
PROBLEM SET 2 FOR 18.102, SPRING 2018

DUE FRIDAY 23 FEB.

RICHARD MELROSE

Here is what I said before about collaboration and all that. I do not mind who
you talk to, what you read or where you find information. However, I expect that
you will devise and write out the answers yourself. This means precisely no direct
copying, you must first assimilate the material then rewrite it.

You can get full marks by doing any five of these problems, probably the first
five are the most straightforward and you cannot get more than 50 marks – only
your ‘best’ five solutions will count.

Problem 2.1
Show that if K ∈ C([0, 1]2) is a continuous function of two variables, then the

integral operator

(1) Au(x) =

∫ 1

0

K(x, y)u(y)dy

(given by a Riemann integral) is a bounded operator, i.e. a continous linear map,
from C([0, 1]) to itself with respect to the supremum norm.

Problem 2.2

(1) Show that the ‘Dirac delta function at y ∈ [0, 1]’ is well-defined as a con-
tinuous linear map

(2) δy : C([0, 1]) 3 u 7−→ u(y) ∈ C

with respect to the supremum norm on C([0, 1]).

(2) Show that δy is not continuous with respect to the L1 norm
∫ 1

0
|u|.

Problem 2.3
As we already know, a subset E ⊂ R is said to be of measure zero if there exists

an absolutely summable sequence fn ∈ Cc(R) (so
∑
n

∫
|fn| <∞) such that

(3) E ⊂ {x ∈ R;
∑
n

|fn(x)| = +∞}.

Show that if E is of measure zero and ε > 0 is given then there exists fn ∈ Cc(R)
satisfying (3) and in addition

(4)
∑
n

∫
|fn| < ε.

Problem 2.4
Using the previous problem (or otherwise ...) show that a countable union of

sets of measure zero is a set of measure zero.
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Problem 2.5
Suppose E ⊂ R has the following (well-known) property:-

(5)

∀ ε > 0 ∃ a countable collection of intervals (ai, bi) s.t.∑
i

(bi − ai) < ε, E ⊂
⋃
i

(ai, bi).

Show that E is a set of measure zero in the sense used in lectures and above.

Problem 2.6 – Extra
Let’s generalize the theorem about B(V,W ) to bilinear maps.

(1) Check that if U and V are normed spaces then U × V (the linear space of
all pairs (u, v) where u ∈ U and v ∈ V ) is a normed space where addition
and scalar multiplication is ‘componentwise’ and the norm is the sum

(6) ‖(u, v)‖U×V = ‖u‖U + ‖v‖V .
(2) Show that U × V is a Banach space if both U and V are Banach spaces.
(3) Consider three normed spaces U, V and W. Let

(7) B : U × V −→W

be a bilinear map. This means that

B(λ1u1 + λ2u2, v) = λ1B(u1, v) + λ2B(u2, v),

B(u, λ1v1 + λ2v2) = λ1B(u, v1) + λ2B(u, v2)

for all u, u1, u2 ∈ U, v, v1, v2 ∈ V and λ1, λ2 ∈ C. Show that B is
continuous if and only if it satisfies

(8) ‖B(u, v)‖W ≤ C‖u‖U‖v‖V ∀ u ∈ U, v ∈ V.
(4) Let M(U, V ;W ) be the space of all such continuous bilinear maps. Show

that this is a linear space and that

(9) ‖B‖ = sup
‖u‖=1,‖v‖=1

‖B(u, v)‖W

is a norm.
(5) Show that M(U, V ;W ) is a Banach space if W is a Banach space.

Problem 2.7 – Extra
Consider the space Cc(Rn) of continuous functions u : Rn −→ C which vanish

outside a compact set, i.e. in |x| > R for some R (depending on u). Check (quickly)
that this is a linear space.

Show that if y ∈ Rn−1 and u ∈ Cc(Rn) then

(10) Uy : R 3 t 7−→ u(y, t) ∈ C

defines an element Uy ∈ Cc(R). Fix an overall ‘rectangle’ [−R,R]n and only consider
functions Cc,R(R) vanishing outside this rectangle. With this restriction on supports
show for each R that Rn−1 3 y 7−→ Uy is a continuous map into Cc,R(R) with
respect to the supremum norm which vanishes for |y| > R, i.e. has compact support.
Conclude that ‘integration in the last variable’ gives a continuous linear map (with
respect to supremum norms)

(11) Cc,R(Rn) 3 u −→ v ∈ Cc,R(Rn−1), v(y) =

∫
Uy.
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By iterating this statement show that the iterated Riemann integral is well defined

(12)

∫
: Cc,R(Rn) −→ C

and that
∫
|u| is a norm which is independent of R – so defined on the whole of

Cc(Rn).


