Version 2. Problem 3.2 replaced.

Problem 3.1
Suppose that \(f: \mathbb{R} \rightarrow \mathbb{R} \) is a continuous function with Riemann integral satisfying
\[
\sup_R \int_{-R}^R |f(x)| \, dx < \infty.
\]
Show that \(f \in L^1(\mathbb{R}) \).

Problem 3.2
Show that the function \(\frac{\sin x}{1+|x|} \) is not an element of \(L^1(\mathbb{R}) \).

Problem 3.3
Recall that a function \(f: \mathbb{R} \rightarrow \mathbb{C} \) is in \(L^2(\mathbb{R}) \) if there exists a sequence \(f_n \in C(\mathbb{R}) \) such that \(f_n(x) \rightarrow f(x) \) a.e. and there exists \(F \in L^1(\mathbb{R}) \) such that \(|f_n|^2 \leq F(x) \) a.e. Show that \(\chi_{[-R,R]}f \in L^1(\mathbb{R}) \) and that
\[
(\int \chi_{[-R,R]}|f|)^2 \leq (2R) \int |f|^2.
\]

Problem 3.4
Show that the function with \(F(0) = 0 \) and
\[
F(x) = \begin{cases}
0 & x > 1 \\
\exp(i/x) & 0 < |x| \leq 1 \\
0 & x < -1,
\end{cases}
\]
is an element of \(L^1(\mathbb{R}) \).
Problem 3.5
Suppose \(f \in L^1(\mathbb{R}) \) is real-valued. Show that there is a sequence \(f_n \in C_c(\mathbb{R}) \) and another element \(F \in L^1(\mathbb{R}) \) such that
\[
f_n(x) \to f(x) \ a.e. \ on \ \mathbb{R}, \ |f_n(x)| \leq F(x) \ a.e.
\]

Problem 3.6 – extra

1. Suppose that \(O \subset \mathbb{R} \) is a bounded open subset, so \(O \subset (-R, R) \) for some \(R \). Show that the characteristic function of \(O \)
\[
\chi_O(x) = \begin{cases} 1 & x \in O \\ 0 & x \notin O \end{cases}
\]

is an element of \(L^1(\mathbb{R}) \).

2. If \(O \) is bounded and open define the length (or Lebesgue measure) of \(O \) to be \(l(O) = \int \chi_O \). Show that if \(U = \bigcup_j O_j \) is a (n at most) countable union of bounded open sets such that \(\sum_j l(O_j) < \infty \) then \(\chi_U \in L^1(\mathbb{R}) \); again we set \(l(U) = \int \chi_U \).

3. Conversely show that if \(U \) is open and \(\chi_U \in L^1(\mathbb{R}) \) then \(U = \bigcup_j O_j \) is the union of a countable collection of bounded open sets with \(\sum_j l(O_j) < \infty \).

4. Show that if \(K \subset \mathbb{R} \) is compact then its characteristic function is an element of \(L^1(\mathbb{R}) \).

Problem 3.7 – extra
Prove the converse of Problem 3.2, that for any \(\epsilon > 0 \) any set of measure zero is covered by a countable collection of open intervals the sum of whose lengths is less than \(\epsilon \).

Department of Mathematics, Massachusetts Institute of Technology
Email address: rmb@math.mit.edu