx2
+ V (x)u(x) = f(x) on (0, 2π), u(0) = u(2π) = 0

where the last part are the Dirichlet boundary conditions. I will assume that the
‘potential’

(4.26) V : [0, 2π] −→ R is continuous and real-valued.

Now, it certainly makes sense to try to solve the equation (4.25) for say a given
f ∈ C0([0, 2π]), looking for a solution which is twice continuously differentiable on
the interval. It may not exist, depending on V but one thing we can shoot for,
which has the virtue of being explicit, is the following:

Proposition 44. If V ≥ 0 as in (4.26) then for each f ∈ C0([0, 2π]) there
exists a unique twice continuously differentiable solution, u, to (4.25).

You will see that it is a bit hard to approach this directly – especially if you
have some ODE theory at your fingertips. There are in fact various approaches
to this but we want to go through L2 theory – not surprisingly of course. How to
start?
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Well, we do know how to solve (4.25) if V ≡ 0 since we can use (Riemann)
integration. Thus, ignoring the boundary conditions for the moment, we can find
a solution to −d2v/dx2 = f on the interval by integrationg twice:

(4.27) v(x) = −
∫ x

0

∫ y

0

f(t)dtdy satifies − d2v/dx2 = f on (0, 2π).

Moroever v really is twice continuously differentiable if f is continuous. So, what
has this got to do with operators? Well, we can change the order of integration in
(4.27) to write v as

(4.28) v(x) = −
∫ x

0

∫ x

t

f(t)dydt =

∫ 2π

0

a(x, t)f(t)dt, a(x, t) = (t− x)H(x− t)

where the Heaviside function H(y) is 1 when y ≥ 0 and 0 when y < 0. Thus a(x, t)
is actually continuous on [0, 2π]× [0, 2π] since the t−x factor vanishes at the jump
in H(t− x). So (4.28) shows that v is given by applying an integral operator, with
continuous kernel on the square, to f.

Before thinking more seriously about this, recall that there is also the matter
of the boundary conditions. Clearly, v(0) = 0 since we integrated from there. On
the other hand, there is no particular reason why

(4.29) v(2π) =

∫ 2π

0

(t− 2π)f(t)dt

should vanish. However, we can always add to v any linear function and still satify
the differential equation. Since we do not want to spoil the vanishing at x = 0 we
can only afford to add cx but if we choose the constant c correctly this will work.
Namely consider

(4.30) c =
1

2π

∫ 2π

0

(2π − t)f(t)dt, then (v + cx)(2π) = 0.

So, finally the solution we want is

(4.31) w(x) =

∫ 2π

0

b(x, t)f(t)dt, b(x, t) = min(t, x)− tx

2π
∈ C([0, 2π]2)

with the formula for b following by simple manipulation from

(4.32) b(x, t) = a(x, t) + x− tx

2π

Thus there is a unique, twice continuously differentiable, solution of −d2w/dx2 = f
in (0, 2π) which vanishes at both end points and it is given by the integral operator
(4.31).

Lemma 46. The integral operator (4.31) extends by continuity from C0([0, 2π])
to a compact, self-adjoint operator on L2(0, 2π).

Proof. Since w is given by an integral operator with a continuous real-valued
kernel which is even in the sense that (check it)

(4.33) b(t, x) = b(x, t)

we might as well give a more general result. �
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Proposition 45. If b ∈ C0([0, 2π]2) then

(4.34) Bf(x) =

∫ 2π

0

b(x, t)f(t)dt

defines a compact operator on L2(0, 2π) if in addition b satisfies

(4.35) b(t, x) = b(x, t)

then B is self-adjoint.

Proof. If f ∈ L2((0, 2π)) and v ∈ C([0, 2π]) then the product vf ∈ L2((0, 2π))
and ‖vf‖L2 ≤ ‖v‖∞‖f‖L2 . This can be seen for instance by taking an absolutely
summable approcimation to f, which gives a sequence of continuous functions con-
verging a.e. to f and bounded by a fixed L2 function and observing that vfn → vf
a.e. with bound a constant multiple, sup |v|, of that function. It follows that for
b ∈ C([0, 2π]2) the product

(4.36) b(x, y)f(y) ∈ L2(0, 2π)

for each x ∈ [0, 2π]. Thus Bf(x) is well-defined by (4.35) since L2((0, 2π) ⊂
L1((0, 2π)).

Not only that, but Bf ∈ C([0, 2π]) as can be seen from the Cauchy-Schwarz
inequality,
(4.37)

|Bf(x′)−Bf(x)| = |
∫

(b(x′, y)− b(x, y))f(y)| ≤ sup
y
|b(x′, y − b(x, y)|(2π)

1
2 ‖f‖L2 .

Essentially the same estimate shows that

(4.38) sup
x
‖Bf(x)‖ ≤ (2π)

1
2 sup

(x,y)

|b|‖f‖L2

so indeed, B : L2(0, 2π) −→ C([0, 2π]) is a bounded linear operator.
When b satisfies (4.35) and f and g are continuous

(4.39)

∫
Bf(x)g(x) =

∫
f(x)Bg(x)

and the general case follows by approximation in L2 by continuous functions.
So, we need to see the compactness. If we fix x then b(x, y) ∈ C([0, 2π]) and

then if we let x vary,

(4.40) [0, 2π] 3 x 7−→ b(x, ·) ∈ C([0, 2π])

is continuous as a map into this Banach space. Again this is the uniform continuity
of a continuous function on a compact set, which shows that

(4.41) sup
y
|b(x′, y)− b(x, y)| → 0 as x′ → x.

Since the inclusion map C([0, 2π]) −→ L2((0, 2π)) is bounded, i.e continuous, it
follows that the map (I have reversed the variables)

(4.42) [0, 2π] 3 y 7−→ b(·, y) ∈ L2((0, 2π))

is continuous and so has a compact range.
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Take the Fourier basis ek for [0, 2π] and expand b in the first variable. Given
ε > 0 the compactness of the image of (4.42) implies that for some N

(4.43)
∑
|k|>N

|(b(x, y), ek(x))|2 < ε ∀ y ∈ [0, 2π].

The finite part of the Fourier series is continuous as a function of both arguments

(4.44) bN (x, y) =
∑
|k|≤N

ek(x)ck(y), ck(y) = (b(x, y), ek(x))

and so defines another bounded linear operator BN as before. This operator can
be written out as

(4.45) BNf(x) =
∑
|k|≤N

ek(x)

∫
ck(y)f(y)dy

and so is of finite rank – it always takes values in the span of the first 2N + 1
trigonometric functions. On the other hand the remainder is given by a similar
operator with corresponding to qN = b− bN and this satisfies

(4.46) sup
y
‖qN (·, y)‖L2((0,2π)) → 0 as N →∞.

Thus, qN has small norm as a bounded operator on L2((0, 2π)) so B is compact –
it is the norm limit of finite rank operators. �

Now, recall from Problem# that uk = c sin(kx/2), k ∈ N, is also an orthonormal
basis for L2(0, 2π) (it is not the Fourier basis!) Moreover, differentiating we find
straight away that

(4.47) −d
2uk
dx2

=
k2

4
uk.

Since of course uk(0) = 0 = uk(2π) as well, from the uniqueness above we conclude
that

(4.48) Buk =
4

k2
uk ∀ k.

Thus, in this case we know the orthonormal basis of eigenfunctions for B. They
are the uk, each eigenspace is 1 dimensional and the eigenvalues are 4k−2. So, this
happenstance allows us to decompose B as the square of another operator defined
directly on the othornormal basis. Namely

(4.49) Auk =
2

k
uk =⇒ B = A2.

Here again it is immediate that A is a compact self-adjoint operator on L2(0, 2π)
since its eigenvalues tend to 0. In fact we can see quite a lot more than this.

Lemma 47. The operator A maps L2(0, 2π) into C0([0, 2π]) and Af(0) =
Af(2π) = 0 for all f ∈ L2(0, 2π).

Proof. If f ∈ L2(0, 2π) we may expand it in Fourier-Bessel series in terms of
the uk and find

(4.50) f =
∑
k

ckuk, {ck} ∈ l2.
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Then of course, by definition,

(4.51) Af =
∑
k

2ck
k
uk.

Here each uk is a bounded continuous function, with the bound on uk being in-
dependent of k. So in fact (4.51) converges uniformly and absolutely since it is
uniformly Cauchy, for any q > p,

(4.52) |
q∑

k=p

2ck
k
uk| ≤ 2|c|

q∑
k=p

|ck|k−1 ≤ 2|c|

 q∑
k=p

k−2

 1
2

‖f‖L2

where Cauchy-Schwarz has been used. This proves that

A : L2(0, 2π) −→ C0([0, 2π])

is bounded and by the uniform convergence uk(0) = uk(2π) = 0 for all k implies
that Af(0) = Af(2π) = 0. �

So, going back to our original problem we try to solve (4.25) by moving the V u
term to the right side of the equation (don’t worry about regularity yet) and hope
to use the observation that

(4.53) u = −A2(V u) +A2f

should satisfy the equation and boundary conditions. In fact, let’s anticipate that
u = Av, which has to be true if (4.53) holds with v = −AV u+Af, and look instead
for

(4.54) v = −AV Av +Af =⇒ (Id +AV A)v = Af.

So, we know that multiplication by V, which is real and continuous, is a bounded
self-adjoint operator on L2(0, 2π). Thus AV A is a self-adjoint compact operator so
we can apply our spectral theory to it and so examine the invertibility of Id +AV A.
Working in terms of a complete orthonormal basis of eigenfunctions ei of AV A we
see that Id +AV A is invertible if and only if it has trivial null space, i.e. if −1 is not
an eigenvalue of AV A. Indeed, an element of the null space would have to satisfy
u = −AV Au. On the other hand we know that AV A is positive since

(4.55) (AV Aw,w) = (V Av,Av) =

∫
(0,2π)

V (x)|Av|2 ≥ 0 =⇒
∫

(0,2π)

|u|2 = 0,

using the non-negativity of V. So, there can be no null space – all the eigenvalues
of AV A are at least non-negative and the inverse is the bounded operator given by
its action on the basis

(4.56) (Id +AV A)−1ei = (1 + τi)
−1, AV Aei = τiei.

Thus Id +AV A is invertible on L2(0, 2π) with inverse of the form Id +Q, Q
again compact and self-adjoint since (1 + τi)

1− 1→ 0. Now, to solve (4.54) we just
need to take

(4.57) v = (Id +Q)Af ⇐⇒ v +AV Av = Af in L2(0, 2π).

Then indeed

(4.58) u = Av satisfies u+A2V u = A2f.
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In fact since v ∈ L2(0, 2π) from (4.57) we already know that u ∈ C0([0, 2π]) vanishes
at the end points.

Moreover if f ∈ C0([0, 2π]) we know that Bf = A2f is twice continuously
differentiable, since it is given by two integrations – that is where B came from.
Now, we know that u in L2 satisfies u = −A2(V u) + A2f. Since V u ∈ L2((0, 2π)
so is A(V u) and then, as seen above, A(A(V u) is continuous. So combining this
with the result about A2f we see that u itself is continuous and hence so is V u.
But then, going through the routine again

(4.59) u = −A2(V u) +A2f

is the sum of two twice continuously differentiable functions. Thus it is so itself. In
fact from the properties of B = A2 it satisifes

(4.60) −d
2u

dx2
= −V u+ f

which is what the result claims. So, we have proved the existence part of Proposi-
tion 44.

The uniqueness follows pretty much the same way. If there were two twice
continuously differentiable solutions then the difference w would satisfy

(4.61) −d
2w

dx2
+ V w = 0, w(0) = w(2π) = 0 =⇒ w = −Bw = −A2V w.

Thus w = Aφ, φ = −AV w ∈ L2(0, 2π). Thus φ in turn satisfies φ = AV Aφ and
hence is a solution of (Id +AV A)φ = 0 which we know has none (assuming V ≥ 0).
Since φ = 0, w = 0.

This completes the proof of Proposition 44. To summarize, what we have shown
is that Id +AV A is an invertible bounded operator on L2(0, 2π) (if V ≥ 0) and then
the solution to (4.25) is precisely

(4.62) u = A(Id +AV A)−1Af

which is twice continuously differentiable and satisfies the Dirichlet conditions for
each f ∈ C0([0, 2π]).

Now, even if we do not assume that V ≥ 0 we pretty much know what is
happening.

Proposition 46. For any V ∈ C0([0, 2π]) real-valued, there is an orthonormal
basis wk of L2(0, 2π) consisting of twice-continuously differentiable functions on

[0, 2π], vanishing at the end-points and satisfying −d
2wk
dx2 + V wk = Tkwk where

Tk → ∞ as k → ∞. The equation (4.25) has a (twice continuously differentiable)
solution for given f ∈ C0([0, 2π]) if and only if

(4.63) Tk = 0 =⇒
∫

(0,2π)

fwk = 0,

i.e. f is orthogonal to the null space of Id +A2V, which is the image under A of the
null space of Id +AV A, in L2(0, 2π).

Proof. Notice the form of the solution in case V ≥ 0 in (4.62). In general, we
can choose a constant c such that V + c ≥ 0. Then the equation can be rewritten

(4.64) −d
2w

dx2
+ V w = Twk ⇐⇒ −

d2w

dx2
+ (V + c)w = (T + c)w.
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Thus, if w satisfies this eigen-equation then it also satisfies

(4.65) w = (T + c)A(Id +A(V + c)A)−1Aw ⇐⇒
Sw = (T + c)−1w, S = A(Id +A(V + c)A)−1A.

Now, we have shown that S is a compact self-adjoint operator on L2(0, 2π) so we
know that it has a complete set of eigenfunctions, ek, with eigenvalues τk 6= 0. From
the discussion above we then know that each ek is actually continuous – since it is
Aw′ with w′ ∈ L2(0, 2π) and hence also twice continuously differentiable. So indeed,
these ek satisfy the eigenvalue problem (with Dirichlet boundary conditions) with
eigenvalues

(4.66) Tk = τ−1
k + c→∞ as k →∞.

The solvability part also follows in much the same way. �

3. Friedrichs’ extension

Next I will discuss an abstract Hilbert space set-up which covers the treatment
of the Dirichlet problem above and several other applications to differential equa-
tions and indeed to other problems. I am attributing this method to Friedrichs and
he certainly had a hand in it.

Instead of just one Hilbert space we will consider two at the same time. First is
a ‘background’ space, H, a separable infinite-dimensional Hilbert space which you
can think of as being something like L2(I) for some interval I. The inner product
on this I will denote (·, ·)H or maybe sometimes leave off the ‘H’ since this is the
basic space. Let me denote a second, separable infinite-dimensional, Hilbert space
as D, which maybe stands for ‘domain’ of some operator. So D comes with its own
inner product (·, ·)D where I will try to remember not to leave off the subscript.
The relationship between these two Hilbert spaces is given by a linear map

(4.67) i : D −→ H.

This is denoted ‘i’ because it is supposed to be an ‘inclusion’. In particular I will
always require that

(4.68) i is injective.

Since we will not want to have parts of H which are inaccessible, I will also assume
that

(4.69) i has dense range i(D) ⊂ H.

In fact because of these two conditions it is quite safe to identify D with i(D)
and think of each element of D as really being an element of H. The subspace
‘i(D) = D’ will not be closed, which is what we are used to thinking about (since it
is dense) but rather has its own inner product (·, ·)D. Naturally we will also suppose
that i is continuous and to avoid too many constants showing up I will suppose that
i has norm at most 1 so that

(4.70) ‖i(u)‖H ≤ ‖u‖D.

If you are comfortable identifying i(D) with D this just means that the ‘D-norm’
on D is bigger than the H norm restricted to D. A bit later I will assume one more
thing about i.
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What can we do with this setup? Well, consider an arbitrary element f ∈ H.
Then consider the linear map

(4.71) Tf : D 3 u −→ (i(u), f)H ∈ C.

where I have put in the identification i but will leave it out from now on, so just
write Tf (u) = (u, f)H . This is in fact a continuous linear functional on D since by
Cauchy-Schwarz and then (4.70),

(4.72) |Tf (u)| = |(u, f)H | ≤ ‖u‖H‖f‖H ≤ ‖f‖H‖u‖D.
So, by the Riesz’ representation – so using the assumed completeness of D (with
respect to the D-norm of course) there exists a unique element v ∈ D such that

(4.73) (u, f)H = (u, v)D ∀ u ∈ D.
Thus, v only depends on f and always exists, so this defines a map

(4.74) B : H −→ D, Bf = v iff (f, u)H = (v, u)D ∀ u ∈ D
where I have taken complex conjugates of both sides of (4.73).

Lemma 48. The map B is a continuous linear map H −→ D and restricted to
D is self-adjoint:

(4.75) (Bw, u)D = (w,Bu)D ∀ u,w ∈ D.
The assumption that D ⊂ H is dense implies that B : H −→ D is injective.

Proof. The linearity follows from the uniqueness and the definition. Thus if
fi ∈ H and ci ∈ C for i = 1, 2 then

(4.76)
(c1f1 + c2f2, u)H = c1(f1, u)H + c2(f2, u)H

= c1(Bf1, u)D + c2(Bf2, u)D = (c1Bf1 + c2Bf2, u) ∀ u ∈ D

shows that B(c1f1 + c2f2) = c1Bf1 + c2Bf2. Moreover from the estimate (4.72),

(4.77) |(Bf, u)D| ≤ ‖f‖H‖u‖D
and setting u = Bf it follows that ‖Bf‖D ≤ ‖f‖H which is the desired continuity.

To see the self-adjointness suppose that u, w ∈ D, and hence of course since
we are erasing i, u, w ∈ H. Then, from the definitions

(4.78) (Bu,w)D = (u,w)H = (w, u)H = (Bw, u)D = (u,Bw)D

so B is self-adjoint.
Finally observe that Bf = 0 implies that (Bf, u)D = 0 for all u ∈ D and hence

that (f, u)H = 0, but since D is dense, this implies f = 0 so B is injective. �

To go a little further we will assume that the inclusion i is compact. Explicitly
this means

(4.79) un ⇀D u =⇒ un(= i(un))→H u

where the subscript denotes which space the convergence is in. Thus compactness
means that a weakly convergent sequence in D is, or is mapped to, a strongly
convergent sequence in H.

Lemma 49. Under the assumptions (4.67), (4.68), (4.69), (4.70) and (4.79) on
the inclusion of one Hilbert space into another, the operator B in (4.74) is compact
as a self-adjoint operator on D and has only positive eigenvalues.
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Proof. Suppose un ⇀ u is weakly convergent in D. Then, by assumption it is
strongly convergent in H. But B is continuous as a map from H to D so Bun → Bu
in D and it follows that B is compact as an operator on D.

So, we know that D has an orthonormal basis of eigenvectors of B. None of
the eigenvalues λj can be zero since B is injective. Moreover, from the definition if
Buj = λjuj then

(4.80) ‖uj‖2H = (uj , uj)H = (Buj , uj)D = λj‖uj‖2D
showing that λj > 0. �

Now, in view of this we can define another compact operator on D by

(4.81) Auj = λ
1
2
j uj

taking the positive square-roots. So of course A2 = B. In fact A : H −→ D is also
a bounded operator.

Lemma 50. If uj is an orthonormal basis of D of eigenvectors of B then fj =

λ−
1
2uj is an orthonormal basis of H and A : D −→ D extends by continuity to an

isometric isomorphism A : H −→ D.

Proof. The identity (4.80) extends to pairs of eigenvectors

(4.82) (uj , uk)H = (Buj , uk)D = λjδjk

which shows that the fj form an orthonormal sequence in H. The span is dense
in D (in the H norm) and hence is dense in H so this set is complete. Thus A
maps an orthonormal basis of H to an orthonormal basis of D, so it is an isometric
isomorphism. �

If you think about this a bit you will see that this is an abstract version of the
treatment of the ‘trivial’ Dirichlet problem above, except that I did not describe
the Hilbert space D concretely in that case.

There are various ways this can be extended. One thing to note is that the
failure of injectivity, i.e. the loss of (4.68) is not so crucial. If i is not injective,
then its null space is a closed subspace and we can take its orthocomplement in
place of D. The result is the same except that the operator D is only defined on
this orthocomplement.

An additional thing to observe is that the completeness of D, although used
crucially above in the application of Riesz’ Representation theorem, is not really
such a big issue either

Proposition 47. Suppose that D̃ is a pre-Hilbert space with inner product
(·, ·)D and i : Ã −→ H is a linear map into a Hilbert space. If this map is injective,
has dense range and satisfies (4.70) in the sense that

(4.83) ‖i(u)‖H ≤ ‖u‖D ∀ u ∈ D̃

then it extends by continuity to a map of the completion, D, of D̃, satisfying (4.68),

(4.69) and (4.70) and if bounded sets in D̃ are mapped by i into precompact sets in
H then (4.79) also holds.

Proof. We know that a completion exists, D̃ ⊂ D, with inner product re-
stricting to the given one and every element of D is then the limit of a Cauchy
sequence in D̃. So we denote without ambiguity the inner product on D again as
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(·, ·)D. Since i is continuous with respect to the norm on D (and on H of course)

it extends by continuity to the closure of D̃, namely D as i(u) = limn i(un) if un
is Cauchy in D̃ and hence converges in D; this uses the completeness of H since
i(un) is Cauchy in H. The value of i(u) does not depend on the choice of approx-
imating sequence, since if vn → 0, i(vn) → 0 by continuity. So, it follows that
i : D −→ H exists, is linear and continuous and its norm is no larger than before
so (4.67) holds. �

The map extended map may not be injective, i.e. it might happen that i(un) → 0
even though un → u 6= 0.

The general discussion of the set up of Lemmas 49 and 50 can be continued
further. Namely, having defined the operators B and A we can define a new positive-
definite Hermitian form on H by

(4.84) (u, v)E = (Au,Av)H , u, v ∈ H

with the same relationship as between (·, ·)H and (·, ·)D. Now, it follows directly
that

(4.85) ‖u‖H ≤ ‖u‖E
so if we let E be the completion of H with respect to this new norm, then i : H −→
E is an injection with dense range and A extends to an isometric isomorphism
A : E −→ H. Then if uj is an orthonormal basis of H of eigenfunctions of A with

eigenvalues τj > 0 it follows that uj ∈ D and that the τ−1
j uj form an orthonormal

basis for D while the τjuj form an orthonormal basis for E.

Lemma 51. With E defined as above as the completion of H with respect to
the inner product (4.84), B extends by continuity to an isomoetric isomorphism
B : E −→ D.

Proof. Since B = A2 on H this follows from the properties of the eigenbases
above. �

The typical way that Friedrichs’ extension arises is that we are actually given
an explicit ‘operator’, a linear map P : D̃ −→ H such that (u, v)D = (u, Pv)H
satisfies the conditions of Proposition 47. Then P extends by continuity to an
isomorphism P : D −→ E which is precisely the inverse of B as in Lemma 51. We
shall see examples of this below.

4. Dirichlet problem revisited

So, does the setup of the preceding section work for the Dirichlet problem? We
take H = L2((0, 2π)). Then, and this really is Friedrichs’ extension, we take as a

subspace D̃ ⊂ H the space of functions which are once continuously differentiable
and vanish outside a compact subset of (0, 2π). This just means that there is some
smaller interval, depending on the function, [δ, 2π − δ], δ > 0, on which we have a
continuously differentiable function f with f(δ) = f ′(δ) = f(2π−δ) = f ′(2π−δ) = 0
and then we take it to be zero on (0, δ) and (2π − δ, 2π). There are lots of these,

let’s call the space D̃ as above

(4.86)
D̃ = {u ∈ C0[0, 2π];u continuously differentiable on [0, 2π],

u(x) = 0 in [0, δ] ∪ [2π − δ, 2π] for some δ > 0}.
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Then our first claim is that

(4.87) D̃ is dense in L2(0, 2π)

with respect to the norm on L2 of course.
What inner product should we take on D̃? Well, we can just integrate formally

by parts and set

(4.88) (u, v)D =
1

2π

∫
[0,2π]

du

dx

dv

dx
dx.

This is a pre-Hilbert inner product. To check all this note first that (u, u)D = 0
implies du/dx = 0 by Riemann integration (since |du/dx|2 is continuous) and since

u(x) = 0 in x < δ for some δ > 0 it follows that u = 0. Thus (u, v)D makes D̃ into
a pre-Hilbert space, since it is a positive definite sesquilinear form. So, what about
the completion? Observe that, the elements of D̃ being continuosly differentiable,
we can always integrate from x = 0 and see that

(4.89) u(x) =

∫ x

0

du

dx
dx

as u(0) = 0. Now, to say that un ∈ D̃ is Cauchy is to say that the continuous
functions vn = dun/dx are Cauchy in L2(0, 2π). Thus, from the completeness of L2

we know that vn → v ∈ L2(0, 2π). On the other hand (4.89) applies to each un so

(4.90) |un(x)− um(x)| = |
∫ x

0

(vn(s)− vm(s))ds| ≤
√

2π‖vn − vm‖L2

by applying Cauchy-Schwarz. Thus in fact the sequence un is uniformly Cauchy
in C([0, 2π]) if un is Cauchy in D̃. From the completeness of the Banach space of
continuous functions it follows that un → u in C([0, 2π]) so each element of the

completion, D̃, ‘defines’ (read ‘is’) a continuous function:

(4.91) un → u ∈ D =⇒ u ∈ C([0, 2π]), u(0) = u(2π) = 0

where the Dirichlet condition follows by continuity from (4.90).
Thus we do indeed get an injection

(4.92) D 3 u −→ u ∈ L2(0, 2π)

where the injectivity follows from (4.89) that if v = lim dun/dx vanishes in L2 then
u = 0.

Now, you can go ahead and check that with these definitions, B and A are the
same operators as we constructed in the discussion of the Dirichlet problem.

5. Harmonic oscillator

As a second ‘serious’ application of our Hilbert space theory I want to discuss
the harmonic oscillator, the corresponding Hermite basis for L2(R). Note that so
far we have not found an explicit orthonormal basis on the whole real line, even
though we know L2(R) to be separable, so we certainly know that such a basis
exists. How to construct one explicitly and with some handy properties? One way
is to simply orthonormalize – using Gram-Schmidt – some countable set with dense
span. For instance consider the basic Gaussian function

(4.93) exp(−x
2

2
) ∈ L2(R).
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This is so rapidly decreasing at infinity that the product with any polynomial is
also square integrable:

(4.94) xk exp(−x
2

2
) ∈ L2(R) ∀ k ∈ N0 = {0, 1, 2, . . . }.

Orthonormalizing this sequence gives an orthonormal basis, where completeness
can be shown by an appropriate approximation technique but as usual is not so
simple. This is in fact the Hermite basis as we will eventually show.

Rather than proceed directly we will work up to this by discussing the eigen-
functions of the harmonic oscillator

(4.95) P = − d2

dx2
+ x2

which we want to think of as an operator – although for the moment I will leave
vague the question of what it operates on.

As you probably already know, and we will show later, it is straightforward
to show that P has a lot of eigenvectors using the ‘creation’ and ‘annihilation’
operators. We want to know a bit more than this and in particular I want to
apply the abstract discussion above to this case but first let me go through the
‘formal’ theory. There is nothing wrong here, just that we cannot easily conclude
the completeness of the eigenfunctions.

The first thing to observe is that the Gaussian is an eigenfunction of H

(4.96) Pe−x
2/2 = − d

dx
(−xe−x

2/2 + x2e−x
2/2)

= −(x2 − 1)e−x
2/2 + x2e−x

2/2 = e−x
2/2

with eigenvalue 1. It is an eigenfunction but not, for the moment, of a bounded
operator on any Hilbert space – in this sense it is only a formal eigenfunction.

In this special case there is an essentially algebraic way to generate a whole
sequence of eigenfunctions from the Gaussian. To do this, write

(4.97) Pu = (− d

dx
+ x)(

d

dx
+ x)u+ u = (Cr An +1)u,

Cr = (− d

dx
+ x), An = (

d

dx
+ x)

again formally as operators. Then note that

(4.98) An e−x
2/2 = 0

which again proves (4.96). The two operators in (4.97) are the ‘creation’ operator
and the ‘annihilation’ operator. They almost commute in the sense that

(4.99) [An,Cr]u = (An Cr−Cr An)u = 2u

for say any twice continuously differentiable function u.

Now, set u0 = e−x
2/2 which is the ‘ground state’ and consider u1 = Cru0.

From (4.99), (4.98) and (4.97),

(4.100) Pu1 = (Cr An Cr + Cr)u0 = Cr2 Anu0 + 3 Cru0 = 3u1.

Thus, u1 is an eigenfunction with eigenvalue 3.

Lemma 52. For j ∈ N0 = {0, 1, 2, . . . } the function uj = Crj u0 satisfies
Puj = (2j + 1)uj .
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Proof. This follows by induction on j, where we know the result for j = 0
and j = 1. Then

(4.101) P Cruj = (Cr An +1) Cruj = Cr(P − 1)uj + 3 Cruj = (2j + 3)uj .

�

Again by induction we can check that uj = (2jxj + qj(x))e−x
2/2 where qj is a

polynomial of degree at most j − 2. Indeed this is true for j = 0 and j = 1 (where
q0 = q1 ≡ 0) and then

(4.102) Cruj = (2j+1xj+1 + Cr qj)e
−x2/2.

and qj+1 = Cr qj is a polynomial of degree at most j − 1 – one degree higher than
qj .

From this it follows in fact that the finite span of the uj consists of all the

products p(x)e−x
2/2 where p(x) is any polynomial.

Now, all these functions are in L2(R) and we want to compute their norms.
First, a standard integral computation1 shows that

(4.103)

∫
R

(e−x
2/2)2 =

∫
R
e−x

2

=
√
π

For j > 0, integration by parts (easily justified by taking the integral over [−R,R]
and then letting R→∞) gives

(4.104)

∫
R

(Crj u0)2 =

∫
R

Crj u0(x) Crj u0(x)dx =

∫
R
u0 Anj Crj u0.

Now, from (4.99), we can move one factor of An through the j factors of Cr until
it emerges and ‘kills’ u0

(4.105) An Crj u0 = 2 Crj−1 u0 + Cr An Crj−1 u0

= 2 Crj−1 u0 + Cr2 An Crj−2 u0 = 2j Crj−1 u0.

So in fact,

(4.106)

∫
R

(Crj u0)2 = 2j

∫
R

(Crj−1 u0)2 = 2jj!
√
π.

A similar argument shows that

(4.107)

∫
R
ukuj =

∫
R
u0 Ank Crj u0 = 0 if k 6= j.

Thus the functions

(4.108) ej = 2−j/2(j!)−
1
2π−

1
4Cje−x

2/2

form an orthonormal sequence in L2(R).

1To compute the Gaussian integral, square it and write as a double integral then introduce
polar coordinates

(

∫
R
e−x

2
dx)2 =

∫
R2
e−x

2−y2dxdy =

∫ ∞
0

∫ 2π

0
e−r

2
rdrdθ = π

[
− e−r

2]∞
0

= π.
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We would like to show this orthonormal sequence is complete. Rather than
argue through approximation, we can guess that in some sense the operator

(4.109) An Cr = (
d

dx
+ x)(− d

dx
+ x) = − d2

dx2
+ x2 + 1

should be invertible, so one approach is to use the ideas above of Friedrichs’ exten-
sion to construct its ‘inverse’ and show this really exists as a compact, self-adjoint
operator on L2(R) and that its only eigenfunctions are the ei in (4.108). Another,
more indirect approach is described below.

6. Isotropic space

There are some functions which should be in the domain of P, namely the twice
continuously differentiable functions on R with compact support, those which vanish
outside a finite interval. Recall that there are actually a lot of these, they are dense
in L2(R). Following what we did above for the Dirichlet problem set

(4.110) D̃ = {u : R 7−→ C;∃ R s.t. u = 0 in |x| > R,

u is twice continuously differentiable on R}.

Now for such functions integration by parts on a large enough interval (depend-
ing on the functions) produces no boundary terms so

(4.111) (Pu, v)L2 =

∫
R

(Pu)v =

∫
R

(
du

dx

dv

dx
+ x2uv

)
= (u, v)iso

is a positive definite hermitian form on D̃. Indeed the vanishing of ‖u‖S implies

that ‖xu‖L2 = 0 and so u = 0 since u ∈ D̃ is continuous. The suffix ‘iso’ here
stands for ‘isotropic’ and refers to the fact that xu and du/dx are essentially on the
same footing here. Thus

(4.112) (u, v)iso = (
du

dx
,
dv

dx
)L2 + (xu, xv)L2 .

This may become a bit clearer later when we get to the Fourier transform.

Definition 23. Let H1
iso(R) be the completion of D̃ in (4.110) with respect to

the inner product (·, ·)iso.

Proposition 48. The inclusion map i : D̃ −→ L2(R) extends by continuity
to i : H1

iso −→ L2(R) which satisfies (4.67), (4.68), (4.69), (4.70) and (4.79) with
D = H1

iso and H = L2(R) and the derivative and multiplication maps define an
injection

(4.113) H1
iso −→ L2(R)× L2(R).

Proof. Let us start with the last part, (4.113). The map here is supposed to
be the continuous extension of the map

(4.114) D̃ 3 u 7−→ (
du

dx
, xu) ∈ L2(R)× L2(R)

where du/dx and xu are both compactly supported continuous functions in this
case. By definition of the inner product (·, ·)iso the norm is precisely

(4.115) ‖u‖2iso = ‖du
dx
‖2L2 + ‖xu‖2L2
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so if un is Cauchy in D̃ with respect to ‖ · ‖iso then the sequences dun/dx and xun
are Cauchy in L2(R). By the completeness of L2 they converge defining an element
in L2(R)× L2(R) as in (4.113). Moreover the elements so defined only depend on
the element of the completion that the Cauchy sequence defines. The resulting map
(4.113) is clearly continuous.

Now, we need to show that the inclusion i extends to H1
iso from D̃. This follows

from another integration identity. Namely, for u ∈ D̃ the Fundamental theorem of
calculus applied to

d

dx
(uxu) = |u|2 +

du

dx
xu+ ux

du

dx
gives

(4.116) ‖u‖2L2 ≤
∫
R
|du
dx
xu|+

∫
|uxdu

dx
| ≤ ‖u‖2iso.

Thus the inequality (4.70) holds for u ∈ D̃.
It follows that the inclusion map i : D̃ −→ L2(R) extends by continuity to H1

iso

since if un ∈ D̃ is Cauchy with respect in H1
iso it is Cauchy in L2(R). It remains to

check that i is injective and compact, since the range is already dense on D̃.
If u ∈ H1

iso then to say i(u) = 0 (in L2(R)) is to say that for any un → u in

H1
iso, with un ∈ D̃, un → 0 in L2(R) and we need to show that this means un → 0

in H1
iso to conclude that u = 0. To do so we use the map (4.113). If unD̃ converges

in H1
iso then it follows that the sequence (dudx , xu) converges in L2(R)×L2(R). If v is

a continuous function of compact support then (xun, v)L2 = (un, xv) → (u, xv)L2 ,
for if u = 0 it follows that xun → 0 as well. Similarly, using integration by parts
the limit U of dun

dx in L2(R) satisfies

(4.117) (U, v)L2 = lim
n

∫
dun
dx

v = − lim
n

∫
un
dv

dx
= −(u,

dv

dx
)L2 = 0

if u = 0. It therefore follows that U = 0 so in fact un → 0 in H1
iso and the injectivity

of i follows. �

We can see a little more about the metric on H1
iso.

Lemma 53. Elements of H1
iso are continuous functions and convergence with

respect to ‖ · ‖iso implies uniform convergence on bounded intervals.

Proof. For elements of the dense subspace D̃, (twice) continuously differ-
entiable and vanishing outside a bounded interval the Fundamental Theorem of
Calculus shows that

(4.118)

u(x) = ex
2/2

∫ x

−∞
(
d

dt
(e−t

2/2u) = ex
2/2

∫ x

−∞
(e−t

2/2(−tu+
du

dt
)) =⇒

|u(x)| ≤ ex
2/2(

∫ x

−∞
e−t

2

)
1
2 ‖u‖iso

where the estimate comes from the Cauchy-Schwarz applied to the integral. It fol-
lows that if un → u with respect to the isotropic norm then the sequence converges
uniformly on bounded intervals with

(4.119) sup
[−R,R]

|u(x)| ≤ C(R)‖u‖iso.

�
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Now, to proceed further we either need to apply some ‘regularity theory’ or do a
computation. I choose to do the latter here, although the former method (outlined
below) is much more general. The idea is to show that

Lemma 54. The linear map (P + 1) : C2
c (R) −→ Cc(R) is injective with range

dense in L2(R) and if f ∈ L2(R) ∩ C(R) there is a sequence un ∈ C2
c (R) such

that un → u in H1
iso, un → u locally uniformly with its first two derivatives and

(P + 1)un → f in L2(R) and locally uniformly.

Proof. Why P + 1 and not P? The result is actually true for P but not so
easy to show directly. The advantage of P + 1 is that it factorizes

(P + 1) = An Cr on C2
c (R).

so we proceed to solve the equation (P + 1)u = f in two steps.
First, if f ∈ c(R) then using the natural integrating factor

(4.120) v(x) = ex
2/2

∫ x

−∞
et

2/2f(t)dt+ ae−x
2/2 satisfies An v = f.

The integral here is not in general finite if f does not vanish in x < −R, which by

assumption it does. Note that An e−x
2/2 = 0. This solution is of the form

(4.121) v ∈ C1(R), v(x) = a±e
−x2/2 in ± x > R

where R depends on f and the constants can be different.
In the second step we need to solve away such terms – in general one cannot.

However, we can always choose a in (4.120) so that

(4.122)

∫
R
e−x

2/2v(x) = 0.

Now consider

(4.123) u(x) = ex
2/2

∫ x

−∞
e−t

2/2v(t)dt.

Here the integral does make sense because of the decay in v from (4.121) and
u ∈ C2(R). We need to understand how it behaves as x → ±∞. From the second
part of (4.121),

(4.124) u(x) = a− erf−(x), x < −R, erf−(x) =

∫
(−∞,x]

ex
2/2−t2

is an incomplete error function. It’s derivative is e−x
2

but it actually satisfies

(4.125) |x erf−(x)| ≤ Cex
2

, x < −R.

In any case it is easy to get an estimate such as Ce−bx
2

as x → −∞ for any
0 < b < 1 by Cauchy-Schwarz.

As x→∞ we would generally expect the solution to be rapidly increasing, but
precisely because of (4.122). Indeed the vanishing of this integral means we can
rewrite (4.123) as an integral from +∞ :

(4.126) u(x) = −ex
2/2

∫
[x,∞)

e−t
2/2v(t)dt
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and then the same estimates analysis yields

(4.127) u(x) = −a+ erf+(x), x < −R, erf+(x) =

∫
[x,∞)

ex
2/2−t2

So for any f ∈ Cc(R) we have found a solution of (P +1)u = f with u satisfying
the rapid decay conditions (4.124) and (4.127). These are such that if χ ∈ C2

c (R)
has χ(t) = 1 in |t| < 1 then the sequence

(4.128) un = χ(
x

n
)u(x)→ u, u′n → u′, u′′n → u′′

in all cases with convergence in L2(R) and uniformly and even such that x2un → xu
uniformly and in L2(R).

This yields the first part of the Lemma, since if f ∈ Cc(R) and u is the solution
just constructed to (P + 1)u = f then (P + 1)un → f in L2. So the closure L2(R)
in range of (P + 1) on C2

c (R) includes Cc(R) so is certainly dense in L2(R).
The second part also follows from this construction. If f ∈ L2(R) ∩ C(R) then

the sequence

(4.129) fn = χ(
x

n
)f(x) ∈ Cc(R)

converges to f both in L2(R) and locally uniformly. Consider the solution, un to
(P + 1)un = fn constructed above. We want to show that un → u in L2 and
locally uniformly with its first two derivatives. The decay in un is enough to allow
integration by parts to see that

(4.130)

∫
R

(P + 1)unun = ‖un‖2iso + ‖u‖2L2 = |(fn, un)| ≤ ‖fn‖l2‖un‖L2 .

This shows that the sequence is bounded in H1
iso and applying the same estimate

to un− um that it is Cauchy and hence convergent in H1
iso. This implies un → u in

H1
iso and so both in L2(R) and locally uniformly. The differential equation can be

written

(4.131) (un)′′ = x2un − un − fn
where the right side converges locally uniformly. It follows from a standard result
on uniform convergence of sequences of derivatives that in fact the uniform limit u
is twice continuously differentiable and that (un)′′ → u′′ locally uniformly. So in
fact (P + 1)u = f and the last part of the Lemma is also proved. �

7. Fourier transform

The Fourier transform for functions on R is in a certain sense the limit of the
definition of the coefficients of the Fourier series on an expanding interval, although
that is not generally a good way to approach it. We know that if u ∈ L1(R) and
v ∈ C∞(R) is a bounded continuous function then vu ∈ L1(R) – this follows from
our original definition by approximation. So if u ∈ L1(R) the integral

(4.132) û(ξ) =

∫
e−ixξu(x)dx, ξ ∈ R

exists for each ξ ∈ R as a Legesgue integral. Note that there are many different
normalizations of the Fourier transform in use. This is the standard ‘analysts’
normalization.
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Proposition 49. The Fourier tranform, (4.132), defines a bounded linear map

(4.133) F : L1(R) 3 u 7−→ û ∈ C0(R)

into the closed subspace C0(R) ⊂ C∞(R) of continuous functions which vanish at
infinity (with respect to the supremum norm).

Proof. We know that the integral exists for each ξ and from the basic prop-
erties of the Lebesgue integal

(4.134) |û(ξ)| ≤ ‖u‖L1 , since |e−ixξu(x)| = |u(x)|.

To investigate its properties we restrict to u ∈ C(R), a compactly-supported
continuous function. Then the integral becomes a Riemann integral and the in-
tegrand is a continuous function of both variables. It follows that the result is
uniformly continuous:-

(4.135) |û(ξ)− û(ξ′)| ≤
∫
|x|≤R

|e−ixξ−e−ixξ
′
||u(x)|dx ≤ C(u) sup

|x|≤R
|e−ixξ−e−ixξ

′
|

with the right side small by the uniform continuity of continuous functions on
compact sets. From (4.134), if un → u in L1(R) with un ∈ Cc(R) it follows that
ûn → û uniformly on R. Thus the Fourier transform is uniformly continuous on
R for any u ∈ L1(R) (you can also see this from the continuity-in-the-mean of L1

functions).
Now, we know that even the compactly-supported once continuously differen-

tiable functions, forming C1
c (R) are dense in L1(R) so we can also consider (4.132)

where u ∈ C1
c (R). Then the integration by parts as follows is justified

(4.136) ξû(ξ) = i

∫
(
de−ixξ

dx
)u(x)dx = −i

∫
e−ixξ

du(x)

dx
dx.

Now, du/dx ∈ Cc(R) (by assumption) so the estimate (4.134) now gives

(4.137) sup
ξ∈R
|ξû(ξ)| ≤ sup

x∈R
|du
dx
|.

This certainly implies the weaker statement that

(4.138) lim
|ξ|→∞

|û(ξ)| = 0

which is ‘vanishing at infinity’. Now we again use the density, this time of C1
c (R),

in L1(R) and the uniform estimate (4.134), plus the fact that is a sequence of
continuous functions on R converges uniformly on R and each element vanishes at
infinity then the limit vanishes at infinity to complete the proof of the Proposition.

�

We will use the explicit eigenfunctions of the harmonic oscillator below to
show that the Fourier tranform extends by continuity from Cc(R) to define an
isomorphism

(4.139) F : L2(R) −→ L2(R)

with inverse given by the corresponding continuous extension of

(4.140) Gv(x) = (2π)−1

∫
eixξv(ξ).
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8. Fourier inversion

This year, 2015, I decided to go directly to the proof of the Fourier inversion
formula, via Schwartz space and an elegant argument due to Hörmander.

We have shown above that the Fourier transform is defined as an integral if
u ∈ L1(R). Suppose that in addition we know that xu ∈ L1(R). We can summarize
the combined information as (why?)

(4.141) (1 + |x|)u ∈ L1(R).

Lemma 55. If u satisfies (4.141) then û is continuously differentiable and
dû/dξ = F(−ixu) is bounded.

Proof. Consider the difference quotient for the Fourier transform:

(4.142)
û(ξ + s)− û(ξ)

s
=

∫
e−ixs − 1

s
e−ixξu(x).

We can use the standard proof of Taylor’s formula to write the difference quotient
inside the integral as

(4.143) D(x, s) = −ix
∫ 1

0

e−itxsdt =⇒ |D(x, s)| ≤ |x|.

It follows that as s→ 0 (along a sequence if you prefer) D(x, s)e−ixξf(x) is bounded
by the L1(R) function |x||u(x)| and converges pointwise to −ie−ixξxu(x). Domi-
nated convergence therefore shows that the integral converges showing that the
derivative exists and that

(4.144)
dû(ξ)

dξ
= F(−ixu).

From the earlier results it follows that the derivative is continuous and bounded,
proving the lemma. �

Now, we can iterate this result and so conclude:

(4.145)

(1 + |x|)ku ∈ L1(R) ∀ k =⇒
û is infinitely differentiable with bounded derivatives and

dkû

dξk
= F((−ix)ku).

This result shows that from ‘decay’ of u we deduce smoothness of û. We can
go the other way too. Note one way to ensure the assumption in (4.145) is to make
the stronger assumption that

(4.146) xku is bounded and continuous ∀ k.
Indeed, Dominated Convergence shows that if u is continuous and satisfies the
bound

|u(x)| ≤ (1 + |x|)−r, r > 1

then u ∈ L1(R). So the integrability of xju follows from the bounds in (4.146) for
k ≤ j + 2. This is throwing away information but simplifies things below.

In the opposite direction, suppose that u is continuously differentiable and
satisfies the estimates (4.146) and

|u(x)

dx
| ≤ (1 + |x|)−r, r > 1.
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Then consider

(4.147) ξû = i

∫
de−ixξ

dx
u(x) = lim

R→∞
i

∫ R

−R

de−ixξ

dx
u(x).

We may integrate by parts in this integral to get

(4.148) ξû = lim
R→∞

(
i
[
e−ixξu(x)

]R
−R − i

∫ R

−R
e−ixξ

du

dx

)
.

The decay of u shows that the first term vanishes in the limit so

(4.149) ξû = F(−idu
dx

).

Iterating this in turn we see that if u has continuous derivatives of all orders
and for all j

(4.150) |d
ju

dxj
| ≤ Cj(1 + |x|)−r, r > 1 then ξj û = F((−i)j d

ju

dxj
)

are all bounded.
Laurent Schwartz defined a space which handily encapsulates these results.

Definition 24. Schwartz space, S(R), consists of all the infinitely differentiable
functions u : R −→ C such that

(4.151) ‖u‖j,k = sup |xj d
ku

dxk
| <∞ ∀ j, k ≥ 0

This is clearly a linear space. In fact it is a complete metric space in a natural
way. All the ‖ · ‖j,k in (4.151) are norms on S(R), but none of them is stronger
than the others. So there is no natural norm on S(R) with respect to which it is
complete. In the problems below you can find some discussion of the fact that

(4.152) d(u, v) =
∑
j,k≥0

2−j−k
‖u− v‖j,k

1 + ‖u− v‖j,k

is a complete metric. We will not use this here.
Notice that there is some prejudice on the order of multiplication by x and dif-

ferentiation in (4.151). This is only apparent, since these estimates (taken together)
are equivalent to

(4.153) sup |d
k(xju)

dxk
| <∞ ∀ j, k ≥ 0.

To see the equivalence we can use induction over N where the inductive statement
is the equivalence of (4.151) and (4.153) for j + k ≤ N. Certainly this is true for
N = 0 and to carry out the inductive step just differentiate out the product to see
that

dk(xju)

dxk
= xj

dku

dxk
+

∑
l+m<k+j

cl,m,k,jx
m d

lu

dxl

where one can be much more precise about the extra terms, but the important
thing is that they all are lower order (in fact both degrees go down). If you want to
be careful, you can of course prove this identity by induction too! The equivalence
of (4.151) and (4.153) for N + 1 now follows from that for N.
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Theorem 19. The Fourier transform restricts to a bijection on S(R) with
inverse

(4.154) G(v)(x) =
1

2π

∫
eixξv(ξ).

Proof. The proof (due to Hörmander as I said above) will take a little while
because we need to do some computation, but I hope you will see that it is quite
clear and elementary.

First we need to check that F : S(R) −→ S(R), but this is what I just did the
preparation for. Namely the estimates (4.151) imply that (4.150) applies to all the
dk(xju)
dxk

and so

(4.155) ξk
dj û

dξj
is continuous and bounded ∀ k, j =⇒ û ∈ S(R).

This indeed is why Schwartz introduced this space.
So, what we want to show is that with G defined by (4.154), u = G(û) for all

u ∈ S(R). Notice that there is only a sign change and a constant factor to get from
F to G so certainly G : S(R) −→ S(R). We start off with what looks like a small
part of this. Namely we want to show that

(4.156) I(û) =

∫
û = 2πu(0).

Here, I : S(R) −→ C is just integration, so it is certainly well-defined. To prove
(4.156) we need to use a version of Taylor’s formula and then do a little computation.

Lemma 56. If u ∈ S(R) then

(4.157) u(x) = u(0) exp(−x
2

2
) + xv(x), v ∈ S(R).

Proof. Here I will leave it to you (look in the problems) to show that the
Gaussian

(4.158) exp(−x
2

2
) ∈ S(R).

Observe then that the difference

w(x) = u(x)− u(0) exp(−x
2

2
) ∈ S(R) and w(0) = 0.

This is clearly a necessary condition to see that w = xv with v ∈ S(R) and we can
then see from the Fundamental Theorem of Calculus that

(4.159) w(x) =

∫ x

0

w′(y)dy = x

∫ 1

0

w′(tx)dt =⇒ v(x) =

∫ 1

0

w′(tx) =
w(x)

x
.

From the first formula for v it follows that it is infinitely differentiable and from the
second formula the derivatives decay rapidly since each derivative can be written

in the form of a finite sum of terms p(x)d
lw
dxl

/xN where the ps are polynomials.
The rapid decay of the derivatives of w therefore implies the rapid decay of the
derivatives of v. So indeed we have proved Lemma 56. �

Let me set γ(x) = exp(−x
2

2 ) to simplify the notation. Taking the Fourier
transform of each of the terms in (4.157) gives

(4.160) û = u(0)γ̂ + i
dv̂

dξ
.
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Since v̂ ∈ S(R),

(4.161)

∫
dv̂

dξ
= lim
R→∞

∫ R

−R

dv̂

dξ
= lim
R→∞

[
v̂(ξ)

]R
−R = 0.

So now we see that ∫
û = cu(0), c =

∫
γ̂

being a constant that we still need to work out!

Lemma 57. For the Gaussian, γ(x) = exp(−x
2

2 ),

(4.162) γ̂(ξ) =
√

2πγ(ξ).

Proof. Certainly, γ̂ ∈ S(R) and from the identities for derivatives above

(4.163)
dγ̂

dξ
= −iF(xγ), ξγ̂ = F(−idγ

dx
).

Thus, γ̂ satisfies the same differential equation as γ :

dγ̂

dξ
+ ξγ̂ = −iF(

dγ

dx
+ xγ) = 0.

This equation we can solve and so we conclude that γ̂ = c′γ where c′ is also a
constant that we need to compute. To do this observe that

(4.164) c′ = γ̂(0) =

∫
γ =
√

2π

which gives (4.162). The computation of the integral in (4.164) is a standard clever
argument which you probably know. Namely take the square and work in polar
coordinates in two variables:

(4.165) (

∫
γ)2 =

∫ ∞
0

∫ ∞
0

e−(x2+y2)dxdy

=

∫ 2π

0

∫ ∞
0

e−r
2/2rdrdθ = 2π

[
− e−r

2/2
]∞
0

= 2π.

�

So, finally we need to get from (4.156) to the inversion formula. Changing
variable in the Fourier transform we can see that for any y ∈ R, setting uy(x) =
u(x+ y), which is in S(R) if u ∈ S(R),

(4.166) F(uy) =

∫
e−ixξuy(x)dx =

∫
e−i(s−y)ξu(s)ds = eiyξû.

Now, plugging uy into (4.156) we see that

(4.167)

∫
ûy(0) = 2πuy(0) = 2πu(y) =

∫
eiyξû(ξ)dξ =⇒ u(y) = Gu,

the Fourier inversion formula. So we have proved the Theorem. �
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9. Convolution

There is a discussion of convolution later in the notes, I have inserted a new
(but not very different) treatment here to cover the density of S(R) in L2(R) needed
in the next section.

Consider two continuous functions of compact support u, v ∈ Cc(R). Their
convolution is

(4.168) u ∗ v(x) =

∫
u(x− y)v(y)dy =

∫
u(y)v(x− y)dy.

The first integral is the definition, clearly it is a well-defined Riemann integral since
the integrand is continuous as a function of y and vanishes whenever v(y) vanishes
– so has compact support. In fact if both u and v vanish outside [−R,R] then
u ∗ v = 0 outside [−2R, 2R].

From standard properties of the Riemann integral (or Dominated convergence
if you prefer!) it follows easily that u∗v is continuous. What we need to understand
is what happens if (at least) one of u or v is smoother. In fact we will want to take
a very smooth function, so I pause here to point out

Lemma 58. There exists a (‘bump’) function ψ : R −→ R which is infinitely
differentiable, i.e. has continuous derivatives of all orders, vanishes outside [−1, 1],
is strictly positive on (−1, 1) and has integral 1.

Proof. We start with an explicit function,

(4.169) φ(x) =

{
e−1/x x > 0

0 x ≤ 0.

The exponential function grows faster than any polynomial at +∞, since

(4.170) exp(x) >
xk

k!
in x > 0 ∀ k.

This can be seen directly from the Taylor series which converges on the whole line
(indeed in the whole complex plane)

exp(x) =
∑
k≥0

xk

k!
.

From (4.170) we deduce that

(4.171) lim
x↓0

e−1/x

xk
= lim
R→∞

Rk

eR
= 0 ∀ k

where we substitute R = 1/x and use the properties of exp . In particular φ in
(4.169) is continuous across the origin, and so everywhere. We can compute the
derivatives in x > 0 and these are of the form

(4.172)
dlφ

dxl
=
pl(x)

x2l
e−1/x, x > 0, pl a polynomial.

As usual, do this by induction since it is true for l = 0 and differetiating the formula
for a given l one finds

(4.173)
dl+1φ

dxl+1
=

(
pl(x)

x2l+2
− 2l

pl(x)

x2l+1
+
p′l(x)

x2l

)
e−1/x

where the coefficient function is of the desired form pl+1/x
2l+2.
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Once we know (4.172) then we see from (4.171) that all these functions are
continuous down to 0 where they vanish. From this it follows that φ in (4.169)
is infinitely differentiable. For φ itself we can use the Fundamental Theorem of
Calculus to write

(4.174) φ(x) =

∫ x

ε

U(t)dt+ φ(ε), x > ε > 0.

Here U is the derivative in x > 0. Taking the limit as ε ↓ 0 both sides converge,
and then we see that

φ(x) =

∫ x

0

U(t)dt.

From this it follows that φ is continuously differentiable across 0 and it derivative
is U, the continuous extension of the derivative from x > 0. The same argument
applies to successive derivatives, so indeed φ is infinitely differentiable.

From φ we can construct a function closer to the desired bump function.
Namely

Φ(x) = φ(x+ 1)φ(1− x).

The first factor vanishes when x ≤ −1 and is otherwise positive while the second
vanishes when x ≥ 1 but is otherwise positive, so the product is infinitely differ-
entiable on R and positive on (−1, 1) but otherwise 0. Then we can normalize the
integral to 1 by taking

(4.175) ψ(x) = Φ(x)/

∫
Φ.

�

In particular from Lemma 58 we conclude that the space C∞c (R), of infinitely
differentiable functions of compact support, is not empty. Going back to convolution
in (4.168) suppose now that v is smooth. Then

(4.176) u ∈ Cc(R), v ∈ C∞c (R) =⇒ u ∗ v ∈ C∞c (R).

As usual this follows from properties of the Riemann integral or by looking directly
at the difference quotient

u ∗ v(x+ t)− u ∗ v(x)

t
=

∫
u(y)

v(x+ t− y)− v(x− y)

t
dt.

As t→ 0, the difference quotient for v converges uniformly (in y) to the derivative
and hence the integral converges and the derivative of the convolution exists,

(4.177)
d

dx
u ∗ v(x) = u ∗ (

dv

dx
).

This result allows immediate iteration, showing that the convolution is smooth and
we know that it has compact support

Proposition 50. For any u ∈ Cc(R) there exists un → u uniformly on R where
un ∈ C∞c (R) with supports in a fixed compact set.

Proof. For each ε > 0 consider the rescaled bump function

(4.178) ψε = ε−1ψ(
x

ε
) ∈ C∞c (R).
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In fact, ψε vanishes outside the interval (ε, ε), is positive within this interval and
has integral 1 – which is what the factor of ε−1 does. Now set

(4.179) uε = u ∗ ψε ∈ C∞c (R), ε > 0,

from what we have just seen. From the supports of these functions, uε vanishes
outside [−R−ε, R+ε] if u vanishes outside [−R,R]. So only the convergence remains.
To get this we use the fact that the integral of ψε is equal to 1 to write

(4.180) uε(x)− u(x) =

∫
(u(x− y)ψε(y)− u(x)ψε(y))dy.

Estimating the integral using the positivity of the bump function

(4.181) |uε(x)− u(x)| =
∫ ε

−ε
|u(x− y)− u(x)|ψε(y)dy.

By the uniformity of a continuous function on a compact set, given δ > 0 there
exists ε > 0 such that

sup
[−ε,ε]

|u(x− y)− y(x)| < δ ∀ x ∈ R.

So the uniform convergence follows:-

(4.182) sup |uε(x)− u(x)| ≤ δ
∫
φε = δ

Pass to a sequence εn → 0 if you wish, �

Corollary 5. The spaces C∞c (R) and S(R) are dense in L2(R).

Uniform convegence of continuous functions with support in a fixed subset is
stronger than L2 convergence, so the result follows from the Proposition above for
C∞c (R) ⊂ S(R).

10. Plancherel and Parseval

But which is which?
We proceed to show that F and G, defined in (4.132) and (4.140), both extend

to isomorphisms of L2(R) which are inverses of each other. The main step is to
show that

(4.183)

∫
u(x)v̂(x)dx =

∫
û(ξ)v(ξ)dξ, u, v ∈ S(R).

Since the integrals are rapidly convergent at infinity we may substitute the definite
of the Fourier transform into (4.183), write the result out as a double integral and
change the order of integration

(4.184)

∫
u(x)v̂(x)dx =

∫
u(x)

∫
e−ixξv(ξ)dξdx

=

∫
v(ξ)

∫
e−ixξu(x)dxdξ =

∫
û(ξ)v(ξ)dξ.

Now, if w ∈ S(R) we may replace v(ξ) by ŵ(ξ), since it is another element of
S(R). By the Fourier Inversion formula,

(4.185) w(x) = (2π)−1

∫
e−ixξŵ(ξ) =⇒ w(x) = (2π)−1

∫
eixξŵ(ξ) = (2π)−1v̂.
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Substituting these into (4.183) gives Parseval’s formula

(4.186)

∫
uw =

1

2π

∫
ûŵ, u, w ∈ S(R).

Proposition 51. The Fourier transform F extends from S(R) to an isomor-
phism on L2(R) with 1√

2π
F an isometric isomorphism with adjoint, and inverse,

√
2πG.

Proof. Setting u = w in (4.186) shows that

(4.187) ‖F(u)‖L2 =
√

2π‖u‖L2

for all u ∈ S(R). The density of S(R), established above, then implies that F
extends by continuity to the whole of L2(R) as indicated. �

This isomorphism of L2(R) has many implications. For instance, we would
like to define the Sobolev space H1(R) by the conditions that u ∈ L2(R) and
du
dx ∈ L

2(R) but to do this we would need to make sense of the derivative. However,
we can ‘guess’ that if it exists, the Fourier transform of du/dx should be iξû(ξ).
For a function in L2, such as û given that u ∈ L2, we do know what it means to
require ξû(ξ) ∈ L2(R). We can then define the Sobolev spaces of any positive, even
non-integral, order by

(4.188) Hr(R) = {u ∈ L2(R); |ξ|rû ∈ L2(R)}.

Of course it would take us some time to investigate the properties of these spaces!

11. Completeness of the Hermite functions

In 2015 I gave a different proof of the completeness of the eigenfunctions of
the harmonic operator, reducing it to the spectral theorem, discussed in Section 5
above.

The starting point is to find a (generalized) inverse to the creation operator.

Namely e−x
2/2 is an integrating factor for it, so acting on once differentiable func-

tions

(4.189) Cru = −du
dx

+ xu = ex
2/2 d

dx
(e−x

2/2u).

For a function, say f ∈ Cc(R), we therefore get a solution by integration

(4.190) u(x) = −ex
2/2

∫ x

−∞
e−t

2/2f(t)dt.

This function vanishes for x << 0 but as x → +∞, after passing the top of the
support of f,

(4.191) u(x) = cex
2/2, c = −

∫
R
e−t

2/2f(t)dt.

So, to have Sf decay in both directions we need to assume that this integral van-
ishes.

Proposition 52. The creation operator gives a bijection

(4.192) Cr : S(R) −→ {f ∈ S(R);

∫
et

2/2f(t)dt = 0}
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with two-sided inverse in this sense

(4.193) u = Sf, Sf(x) = −ex
2/2

∫ x

−∞
e−t

2/2(Π0f)(t)dt,

Π0f = f − (
1√
π

∫
e−t

2/2f(t)dt)e−x
2/2.

Note that Π0 is the orthogonal projection off the ground state of the harmonic
oscillator and gives a map from S(R) to the right side of (4.192).

Proof. For any f ∈ S(R) consider the behaviour of u given by (4.190) as
x→ −∞. [This is what I messed up in lecture.] What we wish to show is that

(4.194) |xku(x)| is bounded as x→ −∞

for all k. Now, it is not possible to find an explicit primitive for et
2/2 but we can

make do with the identity

(4.195)
d

dt

e−t
2/2

t
= −e−t

2/2 − e−t
2/2

t2
.

Inserting this into the integral defining u and integrating by parts we find

(4.196) u(x) = −f(x)/x− ex
2/2

∫ x

−∞
e−t

2/2(
f ′(t)

t
− f(t)

t2
)dt.

The first term here obviously satisfies the estimate (4.194) and we can substitute
in the integral and repeat the procedure. Proceeding inductively we find after N
steps
(4.197)

u(x) =
∑

1≤k≤2N+1

hj
xj

+ ex
2/2

∫ x

−∞
e−t

2/2

 ∑
N≤j≤2N

gj,n(t)

tj

 dt, hj , gj,N ∈ S(R).

The first terms certainly satisfy (4.194) for any k and the integral is bounded by

C|x|−Ne−x2/2 so indeed (4.194) holds for all k.

For g ∈ S(R) such that
∫
e−t

2/2g(t) = 0 we can replace (4.190) by

(4.198) u(x) = −ex
2/2

∫ ∞
x

e−t
2/2f(t)dt

to which the same argument applies as x→ +∞. The effect of Π0 is to ensure this,
so

(4.199) sup(1 + |x|)k|Sf | <∞ ∀ k.
By construction, d

dxSf = xSf(x) − Π0f so this also shows rapid decrease of
the first derivative. In fact we may differentiate this equation N times and deduce,
inductively, that all derivatives of Sf are rapidly decaying at infinity.

So, we see that S defined by (4.193) maps S(R) to S(R) with null space con-

taining the span of e−x
2/2. Since it solves the differetial equation we find

(4.200) CrS = Id−Π0, S Cr = Id on S(R).

Indeed, the first identity is what we have just shown and this shows that Cr in
(4.192) is surjective. We already know it is injective since Cr f‖L2 ≥ ‖f‖L2 for
f ∈ S(R). So S Cr in (4.192) is a bijection and S is the bijection inverting it, so
the second identity in (4.200) follows. �
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Notice that we can deduce from (4.200) that S extends by continuity to a
bounded operator

(4.201) S : L2(R) −→ L2(R).

Namely, it is zero on the span of e−x
2/2 and

(4.202) ‖dSf
dx
‖2L2 + ‖xSf‖2L2 + ‖Sf‖2L2 = ‖Π0f‖2L2 ≤ ‖f‖2L2 .

This actually shows that the bounded extension of S is compact.

Theorem 20. The composite SS∗ is a compact injective self-adjoint operator
on L2(R) with eigenvalues (2j + 2)−1 for f ≥ 0 and associated one-dimesnional

eigenspaces Ej ⊂ S(R) spanned by Crj e−x
2/2; in particular the Hermite functions

form an orthonormal basis of L2(R).

Proof. We know that S has dense range (since this is already true when it acts

on S(R)) so S∗ is injective and has range dense in the orthocomplement of e−x
2/2.

From this it follows that SS∗ is injective. Compactness follows from the discussion
of the isotropic space above, showing the compactness of S. By the spectral theorem
SS∗ has an orthonormal basis of eigenfunctions in L2(R), say vj , with eigenvalues
sj > 0 which we may assume to be decreasing to 0.

�

12. Mehler’s formula and completeness

Starting from the ground state for the harmonic oscillator

(4.203) P = − d2

dx2
+ x2, Hu0 = u0, u0 = e−x

2/2

and using the creation and annihilation operators

(4.204) An =
d

dx
+ x, Cr = − d

dx
+ x, An Cr−Cr An = 2 Id, H = Cr An + Id

we have constructed the higher eigenfunctions:

(4.205) uj = Crj u0 = pj(x)u0(c), p(x) = 2jxj + l.o.ts, Huj = (2j + 1)uj

and shown that these are orthogonal, uj ⊥ uk, j 6= k, and so when normalized give
an orthonormal system in L2(R) :

(4.206) ej =
uj

2j/2(j!)
1
2π

1
4

.

Now, what we want to see, is that these ej form an orthonormal basis of L2(R),
meaning they are complete as an orthonormal sequence. There are various proofs
of this, but the only ‘simple’ ones I know involve the Fourier inversion formula and
I want to use the completeness to prove the Fourier inversion formula, so that will
not do. Instead I want to use a version of Mehler’s formula.

To show the completeness of the ej ’s it is enough to find a compact self-adjoint
operator with these as eigenfunctions and no null space. It is the last part which
is tricky. The first part is easy. Remembering that all the ej are real, we can find
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an operator with the ej ;s as eigenfunctions with corresponding eigenvalues λj > 0
(say) by just defining

(4.207) Au(x) =

∞∑
j=0

λj(u, ej)ej(x) =

∞∑
j=0

λjej(x)

∫
ej(y)u(y).

For this to be a compact operator we need λj → 0 as j →∞, although for bound-
edness we just need the λj to be bounded. So, the problem with this is to show
that A has no null space – which of course is just the completeness of the e′j since
(assuming all the λj are positive)

(4.208) Au = 0⇐⇒ u ⊥ ej ∀ j.

Nevertheless, this is essentially what we will do. The idea is to write A as an
integral operator and then work with that. I will take the λj = wj where w ∈ (0, 1).
The point is that we can find an explicit formula for

(4.209) Aw(x, y) =

∞∑
j=0

wjej(x)ej(y) = A(w, x, y).

To find A(w, x, y) we will need to compute the Fourier transforms of the ej .
Recall that

(4.210)

F : L1(R) −→ C0
∞(R), F(u) = û,

û(ξ) =

∫
e−ixξu(x), sup |û| ≤ ‖u‖L1 .

Lemma 59. The Fourier transform of u0 is

(4.211) (Fu0)(ξ) =
√

2πu0(ξ).

Proof. Since u0 is both continuous and Lebesgue integrable, the Fourier trans-
form is the limit of a Riemann integral

(4.212) û0(ξ) = lim
R→∞

∫ R

−R
eiξxu0(x).

Now, for the Riemann integral we can differentiate under the integral sign with
respect to the parameter ξ – since the integrand is continuously differentiable – and
see that

(4.213)

d

dξ
û0(ξ) = lim

R→∞

∫ R

−R
ixeiξxu0(x)

= lim
R→∞

i

∫ R

−R
eiξx(− d

dx
u0(x)

= lim
R→∞

−i
∫ R

−R

d

dx

(
eiξxu0(x)

)
− ξ lim

R→∞

∫ R

−R
eiξxu0(x)

= −ξû0(ξ).

Here I have used the fact that Anu0 = 0 and the fact that the boundary terms
in the integration by parts tend to zero rapidly with R. So this means that û0 is
annihilated by An :

(4.214) (
d

dξ
+ ξ)û0(ξ) = 0.
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Thus, it follows that û0(ξ) = c exp(−ξ2/2) since these are the only functions in
annihilated by An . The constant is easy to compute, since

(4.215) û0(0) =

∫
e−x

2/2dx =
√

2π

proving (4.211). �

We can use this formula, of if you prefer the argument to prove it, to show that

(4.216) v = e−x
2/4 =⇒ v̂ =

√
πe−ξ

2

.

Changing the names of the variables this just says

(4.217) e−x
2

=
1

2
√
π

∫
R
eixs−s

2/4ds.

The definition of the uj ’s can be rewritten

(4.218) uj(x) = (− d

dx
+ x)je−x

2/2 = ex
2/2(− d

dx
)je−x

2

as is easy to see inductively – the point being that ex
2/2 is an integrating factor for

the creation operator. Plugging this into (4.217) and carrying out the derivatives
– which is legitimate since the integral is so strongly convergent – gives

(4.219) uj(x) =
ex

2/2

2
√
π

∫
R

(−is)jeixs−s
2/4ds.

Now we can use this formula twice on the sum on the left in (4.209) and insert
the normalizations in (4.206) to find that

(4.220)

∞∑
j=0

wjej(x)ej(y) =

∞∑
j=0

ex
2/2+y2/2

4π3/2

∫
R2

(−1)jwjsjtj

2jj!
eisx+ity−s2/4−t2/4dsdt.

The crucial thing here is that we can sum the series to get an exponential, this
allows us to finally conclude:

Lemma 60. The identity (4.209) holds with

(4.221) A(w, x, y) =
1

√
π
√

1− w2
exp

(
− 1− w

4(1 + w)
(x+ y)2 − 1 + w

4(1− w)
(x− y)2

)
Proof. Summing the series in (4.220) we find that

(4.222) A(w, x, y) =
ex

2/2+y2/2

4π3/2

∫
R2

exp(−1

2
wst+ isx+ ity − 1

4
s2 − 1

4
t2)dsdt.

Now, we can use the same formula as before for the Fourier transform of u0 to
evaluate these integrals explicitly. One way to do this is to make a change of
variables by setting

(4.223) s = (S + T )/
√

2, t = (S − T )/
√

2 =⇒ dsdt = dSdT,

− 1

2
wst+ isx+ ity− 1

4
s2− 1

4
t2 = iS

x+ y√
2
− 1

4
(1+w)S2 + iT

x− y√
2
− 1

4
(1−w)T 2.
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Note that the integrals in (4.222) are ‘improper’ (but rapidly convergent) Riemann
integrals, so there is no problem with the change of variable formula. The formula
for the Fourier transform of exp(−x2) can be used to conclude that

(4.224)

∫
R

exp(iS
x+ y√

2
− 1

4
(1 + w)S2)dS =

2
√
π√

(1 + w)
exp(− (x+ y)2

2(1 + w)
)∫

R
exp(iT

x− y√
2
− 1

4
(1− w)T 2)dT =

2
√
π√

(1− w)
exp(− (x− y)2

2(1− w)
).

Inserting these formulæ back into (4.222) gives

(4.225) A(w, x, y) =
1

√
π
√

1− w2
exp

(
− (x+ y)2

2(1 + w)
− (x− y)2

2(1− w)
+
x2

2
+
y2

2

)
which after a little adjustment gives (4.221). �

Now, this explicit representation of Aw as an integral operator allows us to
show

Proposition 53. For all real-valued f ∈ L2(R),

(4.226)

∞∑
j=1

|(u, ej)|2 = ‖f‖2L2 .

Proof. By definition of Aw

(4.227)

∞∑
j=1

|(u, ej)|2 = lim
w↑1

(f,Awf)

so (4.226) reduces to

(4.228) lim
w↑1

(f,Awf) = ‖f‖2L2 .

To prove (4.228) we will make our work on the integral operators rather simpler
by assuming first that f ∈ C0(R) is continuous and vanishes outside some bounded
interval, f(x) = 0 in |x| > R. Then we can write out the L2 inner product as a
double integral, which is a genuine (iterated) Riemann integral:

(4.229) (f,Awf) =

∫ ∫
A(w, x, y)f(x)f(y)dydx.

Here I have used the fact that f and A are real-valued.
Look at the formula for A in (4.221). The first thing to notice is the factor

(1 − w2)−
1
2 which blows up as w → 1. On the other hand, the argument of the

exponential has two terms, the first tends to 0 as w → 1 and the becomes very
large and negative, at least when x− y 6= 0. Given the signs, we see that

(4.230)
if ε > 0, X = {(x, y); |x| ≤ R, |y| ≤ R, |x− y| ≥ ε} then

sup
X
|A(w, x, y)| → 0 as w → 1.

So, the part of the integral in (4.229) over |x− y| ≥ ε tends to zero as w → 1.
So, look at the other part, where |x− y| ≤ ε. By the (uniform) continuity of f,

given δ > 0 there exits ε > 0 such that

(4.231) |x− y| ≤ ε =⇒ |f(x)− f(y)| ≤ δ.
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Now we can divide (4.229) up into three pieces:-

(4.232) (f,Awf) =

∫
S∩{|x−y|≥ε}

A(w, x, y)f(x)f(y)dydx

+

∫
S∩{|x−y|≤ε}

A(w, x, y)(f(x)− f(y))f(y)dydx

+

∫
S∩{|x−y|≤ε}

A(w, x, y)f(y)2dydx

where S = [−R,R]2.
Look now at the third integral in (4.232) since it is the important one. We can

change variable of integration from x to t =
√

1+w
1−w (x − y). Since |x − y| ≤ ε, the

new t variable runs over |t| ≤ ε
√

1+w
1−w and then the integral becomes

(4.233)

∫
S∩{|t|≤ε

√
1+w
1−w }

A(w, y + t

√
1− w
1 + w

, y)f(y)2dydt, where

A(w, y+t

√
1− w
1 + w

, y)

=
1√

π(1 + w)
exp

(
− 1− w

4(1 + w)
(2y + t

√
1− w)2

)
exp

(
− t

2

4

)
.

Here y is bounded; the first exponential factor tends to 1 and the t domain extends
to (−∞,∞) as w → 1, so it follows that for any ε > 0 the third term in (4.232)
tends to

(4.234) ‖f‖2L2 as w → 1 since

∫
e−t

2/4 = 2
√
π.

Noting that A ≥ 0 the same argument shows that the second term is bounded by
a constant multiple of δ. Now, we have already shown that the first term in (4.232)
tends to zero as ε→ 0, so this proves (4.228) – given some γ > 0 first choose ε > 0
so small that the first two terms are each less than 1

2γ and then let w ↑ 0 to see

that the lim sup and lim inf as w ↑ 0 must lie in the range [‖f‖2−γ, ‖f‖2 +γ]. Since
this is true for all γ > 0 the limit exists and (4.226) follows under the assumption
that f is continuous and vanishes outside some interval [−R,R].

This actually suffices to prove the completeness of the Hermite basis. In any
case, the general case follows by continuity since such continuous functions vanishing
outside compact sets are dense in L2(R) and both sides of (4.226) are continuous
in f ∈ L2(R). �

Now, (4.228) certainly implies that the ej form an orthonormal basis, which is
what we wanted to show – but hard work! It is done here in part to remind you
of how we did the Fourier series computation of the same sort and to suggest that
you might like to compare the two arguments.

13. Weak and strong derivatives

In approaching the issue of the completeness of the eigenbasis for harmonic
oscillator more directly, rather than by the kernel method discussed above, we run
into the issue of weak and strong solutions of differential equations. Suppose that
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u ∈ L2(R), what does it mean to say that du
dx ∈ L

2(R). For instance, we will want
to understand what the ‘possible solutions of’

(4.235) Anu = f, u, f ∈ L2(R), An =
d

dx
+ x

are. Of course, if we assume that u is continuously differentiable then we know
what this means, but we need to consider the possibilities of giving a meaning to
(4.235) under more general conditions – without assuming too much regularity on
u (or any at all).

Notice that there is a difference between the two terms in Anu = du
dx + xu. If

u ∈ L2(R) we can assign a meaning to the second term, xu, since we know that
xu ∈ L2

loc(R). This is not a normed space, but it is a perfectly good vector space,
in which L2(R) ‘sits’ – if you want to be pedantic it naturally injects into it. The
point however, is that we do know what the statement xu ∈2 (R) means, given
that u ∈ L2(R), it means that there exists v ∈ L2(R) so that xu = v in L2

loc(R)
(or L2

loc(R)). The derivative can actually be handled in a similar fashion using the
Fourier transform but I will not do that here.

Rather, consider the following three ‘L2-based notions’ of derivative.

Definition 25. (1) We say that u ∈ L2(R) has a Sobolev derivative if
there exists a sequence φn ∈ C1

c (R) such that φn → u in L2(R) and φ′n → v

in L2(R), φ′n = dφn
dx in the usual sense of course.

(2) We say that u ∈ L2(R) has a strong derivative (in the L2 sense) if the
limit

(4.236) lim
06=s→0

u(x+ s)− u(x)

s
= ṽ exists in L2(R).

(3) Thirdly, we say that u ∈ L2(R) has a weak derivative in L2 if there exists
w ∈ L2(R) such that

(4.237) (u,− df
dx

)L2 = (w, f)L2 ∀ f ∈ C1
c (R).

In all cases, we will see that it is justified to write v = ṽ = w = du
dx because these

defintions turn out to be equivalent. Of course if u ∈ C1
c (R) then u is differentiable

in each sense and the derivative is always du/dx – note that the integration by parts
used to prove (4.237) is justified in that case. In fact we are most interested in the
first and third of these definitions, the first two are both called ‘strong derivatives.’

It is easy to see that the existence of a Sobolev derivative implies that this
is also a weak derivative. Indeed, since φn, the approximating sequence whose
existence is the definition of the Soboleve derivative, is in C1

c (R) so the integration
by parts implicit in (4.237) is valid and so for all f ∈ C1

c (R),

(4.238) (φn,−
df

dx
)L2 = (φ′n, f)L2 .

Since φn → u in L2 and φ′n → v in L2 both sides of (4.238) converge to give the
identity (4.237).

Before proceeding to the rest of the equivalence of these definitions we need
to do some preparation. First let us investigate a little the consequence of the
existence of a Sobolev derivative.
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Lemma 61. If u ∈ L2(R) has a Sobolev derivative then u ∈ C(R) and there
exists an unquely defined element w ∈ L2(R) such that

(4.239) u(x)− u(y) =

∫ x

y

w(s)ds ∀ y ≥ x ∈ R.

Proof. Suppose u has a Sobolev derivative, determined by some approximat-
ing sequence φn. Consider a general element ψ ∈ C1

c (R). Then φ̃n = ψφn is a

sequence in C1
c (R) and φ̃n → ψu in L2. Moreover, by the product rule for standard

derivatives

(4.240)
d

dx
φ̃n = ψ′φn + ψφ′n → ψ′u+ ψw in L2(R).

Thus in fact ψu also has a Sobolev derivative, namely φ′u+ψw if w is the Sobolev
derivative for u given by φn – which is to say that the product rule for derivatives
holds under these conditions.

Now, the formula (4.239) comes from the Fundamental Theorem of Calculus

which in this case really does apply to φ̃n and shows that

(4.241) ψ(x)φn(x)− ψ(y)φn(y) =

∫ x

y

(
dφ̃n
ds

(s))ds.

For any given x = x̄ we can choose ψ so that ψ(x̄) = 1 and then we can take y
below the lower limit of the support of ψ so ψ(y) = 0. It follows that for this choice
of ψ,

(4.242) φn(x̄) =

∫ x̄

y

(ψ′φn(s) + ψφ′n(s))ds.

Now, we can pass to the limit as n→∞ and the left side converges for each fixed x̄
(with ψ fixed) since the integrand converges in L2 and hence in L1 on this compact
interval. This actually shows that the limit φn(x̄) must exist for each fixed x̄. In
fact we can always choose ψ to be constant near a particular point and apply this
argument to see that

(4.243) φn(x)→ u(x) locally uniformly on R.

That is, the limit exists locally uniformly, hence represents a continuous function
but that continuous function must be equal to the original u almost everywhere
(since ψφn → ψu in L2).

Thus in fact we conclude that ‘u ∈ C(R)’ (which really means that u has a
representative which is continuous). Not only that but we get (4.239) from passing
to the limit on both sides of

(4.244) u(x)− u(y) = lim
n→∞

(φn(x)− φn(y)) = lim
n→∞

∫ s

y

(φ′(s))ds =

∫ s

y

w(s)ds.

�

One immediate consequence of this is

(4.245) The Sobolev derivative is unique if it exists.

Indeed, if w1 and w2 are both Sobolev derivatives then (4.239) holds for both of
them, which means that w2 − w1 has vanishing integral on any finite interval and
we know that this implies that w2 = w1 a.e.
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So at least for Sobolev derivatives we are now justified in writing

(4.246) w =
du

dx

since w is unique and behaves like a derivative in the integral sense that (4.239)
holds.

Lemma 62. If u has a Sobolev derivative then u has a stong derivative and if
u has a strong derivative then this is also a weak derivative.

Proof. If u has a Sobolev derivative then (3.15) holds. We can use this to
write the difference quotient as

(4.247)
u(x+ s)− u(x)

s
− w(x) =

1

s

∫ s

0

(w(x+ t)− w(x))dt

since the integral in the second term can be carried out. Using this formula twice
the square of the L2 norm, which is finite, is

(4.248) ‖u(x+ s)− u(x)

s
− w(x)‖2L2

=
1

s2

∫ ∫ s

0

∫ s

0

(w(x+ t)− w(x)(w(x+ t′)− w(x))dtdt′dx.

There is a small issue of manupulating the integrals, but we can always ‘back off
a little’ and replace u by the approximating sequence φn and then everything is
fine – and we only have to check what happens at the end. Now, we can apply the
Cauchy-Schwarz inequality as a triple integral. The two factors turn out to be the
same so we find that

(4.249) ‖u(x+ s)− u(x)

s
− w(x)‖2L2 ≤

1

s2

∫ ∫ s

0

∫ s

0

|w(x+ t)− w(x)|2dxdtdt′.

Now, something we checked long ago was that L2 functions are ‘continuous in the
mean’ in the sense that

(4.250) lim
06=t→0

∫
|w(x+ t)− w(x)|2dx = 0.

Applying this to (4.249) and then estimating the t and t′ integrals shows that

(4.251)
u(x+ s)− u(x)

s
− w(x)→ 0 in L2(R) as s→ 0.

By definition this means that u has w as a strong derivative. I leave it up to you
to make sure that the manipulation of integrals is okay.

So, now suppose that u has a strong derivative, ṽ. Obsever that if f ∈ C1
c (R)

then the limit defining the derivative

(4.252) lim
06=s→0

f(x+ s)− f(x)

s
= f ′(x)

is uniform. In fact this follows by writing down the Fundamental Theorem of
Calculus, as in (4.239), again and using the properties of Riemann integrals. Now,
consider

(4.253)
(u(x),

f(x+ s)− f(x)

s
)L2 =

1

s

∫
u(x)f(x+ s)dx− 1

s

∫
u(x)f(x)dx

= (
u(x− s)− u(x)

s
, f(x))L2
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where we just need to change the variable of integration in the first integral from
x to x + s. However, letting s → 0 the left side converges because of the uniform
convergence of the difference quotient and the right side converges because of the
assumed strong differentiability and as a result (noting that the parameter on the
right is really −s)

(4.254) (u,
df

dx
)L2 = −(w, f)L2 ∀ f ∈ C1

c (R)

which is weak differentiability with derivative ṽ. �

So, at this point we know that Sobolev differentiabilty implies strong differen-
tiability and either of the stong ones implies the weak. So it remains only to show
that weak differentiability implies Sobolev differentiability and we can forget about
the difference!

Before doing that, note again that a weak derivative, if it exists, is unique –
since the difference of two would have to pair to zero in L2 with all of C1

c (R) which
is dense. Similarly, if u has a weak derivative then so does ψu for any ψ ∈ C1

c (R)
since we can just move ψ around in the integrals and see that

(4.255)

(ψu,− df
dx

) = (u,−ψ df
dx

)

= (u,−dψf
dx

) + (u, ψ′f)

= (w,ψf + (ψ′u, f) = (ψw + ψ′u, f)

which also proves that the product formula holds for weak derivatives.
So, let us consider u ∈ L2

c(R) which does have a weak derivative. To show that
it has a Sobolev derivative we need to construct a sequence φn. We will do this by
convolution.

Lemma 63. If µ ∈ Cc(R) then for any u ∈ L2
c(R),

(4.256) µ ∗ u(x) =

∫
µ(x− s)u(s)ds ∈ Cc(R)

and if µ ∈ C1
c (R) then

(4.257) µ ∗ u(x) ∈ C1
c (R),

dµ ∗ u
dx

= µ′ ∗ u(x).

It folows that if µ has more continuous derivatives, then so does µ ∗ u.

Proof. Since u has compact support and is in L2 it in L1 so the integral in
(4.256) exists for each x ∈ R and also vanishes if |x| is large enough, since the
integrand vanishes when the supports become separate – for some R, µ(x − s) is
supported in |s − x| ≤ R and u(s) in |s| < R which are disjoint for |x| > 2R. It is
also clear that µ ∗ u is continuous using the estimate (from uniform continuity of
µ)

(4.258) |µ ∗ u(x′)− µ ∗ u(x)| ≤ sup |µ(x− s)− µ(x′ − s)|‖u‖L1 .

Similarly the difference quotient can be written

(4.259)
µ ∗ u(x′)− µ ∗ u(x)

t
=

∫
µ(x′ − s)− µ(x− s)

s
u(s)ds
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and the uniform convergence of the difference quotient shows that

(4.260)
dµ ∗ u
dx

= µ′ ∗ u.

�

One of the key properties of thes convolution integrals is that we can examine
what happens when we ‘concentrate’ µ. Replace the one µ by the family

(4.261) µε(x) = ε−1µ(
x

ε
), ε > 0.

The singular factor here is introduced so that
∫
µε is independent of ε > 0,

(4.262)

∫
µε =

∫
µ ∀ ε > 0.

Note that since µ has compact support, the support of µε is concentrated in |x| ≤ εR
for some fixed R.

Lemma 64. If u ∈ L2
c(R) and 0 ≤ µ ∈ C1

c (R) then

(4.263) lim
0 6=ε→0

µε ∗ u = (

∫
µ)u in L2(R).

In fact there is no need to assume that u has compact support for this to work.

Proof. First we can change the variable of integration in the definition of the
convolution and write it intead as

(4.264) µ ∗ u(x) =

∫
µ(s)u(x− s)ds.

Now, the rest is similar to one of the arguments above. First write out the difference
we want to examine as

(4.265) µε ∗ u(x)− (

∫
µ)(x) =

∫
|s|≤εR

µε(s)(u(x− s)− u(x))ds.

Write out the square of the absolute value using the formula twice and we find that

(4.266)

∫
|µε ∗ u(x)− (

∫
µ)(x)|2dx

=

∫ ∫
|s|≤εR

∫
|t|≤εR

µε(s)µε(t)(u(x− s)− u(x))(u(x− s)− u(x))dsdtdx

Now we can write the integrand as the product of two similar factors, one being

(4.267) µε(s)
1
2µε(t)

1
2 (u(x− s)− u(x))

using the non-negativity of µ. Applying the Cauchy-Schwarz inequality to this we
get two factors, which are again the same after relabelling variables, so

(4.268)

∫
|µε∗u(x)−(

∫
µ)(x)|2dx ≤

∫ ∫
|s|≤εR

∫
|t|≤εR

µε(s)µε(t)|u(x−s)−u(x)|2.
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The integral in x can be carried out first, then using continuity-in-the mean bounded
by J(s)→ 0 as ε→ 0 since |s| < εR. This leaves

(4.269)

∫
|µε ∗ u(x)− (

∫
µ)u(x)|2dx

≤ sup
|s|≤εR

J(s)

∫
|s|≤εR

∫
|t|≤εR

µε(s)µε(t) = (

∫
ψ)2Y sup

|s|≤εR
→ 0.

�

After all this preliminary work we are in a position to to prove the remaining
part of ‘weak=strong’.

Lemma 65. If u ∈ L2(R) has w as a weak L2-derivative then w is also the
Sobolev derivative of u.

Proof. Let’s assume first that u has compact support, so we can use the
discussion above. Then set φn = µ1/n ∗ u where µ ∈ C1

c (R) is chosen to be non-

negative and have integral
∫
µ = 0; µε is defined in (4.261). Now from Lemma 64

it follows that φn → u in L2(R). Also, from Lemma 63, φn ∈ C1
c (R) has derivative

given by (4.257). This formula can be written as a pairing in L2 :

(4.270) (µ1/n)′ ∗ u(x) = (u(s),−
dµ1/n(x− s)

ds
)2
L = (w(s),

dµ1/n(x− s)
ds

)L2

using the definition of the weak derivative of u. It therefore follows from Lemma 64
applied again that

(4.271) φ′n = µ/m1/n ∗ w → w in L2(R).

Thus indeed, φn is an approximating sequence showing that w is the Sobolev de-
rivative of u.

In the general case that u ∈ L2(R) has a weak derivative but is not necessarily
compactly supported, consider a function γ ∈ C1

c (R) with γ(0) = 1 and consider
the sequence vm = γ(x)u(x) in L2(R) each element of which has compact support.
Moreover, γ(x/m)→ 1 for each x so by Lebesgue dominated convergence, vm → u
in L2(R) as m→∞. As shown above, vm has as weak derivative

dγ(x/m)

dx
u+ γ(x/m)w =

1

m
γ′(x/m)u+ γ(x/m)w → w

as m → ∞ by the same argument applied to the second term and the fact that
the first converges to 0 in L2(R). Now, use the approximating sequence µ1/n ∗ vm
discussed converges to vm with its derivative converging to the weak derivative of
vm. Taking n = N(m) sufficiently large for each m ensures that φm = µ1/N(m) ∗ vm
converges to u and its sequence of derivatives converges to w in L2. Thus the weak
derivative is again a Sobolev derivative. �

Finally then we see that the three definitions are equivalent and we will freely
denote the Sobolev/strong/weak derivative as du/dx or u′.



152 4. DIFFERENTIAL EQUATIONS

14. Fourier transform and L2

Recall that one reason for proving the completeness of the Hermite basis was
to apply it to prove some of the important facts about the Fourier transform, which
we already know is a linear operator

(4.272) L1(R) −→ C0
∞(R), û(ξ) =

∫
eixξu(x)dx.

Namely we have already shown the effect of the Fourier transform on the ‘ground
state’:

(4.273) F(u0)(ξ) =
√

2πe0(ξ).

By a similar argument we can check that

(4.274) F(uj)(ξ) =
√

2πijuj(ξ) ∀ j ∈ N.

As usual we can proceed by induction using the fact that uj = Cruj−1. The integrals
involved here are very rapidly convergent at infinity, so there is no problem with
the integration by parts in
(4.275)

F(
d

dx
uj−1) = lim

T→∞

∫ T

−T
e−ixξ

duj−1

dx
dx

= lim
T→∞

(∫ T

−T
(iξ)e−ixξuj−1dx+

[
e−ixξuj−1(x)

]T
−T

)
= (iξ)F(uj−1),

F(xuj−1) = i

∫
de−ixξ

dξ
uj−1dx = i

d

dξ
F(uj−1).

Taken together these identities imply the validity of the inductive step:

(4.276) F(uj) = F((− d

dx
+ x)uj−1) = (i(− d

dξ
+ ξ)F(uj−1) = iCr(

√
2πij−1uj−1)

so proving (4.274).
So, we have found an orthonormal basis for L2(R) with elements which are all

in L1(R) and which are also eigenfunctions for F .

Theorem 21. The Fourier transform maps L1(R) ∩ L2(R) into L2(R) and
extends by continuity to an isomorphism of L2(R) such that 1√

2π
F is unitary with

the inverse of F the continuous extension from L1(R) ∩ L2(R) of

(4.277) F(f)(x) =
1

2π

∫
eixξf(ξ).

Proof. This really is what we have already proved. The elements of the
Hermite basis ej are all in both L1(R) and L2(R) so if u ∈ L1(R)∩L2(R) its image
under F is in L2(R) because we can compute the L2 inner products and see that

(4.278) (F(u), ej) =

∫
R2

ej(ξ)e
ixξu(x)dxdξ =

∫
F(ej)(x)u(x) =

√
2πij(u, ej).

Now Bessel’s inequality shows that F(u) ∈ L2(R) (it is of course locally integrable
since it is continuous).

Everything else now follows easily. �
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Notice in particular that we have also proved Parseval’s and Plancherel’s identities
for the Fourier transform:-

(4.279) ‖F(u)‖L2 =
√

2π‖u‖L2 , (F(u),F(v)) = 2π(u, v), ∀ u, v ∈ L2(R).

Now there are lots of applications of the Fourier transform which we do not
have the time to get into. However, let me just indicate the definitions of Sobolev
spaces and Schwartz space and how they are related to the Fourier transform.

First Sobolev spaces. We now see that F maps L2(R) isomorphically onto
L2(R) and we can see from (4.275) for instance that it ‘turns differentiations by
x into multiplication by ξ’. Of course we do not know how to differentiate L2

functions so we have some problems making sense of this. One way, the usual
mathematicians trick, is to turn what we want into a definition.

Definition 26. The Sobolev spaces of order s, for any s ∈ (0,∞), are defined
as subspaces of L2(R) :

(4.280) Hs(R) = {u ∈ L2(R); (1 + |ξ|2)sû ∈ L2(R)}.

It is natural to identify H0(R) = L2(R).
These Sobolev spaces, for each positive order s, are Hilbert spaces with the

inner product and norm

(4.281) (u, v)Hs =

∫
(1 + |ξ|2)sû(ξ)v̂(ξ), ‖u‖s = ‖(1 + |ξ|2)

s
2 û‖L2 .

That they are pre-Hilbert spaces is clear enough. Completeness is also easy, given
that we know the completeness of L2(R). Namely, if un is Cauchy in Hs(R) then
it follows from the fact that

(4.282) ‖v‖L2 ≤ C‖v‖s ∀ v ∈ Hs(R)

that un is Cauchy in L2 and also that (1 + |ξ|2)
s
2 ûn(ξ) is Cauchy in L2. Both

therefore converge to a limit u in L2 and the continuity of the Fourier transform
shows that u ∈ Hs(R) and that un → u in Hs.

These spaces are examples of what is discussed above where we have a dense
inclusion of one Hilbert space in another, Hs(R) −→ L2(R). In this case the in-
clusion in not compact but it does give rise to a bounded self-adjoint operator on
L2(R), Es : L2(R) −→ Hs(R) ⊂ L2(R) such that

(4.283) (u, v)L2 = (Esu,Esv)Hs .

It is reasonable to denote this as Es = (1 + |Dx|2)−
s
2 since

(4.284) u ∈ L2(Rn) =⇒ Êsu(ξ) = (1 + |ξ|2)−
s
2 û(ξ).

It is a form of ‘fractional integration’ which turns any u ∈ L2(R) into Esu ∈ Hs(R).
Having defined these spaces, which get smaller as s increases it can be shown for

instance that if n ≥ s is an integer then the set of n times continuously differentiable
functions on R which vanish outside a compact set are dense in Hs. This allows us
to justify, by continuity, the following statement:-

Proposition 54. The bounded linear map

(4.285)
d

dx
: Hs(R) −→ Hs−1(R), s ≥ 1, v(x) =

du

dx
⇐⇒ v̂(ξ) = iξû(ξ)

is consistent with differentiation on n times continuously differentiable functions of
compact support, for any integer n ≥ s.
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In fact one can even get a ‘strong form’ of differentiation. The condition that
u ∈ H1(R), that u ∈ L2 ‘has one derivative in L2’ is actually equivalent, for
u ∈ L2(R) to the existence of the limit

(4.286) lim
t→0

u(x+ t)u(x)

t
= v, in L2(R)

and then v̂ = iξû. Another way of looking at this is

(4.287)

u ∈ H1(R) =⇒ u : R −→ C is continuous and

u(x)− u(y) =

∫ x

y

v(t)dt, v ∈ L2.

If such a v ∈ L2(R) exists then it is unique – since the difference of two such
functions would have to have integral zero over any finite interval and we know
(from one of the exercises) that this implies that the function vansishes a.e.

One of the more important results about Sobolev spaces – of which there are
many – is the relationship between these ‘L2 derivatives’ and ‘true derivatives’.

Theorem 22 (Sobolev embedding). If n is an integer and s > n+ 1
2 then

(4.288) Hs(R) ⊂ Cn∞(R)

consists of n times continuosly differentiable functions with bounded derivatives to
order n (which also vanish at infinity).

This is actually not so hard to prove, there are some hints in the exercises below.
These are not the only sort of spaces with ‘more regularity’ one can define

and use. For instance one can try to treat x and ξ more symmetrically and define
smaller spaces than the Hs above by setting

(4.289) Hs
iso(R) = {u ∈ L2(R); (1 + |ξ|2)

s
2 û ∈ L2(R), (1 + |x|2)

s
2u ∈ L2(R)}.

The ‘obvious’ inner product with respect to which these ‘isotropic’ Sobolev
spaces Hs

iso(R) are indeed Hilbert spaces is

(4.290) (u, v)s,iso =

∫
R
uv +

∫
R
|x|2suv +

∫
R
|ξ|2sûv̂

which makes them look rather symmetric between u and û and indeed

(4.291) F : Hs
iso(R) −→ Hs

iso(R) is an isomorphism ∀ s ≥ 0.

At this point, by dint of a little, only moderately hard, work, it is possible to
show that the harmonic oscillator extends by continuity to an isomorphism

(4.292) H : Hs+2
iso (R) −→ Hs

iso(R) ∀ s ≥ 2.

Finally in this general vein, I wanted to point out that Hilbert, and even Ba-
nach, spaces are not the end of the road! One very important space in relation to
a direct treatment of the Fourier transform, is the Schwartz space. The definition
is reasonably simple. Namely we denote Schwartz space by S(R) and say

(4.293)

u ∈ S(R)⇐⇒ u : R −→ C
is continuously differentiable of all orders and for every n,

‖u‖n =
∑

k+p≤n

sup
x∈R

(1 + |x|)k|d
pu

dxp
| <∞.
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All these inequalities just mean that all the derivatives of u are ‘rapidly decreasing
at ∞’ in the sense that they stay bounded when multiplied by any polynomial.

So in fact we know already that S(R) is not empty since the elements of the
Hermite basis, ej ∈ S(R) for all j. In fact it follows immediately from this that

(4.294) S(R) −→ L2(R) is dense.

If you want to try your hand at something a little challenging, see if you can check
that

(4.295) S(R) =
⋂
s>0

Hs
iso(R)

which uses the Sobolev embedding theorem above.
As you can see from the definition in (4.293), S(R) is not likely to be a Banach

space. Each of the ‖ · ‖n is a norm. However, S(R) is pretty clearly not going to be
complete with respect to any one of these. However it is complete with respect to
all, countably many, norms. What does this mean? In fact S(R) is a metric space
with the metric

(4.296) d(u, v) =
∑
n

2−n
‖u− v‖n

1 + ‖u− v‖n

as you can check. So the claim is that S(R) is comlete as a metric space – such a
thing is called a Fréchet space.

What has this got to do with the Fourier transform? The point is that
(4.297)

F : S(R) −→ S(R) is an isomorphism and F(
du

dx
) = iξF(u), F(xu) = −idF(u)

dξ

where this now makes sense. The dual space of S(R) – the space of continuous
linear functionals on it, is the space, denoted S ′(R), of tempered distributions on
R.

15. Dirichlet problem

As a final application, which I do not have time to do in full detail in lectures,
I want to consider the Dirichlet problem again, but now in higher dimensions. Of
course this is a small issue, since I have not really gone through the treatment of
the Lebesgue integral etc in higher dimensions – still I hope it is clear that with a
little more application we could do it and for the moment I will just pretend that
we have.

So, what is the issue? Consider Laplace’s equation on an open set in Rn. That
is, we want to find a solution of

(4.298) −(
∂2u(x)

∂x2
1

+
∂2u(x)

∂x2
2

+ · · ·+ ∂2u(x)

∂x2
n

) = f(x) in Ω ⊂ Rn.

Now, maybe some of you have not had a rigorous treatment of partical deriva-
tives either. Just add that to the heap of unresolved issues. In any case, partial
derivatives are just one-dimensional derivatives in the variable concerned with the
other variables held fixed. So, we are looking for a function u which has all partial
derivatives up to order 2 existing everywhere and continous. So, f will have to be
continuous too. Unfortunately this is not enough to guarantee the existence of a
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twice continuously differentiable solution – later we will just suppose that f itself
is once continuously differentiable.

Now, we want a solution of (4.298) which satisfies the Dirichlet condition. For
this we need to have a reasonable domain, which has a decent boundary. To short
cut the work involved, let’s just suppose that 0 ∈ Ω and that it is given by an
inequality of the sort

(4.299) Ω = {z ∈ Rn; |z| < ρ(z/|z|)
where ρ is another once continuously differentiable, and strictly positive, function
on Rn (although we only care about its values on the unit vectors). So, this is no
worse than what we are already dealing with.

Now, the Dirichlet condition can be stated as

(4.300) u ∈ C0(Ω), u
∣∣z| = ρ(z/|z|) = 0.

Here we need the first condition to make much sense of the second.
So, what I want to approach is the following result – which can be improved a

lot and which I will not quite manage to prove anyway.

Theorem 23. If 0 < ρ ∈ C1(Rn), and f ∈ C1(Rn) then there exists a unique
u ∈ C2(Ω) ∩ C0(Ω) satisfying (4.298) and (4.300).


