THE PROBLEMS FOR THE SECOND TEST FOR 18.102 WILL BE SELECTED FROM THIS LIST

RICHARD MELROSE

Question 1

Show that if $A \in \mathcal{B}(H)$, where H is a separable Hilbert space, has the property that $u_n \rightharpoonup u$ (converges weakly) implies that Au_n is Cauchy. Show that $\overline{A(\{u \in H; ||u|| \le 1\})}$ is compact.

Question 2

If H is an infinite-dimensional separable Hilbert space, define a set of operators T(H) by the property

$$A \in T(H)$$
 iff $A \in \mathcal{B}(H)$ and $|A| \in \mathcal{K}(H), \sum_{i} \lambda_{i}(|A|) < \infty$

where the $\lambda_i(|A|)$ are the eigenvalues of |A| repeated with multiplicity. Show that T(H) is a 2-sided *-closed ideal.

Question 3

Suppose $A \in \mathcal{B}(H)$ is a bounded operator on a Hilbert space such that A^*A is a compact operator. Show that A is a compact operator.

Question 4

If H is a separable, infinite dimensional, Hilbert space set

(1)
$$l^{2}(H) = \{ u : \mathbb{N} \longrightarrow H; \|u\|_{l^{2}(H)}^{2} = \sum_{i} \|u_{i}\|_{H}^{2} < \infty \}.$$

Show that $l^2(H)$ has a Hilbert space structure and construct an explicit isometric (norm-preserving) isomorphism (bijection) from $l^2(H)$ to H.

Question 5

Starting from the definition of weak convergence of a sequence in a separable Hilbert space, $v_n \rightarrow v$, that $\langle v_n, w \rangle \rightarrow \langle v, w \rangle$ in \mathbb{C} for each $w \in H$, show that a weakly convergent sequence $\{v_n\}$, is (strongly) convergent if and only if

(2)
$$\|v\|_{H} = \lim_{n \to \infty} \|v_{n}\|_{H}.$$

RICHARD MELROSE

Question 6

Let $e_k, k \in \mathbb{N}$, be an orthonormal basis in a separable Hilbert space, H. Show that there is a unique bounded linear operator $T: H \longrightarrow H$ satisfying

(3)
$$Te_j = e_{j-1} \ \forall \ j \ge 2, \ Te_1 = 0,$$

and that if $B \in \mathcal{B}(H)$ has ||B|| < 1 then T + B has one-dimensional null space.

Question 7

Suppose H is an infinite dimensional separable Hilbert space with an orthonormal basis $\{e_k\}_{k=1}^{\infty}$. Show that a continuous function $K : [0,1] \longrightarrow H$ has the property that the Fourier-Bessel series of $K(x) \in H$, for $x \in [0,1]$, converges uniformly in the sense that if $K_n(x) = \sum_{k \leq n} \langle K(x), e_k \rangle e_k$ then $K_n : [0,1] \longrightarrow H$ is also continuous and

(4)
$$\sup_{x \in [0,1]} \|K(x) - K_n(x)\|_H \to 0.$$

Question 8

If $A \in \mathcal{B}(H)$ is a bounded operator on a separable, infinite-dimensional, Hilbert space H, explain why $|A| = (A^*A)^{1/2} \in \mathcal{B}(H)$ is well-defined. Suppose that |A| is compact and for a orthonormal basis of H consisting of eigenvectors of |A|,

(5)
$$\sum_{i} \||A|e_i\|^2 < \infty.$$

Show that

$$\sum_{i} \|Af_j\|^2 < \infty$$

for any orthonormal sequence f_j .

Question 9

Show that a separable Hilbert space H with the property that every bounded operator from H to itself is compact is necessarily finite dimensional.

Question 10

Show that if B is a compact operator on a separable Hilbert space H and A is an invertible operator then

(6)
$$\{u \in H; Bu = Au\}$$

is finite dimensional.

Question 11

18.102, TEST 2

Assuming the Stone-Weierstrass theorem, show that there is a complete orthonormal basis of $L^2([0, 2\pi])$ consisting of polynomials.

Question 12

Let H be a separable Hilbert space and let $\mathcal{C}_{c}(\mathbb{R}; H)$ be the linear space of continuous maps from \mathbb{R} to H which vanish outside some interval [-R, R] depending on the function. Show that

(7)
$$||u||^2 = \int_{\mathbb{R}} ||u(x)||_H^2$$

defines a norm which comes from a pre-Hilbert structure on $C_{c}(\mathbb{R}; H)$. Show that if u_n is a Cauchy sequence in this pre-Hilbert space and $h \in H$ then $\langle u_n(x), h \rangle_H$ converges in $L^2(\mathbb{R})$.

Department of Mathematics, Massachusetts Institute of Technology $Email \ address: \ rbm@math.mit.edu$