
CHAPTER 5

Problems

1. Problems for Chapter 1

Missing or badly referenced:-

Norm from seminorm.
Norm on quotient and completeness.
Completness of the completion.
Subspace of functions vanishing at infinity.
Completeness of the space of k times differentiable functions.
Direct proof of open mapping.

Problem 1.0. Show from first principles that if V is a vector space (over R or
C) then for any set X the space of all maps

(5.1) F(X;V ) = {u : X −→ V }

is a linear space over the same field, with ‘pointwise operations’ (which you should
write down carefully).

Problem 1.1. Show that if V is a vector space and S ⊂ V is a subset which
is closed under addition and scalar multiplication:

(5.2) v1, v2 ∈ S, λ ∈ K =⇒ v1 + v2 ∈ S and λv1 ∈ S

then S is a vector space as well with operations ‘inherited from V ’ (and called, of
course, a subspace of V ).

Problem 1.2. If S ⊂ V be a linear subspace of a vector space show that the
relation on V

(5.3) v1 ∼ v2 ⇐⇒ v1 − v2 ∈ S

is an equivalence relation and that the set of equivalence classes, denoted usually
V/S, is a vector space in a natural way.

Problem 1.3. In case you do not know it, go through the basic theory of
finite-dimensional vector spaces. Define a vector space V to be finite-dimensional
if there is an integer N such that any N elements of V are linearly dependent – if
vi ∈ V for i = 1, . . . N, then there exist ai ∈ K, not all zero, such that

(5.4)

N∑
i=1

aivi = 0 in V.

Call the smallest such integer the dimension of V and show that a finite dimensional
vector space always has a basis, ei ∈ V, i = 1, . . . ,dimV such that any element of
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V can be written uniquely as a linear combination

(5.5) v =

dimV∑
i=1

biei, bi ∈ K.

Problem 1.5. Recall that a map between vector spaces L : V −→W is linear
if L(v1 + v2) = Lv1 + Lv2 and Lλv = λLv for all elements v1, v2, v ∈ V and all
scalars λ. Show that given two finite dimensional vector spaces V and W over the
same field

(1) If dimV ≤ dimW then there is an injective linear map L : V −→W.
(2) If dimV ≥W then there is a surjective linear map L : V −→W.
(3) if dimV = dimW then there is a linear isomorphism L : V −→W, i.e. an

injective and surjective linear map.

Problem 1.5. Show that any two norms on a finite dimensional vector space
are equivalent.

Problem 1.5. Show that if two norms on a vector space are equivalent then
the topologies induced are the same – the sets open with respect to the distance
from one are open with respect to the distance coming from the other. The converse
is also true, you can use another result from this section to prove it.

Problem 1.5. Write out a proof for each p with 1 ≤ p <∞ that

lp = {a : N −→ C;

∞∑
j=1

|aj |p <∞, aj = a(j)}

is a normed space with the norm

‖a‖p =

 ∞∑
j=1

|aj |p
 1

p

.

This means writing out the proof that this is a linear space and that the three
conditions required of a norm hold.

Problem 1.5. Prove directly that each lp as defined in Problem 1.5 is complete,
i.e. it is a Banach space.

Problem 1.5. The space l∞ consists of the bounded sequences

(5.6) l∞ = {a : N −→ C; sup
n
|an| <∞}, ‖a‖∞ = sup

n
|an|.

Show that it is a Banach space.

Problem 1.6. Another closely related space consists of the sequences converg-
ing to 0 :

(5.7) c0 = {a : N −→ C; lim
n→∞

an = 0}, ‖a‖∞ = sup
n
|an|.

Check that this is a Banach space and that it is a closed subspace of l∞ (perhaps
in the opposite order).

Problem 1.7. Consider the ‘unit sphere’ in lp. This is the set of vectors of
length 1 :

S = {a ∈ lp; ‖a‖p = 1}.
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(1) Show that S is closed.
(2) Recall the sequential (so not the open covering definition) characterization

of compactness of a set in a metric space (e.g. by checking in Rudin’s
book).

(3) Show that S is not compact by considering the sequence in lp with kth
element the sequence which is all zeros except for a 1 in the kth slot. Note
that the main problem is not to get yourself confused about sequences of
sequences!

Problem 1.7. Show that the norm on any normed space is continuous.

Problem 1.7. Finish the proof of the completeness of the space B constructed
in the second proof of Theorem 1.1.

1.1. Hints for some problems.

Hint 1 (Problem 1.5). You need to show that each Cauchy sequence converges.
The problem here is to find the limit of a given Cauchy sequence. Show that for
each N the sequence in CN obtained by truncating each of the elements at point
N is Cauchy with respect to the norm in Problem 1.1 on CN . Show that this is
the same as being Cauchy in CN in the usual sense (if you are doing p = 2 it is
already the usual sense) and hence, this cut-off sequence converges. Use this to find
a putative limit of the Cauchy sequence and then check that it works.

1.2. Solutions to some problems.

Solution 1 (1.0). If V is a vector space (over K which is R or C) then for
any set X consider

(5.8) F(X;V ) = {u : X −→ V }.
Addition and scalar multiplication are defined ‘pointwise’:

(5.9) (u+ v)(x) = u(x) + v(x), (cu)(x) = cu(x), u, v ∈ F(X;V ), c ∈ K.

These are well-defined functions since addition and multiplication are defined in K.
So, one needs to check all the axioms of a vector space. Since an equality

of functions is just equality at all points, these all follow from the corresponding
identities for K.

Solution 2 (1.1). If S ⊂ V is a (non-empty) subset of a vector space and
S ⊂ V which is closed under addition and scalar multiplication:

(5.10) v1, v2 ∈ S, λ ∈ K =⇒ v1 + v2 ∈ S and λv1 ∈ S
then 0 ∈ S, since 0 ∈ K and for any v ∈ S, 0v = 0 ∈ S. Similarly, if v ∈ S
then −v = (−1)v ∈ S. Then all the axioms of a vector space follow from the
corresponding identities in V.

Solution 3. If S ⊂ V be a linear subspace of a vector space consider the
relation on V

(5.11) v1 ∼ v2 ⇐⇒ v1 − v2 ∈ S.
To say that this is an equivalence relation means that symmetry and transitivity
hold. Since S is a subspace, v ∈ S implies −v ∈ S so

v1 ∼ v2 =⇒ v1 − v2 ∈ S =⇒ v2 − v1 ∈ S =⇒ v2 ∼ v1.
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Similarly, since it is also possible to add and remain in S

v1 ∼ v2, v2 ∼ v3 =⇒ v1 − v2, v2 − v3 ∈ S =⇒ v1 − v3 ∈ S =⇒ v1 ∼ v3.

So this is an equivalence relation and the quotient V/ ∼= V/S is well-defined –
where the latter is notation. That is, and element of V/S is an equivalence class of
elements of V which can be written v + S :

(5.12) v + S = w + S ⇐⇒ v − w ∈ S.

Now, we can check the axioms of a linear space once we define addition and scalar
multiplication. Notice that

(v + S) + (w + S) = (v + w) + S, λ(v + S) = λv + S

are well-defined elements, independent of the choice of representatives, since adding
an lement of S to v or w does not change the right sides.

Now, to the axioms. These amount to showing that S is a zero element for
addition, −v + S is the additive inverse of v + S and that the other axioms follow
directly from the fact that the hold as identities in V.

Solution 4 (1.3). In case you do not know it, go through the basic theory of
finite-dimensional vector spaces. Define a vector space V to be finite-dimensional
if there is an integer N such that any N + 1 elements of V are linearly dependent
in the sense that the satisfy a non-trivial dependence relation – if vi ∈ V for i =
1, . . . N + 1, then there exist ai ∈ K, not all zero, such that

(5.13)

N+1∑
i=1

aivi = 0 in V.

Call the smallest such integer the dimension of V – it is also the largest integer such
that there are N linearly independent vectors – and show that a finite dimensional
vector space always has a basis, ei ∈ V, i = 1, . . . ,dimV which are not linearly
dependent and such that any element of V can be written as a linear combination

(5.14) v =

dimV∑
i=1

biei, bi ∈ K.

Solution 5 (1.5). Show that any two norms on a finite dimensional vector
space are equivalent.

Solution 6 (1.5). Show that if two norms on a vector space are equivalent
then the topologies induced are the same – the sets open with respect to the distance
from one are open with respect to the distance coming from the other. The converse
is also true, you can use another result from this section to prove it.

Solution 7 (1.5). Write out a proof (you can steal it from one of many places
but at least write it out in your own hand) either for p = 2 or for each p with
1 ≤ p <∞ that

lp = {a : N −→ C;

∞∑
j=1

|aj |p <∞, aj = a(j)}
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is a normed space with the norm

‖a‖p =

 ∞∑
j=1

|aj |p
 1

p

.

This means writing out the proof that this is a linear space and that the three
conditions required of a norm hold.

Solution 8 (). The ‘tricky’ part in Problem 1.0 is the triangle inequality.
Suppose you knew – meaning I tell you – that for each N N∑

j=1

|aj |p
 1

p

is a norm on CN

would that help?

Solution 9 (1.5). Prove directly that each lp as defined in Problem 1.0 is
complete, i.e. it is a Banach space. At the risk of offending some, let me say that
this means showing that each Cauchy sequence converges. The problem here is to
find the limit of a given Cauchy sequence. Show that for each N the sequence in
CN obtained by truncating each of the elements at point N is Cauchy with respect
to the norm in Problem 1.1 on CN . Show that this is the same as being Cauchy
in CN in the usual sense (if you are doing p = 2 it is already the usual sense)
and hence, this cut-off sequence converges. Use this to find a putative limit of the
Cauchy sequence and then check that it works.

Solution 10 (1.5). The space l∞ consists of the bounded sequences

(5.15) l∞ = {a : N −→ C; sup
n
|an| <∞}, ‖a‖∞ = sup

n
|an|.

Show that it is a Banach space.

Solution 11 (1.6). Another closely related space consists of the sequences
converging to 0 :

(5.16) c0 = {a : N −→ C; lim
n→∞

an = 0}, ‖a‖∞ = sup
n
|an|.

Check that this is a Banach space and that it is a closed subspace of l∞ (perhaps
in the opposite order).

Solution 12 (1.7). Consider the ‘unit sphere’ in lp. This is the set of vectors
of length 1 :

S = {a ∈ lp; ‖a‖p = 1}.
(1) Show that S is closed.
(2) Recall the sequential (so not the open covering definition) characterization

of compactness of a set in a metric space (e .g . by checking in Rudin).
(3) Show that S is not compact by considering the sequence in lp with kth

element the sequence which is all zeros except for a 1 in the kth slot. Note
that the main problem is not to get yourself confused about sequences of
sequences!



174 5. PROBLEMS

Solution 13 (1.7). Since the distance between two points is ‖x− y‖ the con-
tinuity of the norm follows directly from the ‘reverse triangle inequality’

(5.17) |‖x‖ − ‖y‖| ≤ ‖x− y‖

which in turn follows from the triangle inequality applied twice:-

(5.18) ‖x‖ ≤ ‖x− y‖+ ‖y‖, ‖y‖ ≤ ‖x− y‖+ ‖x‖.

2. Problems for Chapter 2

Missing

Problem 1.18. Let’s consider an example of an absolutely summable sequence
of step functions. For the interval [0, 1) (remember there is a strong preference
for left-closed but right-open intervals for the moment) consider a variant of the
construction of the standard Cantor subset based on 3 proceeding in steps. Thus,
remove the ‘central interval [1/3, 2/3). This leave C1 = [0, 1/3) ∪ [2/3, 1). Then
remove the central interval from each of the remaining two intervals to get C2 =
[0, 1/9) ∪ [2/9, 1/3) ∪ [2/3, 7/9) ∪ [8/9, 1). Carry on in this way to define successive
sets Ck ⊂ Ck−1, each consisting of a finite union of semi-open intervals. Now,
consider the series of step functions fk where fk(x) = 1 on Ck and 0 otherwise.

(1) Check that this is an absolutely summable series.
(2) For which x ∈ [0, 1) does

∑
k

|fk(x)| converge?

(3) Describe a function on [0, 1) which is shown to be Lebesgue integrable
(as defined in Lecture 4) by the existence of this series and compute its
Lebesgue integral.

(4) Is this function Riemann integrable (this is easy, not hard, if you check
the definition of Riemann integrability)?

(5) Finally consider the function g which is equal to one on the union of all
the intervals which are removed in the construction and zero elsewhere.
Show that g is Lebesgue integrable and compute its integral.

Problem 1.18. The covering lemma for R2. By a rectangle we will mean a set
of the form [a1, b1)× [a2, b2) in R2. The area of a rectangle is (b1 − a1)× (b2 − a2).

(1) We may subdivide a rectangle by subdividing either of the intervals –
replacing [a1, b1) by [a1, c1) ∪ [c1, b1). Show that the sum of the areas of
rectangles made by any repeated subdivision is always the same as that
of the original.

(2) Suppose that a finite collection of disjoint rectangles has union a rectangle
(always in this same half-open sense). Show, and I really mean prove, that
the sum of the areas is the area of the whole rectange. Hint:- proceed by
subdivision.

(3) Now show that for any countable collection of disjoint rectangles contained
in a given rectange the sum of the areas is less than or equal to that of
the containing rectangle.

(4) Show that if a finite collection of rectangles has union containing a given
rectange then the sum of the areas of the rectangles is at least as large of
that of the rectangle contained in the union.

(5) Prove the extension of the preceeding result to a countable collection of
rectangles with union containing a given rectangle.
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Problem 1.18. (1) Show that any continuous function on [0, 1] is the
uniform limit on [0, 1) of a sequence of step functions. Hint:- Reduce to
the real case, divide the interval into 2n equal pieces and define the step
functions to take infimim of the continuous function on the corresponding
interval. Then use uniform convergence.

(2) By using the ‘telescoping trick’ show that any continuous function on [0, 1)
can be written as the sum

(5.19)
∑
i

fj(x) ∀ x ∈ [0, 1)

where the fj are step functions and
∑
j

|fj(x)| <∞ for all x ∈ [0, 1).

(3) Conclude that any continuous function on [0, 1], extended to be 0 outside
this interval, is a Lebesgue integrable function on R and show that the
Lebesgue integral is equal to the Riemann integral.

Problem 1.19. If f and g ∈ L1(R) are Lebesgue integrable functions on the
line show that

(1) If f(x) ≥ 0 a.e. then
∫
f ≥ 0.

(2) If f(x) ≤ g(x) a.e. then
∫
f ≤

∫
g.

(3) If f is complex valued then its real part, Re f, is Lebesgue integrable and
|
∫

Re f | ≤
∫
|f |.

(4) For a general complex-valued Lebesgue integrable function

(5.20) |
∫
f | ≤

∫
|f |.

Hint: You can look up a proof of this easily enough, but the usual trick
is to choose θ ∈ [0, 2π) so that eiθ

∫
f =

∫
(eiθf) ≥ 0. Then apply the

preceeding estimate to g = eiθf.
(5) Show that the integral is a continuous linear functional

(5.21)

∫
: L1(R) −→ C.

Problem 1.21. If I ⊂ R is an interval, including possibly (−∞, a) or (a,∞),
we define Lebesgue integrability of a function f : I −→ C to mean the Lebesgue
integrability of

(5.22) f̃ : R −→ C, f̃(x) =

{
f(x) x ∈ I
0 x ∈ R \ I.

The integral of f on I is then defined to be

(5.23)

∫
I

f =

∫
f̃ .

(1) Show that the space of such integrable functions on I is linear, denote it
L1(I).

(2) Show that is f is integrable on I then so is |f |.
(3) Show that if f is integrable on I and

∫
I
|f | = 0 then f = 0 a.e. in the

sense that f(x) = 0 for all x ∈ I \ E where E ⊂ I is of measure zero as a
subset of R.

(4) Show that the set of null functions as in the preceeding question is a linear
space, denote it N (I).
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(5) Show that
∫
I
|f | defines a norm on L1(I) = L1(I)/N (I).

(6) Show that if f ∈ L1(R) then

(5.24) g : I −→ C, g(x) =

{
f(x) x ∈ I
0 x ∈ R \ I

is integrable on I.
(7) Show that the preceeding construction gives a surjective and continuous

linear map ‘restriction to I’

(5.25) L1(R) −→ L1(I).

(Notice that these are the quotient spaces of integrable functions modulo
equality a.e.)

Problem 1.25. Really continuing the previous one.

(1) Show that if I = [a, b) and f ∈ L1(I) then the restriction of f to Ix = [x, b)
is an element of L1(Ix) for all a ≤ x < b.

(2) Show that the function

(5.26) F (x) =

∫
Ix

f : [a, b) −→ C

is continuous.
(3) Prove that the function x−1 cos(1/x) is not Lebesgue integrable on the

interval (0, 1]. Hint: Think about it a bit and use what you have shown
above.

Problem 1.26. [Harder but still doable] Suppose f ∈ L1(R).

(1) Show that for each t ∈ R the translates

(5.27) ft(x) = f(x− t) : R −→ C

are elements of L1(R).
(2) Show that

(5.28) lim
t→0

∫
|ft − f | = 0.

This is called ‘Continuity in the mean for integrable functions’. Hint: I
will add one!

(3) Conclude that for each f ∈ L1(R) the map (it is a ‘curve’)

(5.29) R 3 t 7−→ [ft] ∈ L1(R)

is continuous.

Problem 1.29. In the last problem set you showed that a continuous function
on a compact interval, extended to be zero outside, is Lebesgue integrable. Using
this, and the fact that step functions are dense in L1(R) show that the linear space
of continuous functions on R each of which vanishes outside a compact set (which
depends on the function) form a dense subset of L1(R).

Problem 1.29. (1) If g : R −→ C is bounded and continuous and f ∈
L1(R) show that gf ∈ L1(R) and that

(5.30)

∫
|gf | ≤ sup

R
|g| ·

∫
|f |.
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(2) Suppose now that G ∈ C([0, 1]×[0, 1]) is a continuous function (I use C(K)
to denote the continuous functions on a compact metric space). Recall
from the preceeding discussion that we have defined L1([0, 1]). Now, using
the first part show that if f ∈ L1([0, 1]) then

(5.31) F (x) =

∫
[0,1]

G(x, ·)f(·) ∈ C

(where · is the variable in which the integral is taken) is well-defined for
each x ∈ [0, 1].

(3) Show that for each f ∈ L1([0, 1]), F is a continuous function on [0, 1].
(4) Show that

(5.32) L1([0, 1]) 3 f 7−→ F ∈ C([0, 1])

is a bounded (i.e. continuous) linear map into the Banach space of con-
tinuous functions, with supremum norm, on [0, 1].

Problem 1.32. Let f : R −→ C be an element of L1(R). Define

(5.33) fL(x) =

{
f(x) x ∈ [−L,L]

0 otherwise.

Show that fL ∈ L1(R) and that
∫
|fL − f | → 0 as L→∞.

Problem 1.33. Consider a real-valued function f : R −→ R which is locally
integrable in the sense that

(5.34) gL(x) =

{
f(x) x ∈ [−L,L]

0 x ∈ R \ [−L,L]

is Lebesgue integrable of each L ∈ N.
(1) Show that for each fixed L the function

(5.35) g
(N)
L (x) =


gL(x) if gL(x) ∈ [−N,N ]

N if gL(x) > N

−N if gL(x) < −N
is Lebesgue integrable.

(2) Show that
∫
|g(N)
L − gL| → 0 as N →∞.

(3) Show that there is a sequence, hn, of step functions such that

(5.36) hn(x)→ f(x) a.e. in R.
(4) Defining

(5.37) h
(N)
n,L =


0 x 6∈ [−L,L]

hn(x) if hn(x) ∈ [−N,N ], x ∈ [−L,L]

N if hn(x) > N, x ∈ [−L,L]

−N if hn(x) < −N, x ∈ [−L,L]

.

Show that
∫
|h(N)
n,L − g

(N)
L | → 0 as n→∞.

Problem 1.37. Show that L2(R) is a Hilbert space.
First working with real functions, define L2(R) as the set of functions f : R −→

R which are locally integrable and such that |f |2 is integrable.
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(1) For such f choose hn and define gL, g
(N)
L and h

(N)
n by (5.34), (5.35) and

(5.37).

(2) Show using the sequence h
(N)
n,L for fixed N and L that g

(N)
L and (g

(N)
L )2

are in L1(R) and that
∫
|(h(N)

n,L)2 − (g
(N)
L )2| → 0 as n→∞.

(3) Show that (gL)2 ∈ L1(R) and that
∫
|(g(N)

L )2 − (gL)2| → 0 as N →∞.
(4) Show that

∫
|(gL)2 − f2| → 0 as L→∞.

(5) Show that f, g ∈ L2(R) then fg ∈ L1(R) and that

(5.38) |
∫
fg| ≤

∫
|fg| ≤ ‖f‖L2‖g‖L2 , ‖f‖2L2 =

∫
|f |2.

(6) Use these constructions to show that L2(R) is a linear space.
(7) Conclude that the quotient space L2(R) = L2(R)/N , whereN is the space

of null functions, is a real Hilbert space.
(8) Extend the arguments to the case of complex-valued functions.

Problem 1.38. Consider the sequence space

(5.39) h2,1 =

c : N 3 j 7−→ cj ∈ C;
∑
j

(1 + j2)|cj |2 <∞

 .

(1) Show that

(5.40) h2,1 × h2,1 3 (c, d) 7−→ 〈c, d〉 =
∑
j

(1 + j2)cjdj

is an Hermitian inner form which turns h2,1 into a Hilbert space.
(2) Denoting the norm on this space by ‖ · ‖2,1 and the norm on l2 by ‖ · ‖2,

show that

(5.41) h2,1 ⊂ l2, ‖c‖2 ≤ ‖c‖2,1 ∀ c ∈ h2,1.

Problem 1.41. In the separable case, prove Riesz Representation Theorem
directly.

Choose an orthonormal basis {ei} of the separable Hilbert space H. Suppose
T : H −→ C is a bounded linear functional. Define a sequence

(5.42) wi = T (ei), i ∈ N.

(1) Now, recall that |Tu| ≤ C‖u‖H for some constant C. Show that for every
finite N,

(5.43)

N∑
j=1

|wi|2 ≤ C2.

(2) Conclude that {wi} ∈ l2 and that

(5.44) w =
∑
i

wiei ∈ H.

(3) Show that

(5.45) T (u) = 〈u,w〉H ∀ u ∈ H and ‖T‖ = ‖w‖H .
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Problem 1.45. If f ∈ L1(Rk × Rp) show that there exists a set of measure
zero E ⊂ Rk such that

(5.46) x ∈ Rk \ E =⇒ gx(y) = f(x, y) defines gx ∈ L1(Rp),
that F (x) =

∫
gx defines an element F ∈ L1(Rk) and that

(5.47)

∫
Rk
F =

∫
Rk×Rp

f.

Note: These identities are usually written out as an equality of an iterated
integral and a ‘regular’ integral:

(5.48)

∫
Rk

∫
Rp
f(x, y) =

∫
f.

It is often used to ‘exchange the order of integration’ since the hypotheses are
the same if we exchange the variables.

3. Solutions to problems

Problem 1.48. Suppose that f ∈ L1(0, 2π) is such that the constants

ck =

∫
(0,2π)

f(x)e−ikx, k ∈ Z,

satisfy ∑
k∈Z
|ck|2 <∞.

Show that f ∈ L2(0, 2π).

Solution. So, this was a good bit harder than I meant it to be – but still in
principle solvable (even though no one quite got to the end).

First, (for half marks in fact!) we know that the ck exists, since f ∈ L1(0, 2π)
and e−ikx is continuous so fe−ikx ∈ L1(0, 2π) and then the condition

∑
k

|ck|2 <∞

implies that the Fourier series does converge in L2(0, 2π) so there is a function

(5.49) g =
1

2π

∑
k∈C

cke
ikx.

Now, what we want to show is that f = g a .e . since then f ∈ L2(0, 2π).
Set h = f − g ∈ L1(0, 2π) since L2(0, 2π) ⊂ L1(0, 2π). It follows from (5.49)

that f and g have the same Fourier coefficients, and hence that

(5.50)

∫
(0,2π)

h(x)eikx = 0 ∀ k ∈ Z.

So, we need to show that this implies that h = 0 a .e . Now, we can recall from
class that we showed (in the proof of the completeness of the Fourier basis of L2)
that these exponentials are dense, in the supremum norm, in continuous functions
which vanish near the ends of the interval. Thus, by continuity of the integral we
know that

(5.51)

∫
(0,2π)

hg = 0

for all such continuous functions g. We also showed at some point that we can
find such a sequence of continuous functions gn to approximate the characteristic
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function of any interval χI . It is not true that gn → χI uniformly, but for any
integrable function h, hgn → hχI in L1. So, the upshot of this is that we know a
bit more than (5.51), namely we know that

(5.52)

∫
(0,2π)

hg = 0 ∀ step functions g.

So, now the trick is to show that (5.52) implies that h = 0 almost everywhere.
Well, this would follow if we know that

∫
(0,2π)

|h| = 0, so let’s aim for that. Here

is the trick. Since g ∈ L1 we know that there is a sequence (the partial sums of
an absolutely convergent series) of step functions hn such that hn → g both in
L1(0, 2π) and almost everywhere and also |hn| → |h| in both these senses. Now,
consider the functions

(5.53) sn(x) =

{
0 if hn(x) = 0
hn(x)
|hn(x)| otherwise.

Clearly sn is a sequence of step functions, bounded (in absolute value by 1 in fact)
and such that snhn = |hn|. Now, write out the wonderful identity

(5.54) |h(x)| = |h(x)| − |hn(x)|+ sn(x)(hn(x)− h(x)) + sn(x)h(x).

Integrate this identity and then apply the triangle inequality to conclude that

(5.55)

∫
(0,2π)

|h| =
∫

(0,2π)

(|h(x)| − |hn(x)|+
∫

(0,2π)

sn(x)(hn − h)

≤
∫

(0,2π)

(||h(x)| − |hn(x)||+
∫

(0,2π)

|hn − h| → 0 as n→∞.

Here on the first line we have used (5.52) to see that the third term on the right
in (5.54) integrates to zero. Then the fact that |sn| ≤ 1 and the convergence
properties.

Thus in fact h = 0 a .e . so indeed f = g and f ∈ L2(0, 2π). Piece of cake,
right! Mia culpa.

4. Problems – Chapter 3

Problem 1.55. Let H be a normed space in which the norm satisfies the
parallelogram law:

(5.56) ‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2) ∀ u, v ∈ H.

Show that the norm comes from a positive definite sesquilinear (i.e. ermitian) inner
product. Big Hint:- Try

(5.57) (u, v) =
1

4

(
‖u+ v‖2 − ‖u− v‖2 + i‖u+ iv‖2 − i‖u− iv‖2

)
!

Problem 1.57. Let H be a finite dimensional (pre)Hilbert space. So, by defi-
nition H has a basis {vi}ni=1, meaning that any element of H can be written

(5.58) v =
∑
i

civi

and there is no dependence relation between the vi’s – the presentation of v = 0 in
the form (5.58) is unique. Show that H has an orthonormal basis, {ei}ni=1 satisfying
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(ei, ej) = δij (= 1 if i = j and 0 otherwise). Check that for the orthonormal basis
the coefficients in (5.58) are ci = (v, ei) and that the map

(5.59) T : H 3 v 7−→ ((v, ei)) ∈ Cn

is a linear isomorphism with the properties

(5.60) (u, v) =
∑
i

(Tu)i(Tv)i, ‖u‖H = ‖Tu‖Cn ∀ u, v ∈ H.

Why is a finite dimensional preHilbert space a Hilbert space?

Problem 1.60. : Prove (3.171). The important step is actually the fact that
Spec(A) ⊂ [−‖A‖, ‖A‖] if A is self-adjoint, which is proved somewhere above. Now,
if f is a real polynomial, we can assume the leading constant, c, in (3.170) is 1.
If λ /∈ f([−‖A‖, ‖A‖]) then f(A) is self-adjoint and λ − f(A) is invertible – it is
enough to check this for each factor in (3.170). Thus Spec(f(A)) ⊂ f([−‖A‖, ‖A‖])
which means that

(5.61) ‖f(A)‖ ≤ sup{z ∈ f([−‖A‖, ‖A‖])}

which is in fact (3.170).

Problem 1.61. Let H be a separable Hilbert space. Show that K ⊂ H is
compact if and only if it is closed, bounded and has the property that any sequence
in K which is weakly convergent sequence in H is (strongly) convergent.

Hint (Problem 1.61) In one direction use the result from class that any bounded
sequence has a weakly convergent subsequence.

Problem 1.61. Show that, in a separable Hilbert space, a weakly convergent
sequence {vn}, is (strongly) convergent if and only if the weak limit, v satisfies

(5.62) ‖v‖H = lim
n→∞

‖vn‖H .

Hint (Problem 1.61) To show that this condition is sufficient, expand

(5.63) (vn − v, vn − v) = ‖vn‖2 − 2 Re(vn, v) + ‖v‖2.

Problem 1.63. Show that a subset of a separable Hilbert space is compact
if and only if it is closed and bounded and has the property of ‘finite dimensional
approximation’ meaning that for any ε > 0 there exists a linear subspace DN ⊂ H
of finite dimension such that

(5.64) d(K,DN ) = sup
u∈K

inf
v∈DN

{d(u, v)} ≤ ε.

See Hint 4
Hint (Problem 1.63) To prove necessity of this condition use the ‘equi-small

tails’ property of compact sets with respect to an orthonormal basis. To use the
finite dimensional approximation condition to show that any weakly convergent
sequence in K is strongly convergent, use the convexity result from class to define
the sequence {v′n} in DN where v′n is the closest point in DN to vn. Show that v′n
is weakly, hence strongly, convergent and hence deduce that {vn} is Cauchy.

Problem 1.64. Suppose that A : H −→ H is a bounded linear operator with
the property that A(H) ⊂ H is finite dimensional. Show that if vn is weakly
convergent in H then Avn is strongly convergent in H.
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Problem 1.64. Suppose that H1 and H2 are two different Hilbert spaces and
A : H1 −→ H2 is a bounded linear operator. Show that there is a unique bounded
linear operator (the adjoint) A∗ : H2 −→ H1 with the property

(5.65) (Au1, u2)H2 = (u1, A
∗u2)H1 ∀ u1 ∈ H1, u2 ∈ H2.

Problem 1.65. Question:- Is it possible to show the completeness of the Fourier
basis

exp(ikx)/
√

2π

by computation? Maybe, see what you think. These questions are also intended to
get you to say things clearly.

(1) Work out the Fourier coefficients ck(t) =
∫

(0,2π)
fte
−ikx of the step func-

tion

(5.66) ft(x) =

{
1 0 ≤ x < t

0 t ≤ x ≤ 2π

for each fixed t ∈ (0, 2π).
(2) Explain why this Fourier series converges to ft in L2(0, 2π) if and only if

(5.67) 2
∑
k>0

|ck(t)|2 = 2πt− t2, t ∈ (0, 2π).

(3) Write this condition out as a Fourier series and apply the argument again
to show that the completeness of the Fourier basis implies identities for
the sum of k−2 and k−4.

(4) Can you explain how reversing the argument, that knowledge of the sums
of these two series should imply the completeness of the Fourier basis?
There is a serious subtlety in this argument, and you get full marks for
spotting it, without going ahead a using it to prove completeness.

Problem 1.67. Prove that for appropriate choice of constants dk, the functions
dk sin(kx/2), k ∈ N, form an orthonormal basis for L2(0, 2π).

See Hint 4
Hint (Problem 1.67 The usual method is to use the basic result from class plus

translation and rescaling to show that d′k exp(ikx/2) k ∈ Z form an orthonormal
basis of L2(−2π, 2π). Then extend functions as odd from (0, 2π) to (−2π, 2π).

Problem 1.67. Let ek, k ∈ N, be an orthonormal basis in a separable Hilbert
space, H. Show that there is a uniquely defined bounded linear operator S : H −→
H, satisfying

(5.68) Sej = ej+1 ∀ j ∈ N.

Show that if B : H −→ H is a bounded linear operator then S+εB is not invertible
if ε < ε0 for some ε0 > 0.

Hint (Problem 1.67)- Consider the linear functional L : H −→ C, Lu =
(Bu, e1). Show that B′u = Bu − (Lu)e1 is a bounded linear operator from H
to the Hilbert space H1 = {u ∈ H; (u, e1) = 0}. Conclude that S+ εB′ is invertible
as a linear map from H to H1 for small ε. Use this to argue that S + εB cannot be
an isomorphism from H to H by showing that either e1 is not in the range or else
there is a non-trivial element in the null space.
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Problem 1.68. Show that the product of bounded operators on a Hilbert space
is strong continuous, in the sense that if An and Bn are strong convergent sequences
of bounded operators on H with limits A and B then the product AnBn is strongly
convergent with limit AB.

Hint (Problem 1.68) Be careful! Use the result in class which was deduced from
the Uniform Boundedness Theorem.

Problem 1.68. Show that a continuous function K : [0, 1] −→ L2(0, 2π) has
the property that the Fourier series of K(x) ∈ L2(0, 2π), for x ∈ [0, 1], converges
uniformly in the sense that if Kn(x) is the sum of the Fourier series over |k| ≤ n
then Kn : [0, 1] −→ L2(0, 2π) is also continuous and

(5.69) sup
x∈[0,1]

‖K(x)−Kn(x)‖L2(0,2π) → 0.

Hint (Problem 1.68) Use one of the properties of compactness in a Hilbert space
that you proved earlier.

Problem 1.69. Consider an integral operator acting on L2(0, 1) with a kernel
which is continuous – K ∈ C([0, 1]2). Thus, the operator is

(5.70) Tu(x) =

∫
(0,1)

K(x, y)u(y).

Show that T is bounded on L2 (I think we did this before) and that it is in the
norm closure of the finite rank operators.

Hint (Problem 1.68) Use the previous problem! Show that a continuous function
such as K in this Problem defines a continuous map [0, 1] 3 x 7−→ K(x, ·) ∈ C([0, 1])
and hence a continuous function K : [0, 1] −→ L2(0, 1) then apply the previous
problem with the interval rescaled.

Here is an even more expanded version of the hint: You can think of K(x, y) as
a continuous function of x with values in L2(0, 1). Let Kn(x, y) be the continuous
function of x and y given by the previous problem, by truncating the Fourier series
(in y) at some point n. Check that this defines a finite rank operator on L2(0, 1)
– yes it maps into continuous functions but that is fine, they are Lebesgue square
integrable. Now, the idea is the difference K−Kn defines a bounded operator with
small norm as n becomes large. It might actually be clearer to do this the other
way round, exchanging the roles of x and y.

Problem 1.70. Although we have concentrated on the Lebesgue integral in
one variable, you proved at some point the covering lemma in dimension 2 and
that is pretty much all that was needed to extend the discussion to 2 dimensions.
Let’s just assume you have assiduously checked everything and so you know that
L2((0, 2π)2) is a Hilbert space. Sketch a proof – noting anything that you are not
sure of – that the functions exp(ikx+ily)/2π, k, l ∈ Z, form a complete orthonormal
basis.

Problem 1.70. Let H be a separable (partly because that is mostly what I
have been talking about) Hilbert space with inner product (·, ·) and norm ‖ · ‖. Say
that a sequence un in H converges weakly if (un, v) is Cauchy in C for each v ∈ H.

(1) Explain why the sequence ‖un‖H is bounded.
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Solution: Each un defines a continuous linear functional on H by

(5.71) Tn(v) = (v, un), ‖Tn‖ = ‖un‖, Tn : H −→ C.

For fixed v the sequence Tn(v) is Cauchy, and hence bounded, in C so by
the ‘Uniform Boundedness Principle’ the ‖Tn‖ are bounded, hence ‖un‖
is bounded in R.

(2) Show that there exists an element u ∈ H such that (un, v) → (u, v) for
each v ∈ H.

Solution: Since (v, un) is Cauchy in C for each fixed v ∈ H it is
convergent. Set

(5.72) Tv = lim
n→∞

(v, un) in C.

This is a linear map, since

(5.73) T (c1v1 + c2v2) = lim
n→∞

c1(v1, un) + c2(v2, u) = c1Tv1 + c2Tv2

and is bounded since |Tv| ≤ C‖v‖, C = supn ‖un‖. Thus, by Riesz’ the-
orem there exists u ∈ H such that Tv = (v, u). Then, by definition of
T,

(5.74) (un, v)→ (u, v) ∀ v ∈ H.

(3) If ei, i ∈ N, is an orthonormal sequence, give, with justification, an ex-
ample of a sequence un which is not weakly convergent in H but is such
that (un, ej) converges for each j.

Solution: One such example is un = nen. Certainly (un, ei) = 0 for all
i > n, so converges to 0. However, ‖un‖ is not bounded, so the sequence
cannot be weakly convergent by the first part above.

(4) Show that if the ei form an orthonormal basis, ‖un‖ is bounded and
(un, ej) converges for each j then un converges weakly.

Solution: By the assumption that (un, ej) converges for all j it follows
that (un, v) converges as n → ∞ for all v which is a finite linear combi-
nation of the ei. For general v ∈ H the convergence of the Fourier-Bessell
series for v with respect to the orthonormal basis ej

(5.75) v =
∑
k

(v, ek)ek

shows that there is a sequence vk → v where each vk is in the finite span
of the ej . Now, by Cauchy’s inequality

(5.76) |(un, v)− (um, v)| ≤ |(unvk)− (um, vk)|+ |(un, v − vk)|+ |(um, v − vk)|.

Given ε > 0 the boundedness of ‖un‖means that the last two terms can be
arranged to be each less than ε/4 by choosing k sufficiently large. Having
chosen k the first term is less than ε/4 if n,m > N by the fact that (un, vk)
converges as n→∞. Thus the sequence (un, v) is Cauchy in C and hence
convergent.

Problem 1.76. Consider the two spaces of sequences

h±2 = {c : N 7−→ C;

∞∑
j=1

j±4|cj |2 <∞}.
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Show that both h±2 are Hilbert spaces and that any linear functional satisfying

T : h2 −→ C, |Tc| ≤ C‖c‖h2

for some constant C is of the form

Tc =

∞∑
j=1

cidi

where d : N −→ C is an element of h−2.

Solution: Many of you hammered this out by parallel with l2. This is fine, but
to prove that h±2 are Hilbert spaces we can actually use l2 itself. Thus, consider
the maps on complex sequences

(5.77) (T±c)j = cjj
±2.

Without knowing anything about h±2 this is a bijection between the sequences in
h±2 and those in l2 which takes the norm

(5.78) ‖c‖h±2
= ‖Tc‖l2 .

It is also a linear map, so it follows that h± are linear, and that they are indeed
Hilbert spaces with T± isometric isomorphisms onto l2; The inner products on h±2

are then

(5.79) (c, d)h±2
=

∞∑
j=1

j±4cjdj .

Don’t feel bad if you wrote it all out, it is good for you!
Now, once we know that h2 is a Hilbert space we can apply Riesz’ theorem to

see that any continuous linear functional T : h2 −→ C, |Tc| ≤ C‖c‖h2
is of the form

(5.80) Tc = (c, d′)h2
=

∞∑
j=1

j4cjd′j , d
′ ∈ h2.

Now, if d′ ∈ h2 then dj = j4d′j defines a sequence in h−2. Namely,

(5.81)
∑
j

j−4|dj |2 =
∑
j

j4|d′j |2 <∞.

Inserting this in (5.80) we find that

(5.82) Tc =

∞∑
j=1

cjdj , d ∈ h−2.

(1) In P9.2 (2), and elsewhere, C∞(S) should be C0(S), the space of continuous
functions on the circle – with supremum norm.

(2) In (5.95) it should be u = Fv, not u = Sv.
(3) Similarly, before (5.96) it should be u = Fv.
(4) Discussion around (5.98) clarified.
(5) Last part of P10.2 clarified.

This week I want you to go through the invertibility theory for the operator

(5.83) Qu = (− d2

dx2
+ V (x))u(x)

acting on periodic functions. Since we have not developed the theory to handle this
directly we need to approach it through integral operators.
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Problem 1.83. Let S be the circle of radius 1 in the complex plane, centered
at the origin, S = {z; |z| = 1}.

(1) Show that there is a 1-1 correspondence

(5.84) C0(S) = {u : S −→ C, continuous} −→
{u : R −→ C; continuous and satisfying u(x+ 2π) = u(x) ∀ x ∈ R}.

(2) Show that there is a 1-1 correspondence

(5.85) L2(0, 2π)←→ {u ∈ L1
loc(R);u

∣∣
(0,2π)

∈ L2(0, 2π)

and u(x+ 2π) = u(x) ∀ x ∈ R}/NP

where NP is the space of null functions on R satisfying u(x+ 2π) = u(x)
for all x ∈ R.

(3) If we denote by L2(S) the space on the left in (5.85) show that there is a
dense inclusion

(5.86) C0(S) −→ L2(S).

So, the idea is that we can think of functions on S as 2π-periodic functions on
R.

Next are some problems dealing with Schrödinger’s equation, or at least it is
an example thereof:

(5.87) −d
2u(x)

dx2
+ V (x)u(x) = f(x), x ∈ R,

(1) First we will consider the special case V = 1. Why not V = 0? – Don’t
try to answer this until the end!

(2) Recall how to solve the differential equation

(5.88) −d
2u(x)

dx2
+ u(x) = f(x), x ∈ R,

where f(x) ∈ C0(S) is a continuous, 2π-periodic function on the line. Show
that there is a unique 2π-periodic and twice continuously differentiable
function, u, on R satisfying (5.88) and that this solution can be written
in the form

(5.89) u(x) = (Sf)(x) =

∫
0,2π

A(x, y)f(y)

where A(x, y) ∈ C0(R2) satisfies A(x+2π, y+2π) = A(x, y) for all (x, y) ∈
R.

Extended hint: In case you managed to avoid a course on differential
equations! First try to find a solution, igonoring the periodicity issue. To
do so one can (for example, there are other ways) factorize the differential
operator involved, checking that

(5.90) −d
2u(x)

dx2
+ u(x) = −(

dv

dx
+ v) if v =

du

dx
− u
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since the cross terms cancel. Then recall the idea of integrating factors to
see that

(5.91)

du

dx
− u = ex

dφ

dx
, φ = e−xu,

dv

dx
+ v = e−x

dψ

dx
, ψ = exv.

Now, solve the problem by integrating twice from the origin (say) and
hence get a solution to the differential equation (5.88). Write this out
explicitly as a double integral, and then change the order of integration
to write the solution as

(5.92) u′(x) =

∫
0,2π

A′(x, y)f(y)dy

where A′ is continuous on R×[0, 2π]. Compute the difference u′(2π)−u′(0)

and du′

dx (2π)− du′

dx (0) as integrals involving f. Now, add to u′ as solution
to the homogeneous equation, for f = 0, namely c1e

x + c2e
−x, so that the

new solution to (5.88) satisfies u(2π) = u(0) and du
dx (2π) = du

dx (0). Now,
check that u is given by an integral of the form (5.89) with A as stated.

(3) Check, either directly or indirectly, that A(y, x) = A(x, y) and that A is
real.

(4) Conclude that the operator S extends by continuity to a bounded operator
on L2(S).

(5) Check, probably indirectly rather than directly, that

(5.93) S(eikx) = (k2 + 1)−1eikx, k ∈ Z.

(6) Conclude, either from the previous result or otherwise that S is a compact
self-adjoint operator on L2(S).

(7) Show that if g ∈ C0(S)) then Sg is twice continuously differentiable. Hint:
Proceed directly by differentiating the integral.

(8) From (5.93) conclude that S = F 2 where F is also a compact self-adjoint

operator on L2(S) with eigenvalues (k2 + 1)−
1
2 .

(9) Show that F : L2(S) −→ C0(S).
(10) Now, going back to the real equation (5.87), we assume that V is contin-

uous, real-valued and 2π-periodic. Show that if u is a twice-differentiable
2π-periodic function satisfying (5.87) for a given f ∈ C0(S) then

(5.94) u+ S((V − 1)u) = Sf and hence u = −F 2((V − 1)u) + F 2f

and hence conclude that

(5.95) u = Fv where v ∈ L2(S) satisfies v + (F (V − 1)F )v = Ff

where V − 1 is the operator defined by multiplication by V − 1.
(11) Show the converse, that if v ∈ L2(S) satisfies

(5.96) v + (F (V − 1)F )v = Ff, f ∈ C0(S)

then u = Fv is 2π-periodic and twice-differentiable on R and satisfies
(5.87).
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(12) Apply the Spectral theorem to F (V − 1)F (including why it applies) and
show that there is a sequence λj in R \ {0} with |λj | → 0 such that for all
λ ∈ C \ {0}, the equation

(5.97) λv + (F (V − 1)F )v = g, g ∈ L2(S)

has a unique solution for every g ∈ L2(S) if and only if λ 6= λj for any j.
(13) Show that for the λj the solutions of

(5.98) λjv + (F (V − 1)F )v = 0, v ∈ L2(S),

are all continuous 2π-periodic functions on R.
(14) Show that the corresponding functions u = Fv where v satisfies (5.98) are

all twice continuously differentiable, 2π-periodic functions on R satisfying

(5.99) −d
2u

dx2
+ (1− sj + sjV (x))u(x) = 0, sj = 1/λj .

(15) Conversely, show that if u is a twice continuously differentiable and 2π-
periodic function satisfying

(5.100) −d
2u

dx2
+ (1− s+ sV (x))u(x) = 0, s ∈ C,

and u is not identically 0 then s = sj for some j.
(16) Finally, conclude that Fredholm’s alternative holds for the equation (5.87)

Theorem 5.1. For a given real-valued, continuous 2π-periodic func-
tion V on R, either (5.87) has a unique twice continuously differentiable,
2π-periodic, solution for each f which is continuous and 2π-periodic or
else there exists a finite, but positive, dimensional space of twice continu-
ously differentiable 2π-periodic solutions to the homogeneous equation

(5.101) −d
2w(x)

dx2
+ V (x)w(x) = 0, x ∈ R,

and (5.87) has a solution if and only if
∫

(0,2π)
fw = 0 for every 2π-periodic

solution, w, to (5.101).

Problem 1.101. Check that we really can understand all the 2π periodic eigen-
functions of the Schrödinger operator using the discussion above. First of all, there
was nothing sacred about the addition of 1 to −d2/dx2, we could add any positive
number and get a similar result – the problem with 0 is that the constants satisfy
the homogeneous equation d2u/dx2 = 0. What we have shown is that the operator

(5.102) u 7−→ Qu = −d
2u

dx2
u+ V u

applied to twice continuously differentiable functions has at least a left inverse
unless there is a non-trivial solution of

(5.103) −d
2u

dx2
u+ V u = 0.

Namely, the left inverse is R = F (Id +F (V −1)F )−1F. This is a compact self-adjoint
operator. Show – and there is still a bit of work to do – that (twice continuously
differentiable) eigenfunctions of Q, meaning solutions of Qu = τu are precisely the
non-trivial solutions of Ru = τ−1u.
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What to do in case (5.103) does have a non-trivial solution? Show that the
space of these is finite dimensional and conclude that essentially the same result
holds by working on the orthocomplement in L2(S).

By now you should have become reasonably comfortable with a separable
Hilbert space such as l2. However, it is worthwhile checking once again that it
is rather large – if you like, let me try to make you uncomfortable for one last time.
An important result in this direction is Kuiper’s theorem, which I will not ask you
to prove1. However, I want you to go through the closely related result sometimes
known as Eilenberg’s swindle. Perhaps you will appreciate the little bit of trickery.
First some preliminary results. Note that everything below is a closed curve in the
x ∈ [0, 1] variable – you might want to identify this with a circle instead, I just did
it the primitive way.

Problem 1.103. Let H be a separable, infinite dimensional Hilbert space.
Show that the direct sum of two copies of H is a Hilbert space with the norm

(5.104) H ⊕H 3 (u1, u2) 7−→ (‖u1‖2H + ‖u2‖2H)
1
2

either by constructing an isometric isomorphism

(5.105) T : H −→ H ⊕H, 1-1 and onto, ‖u‖H = ‖Tu‖H⊕H
or otherwise. In any case, construct a map as in (5.105).

Problem 1.105. One can repeat the preceding construction any finite number
of times. Show that it can be done ‘countably often’ in the sense that if H is a
separable, infinite dimensional, Hilbert space then

(5.106) l2(H) = {u : N −→ H; ‖u‖2l2(H) =
∑
i

‖ui‖2H <∞}

has a Hilbert space structure and construct an explicit isometric isomorphism from
l2(H) to H.

Problem 1.106. Recall, or perhaps learn about, the winding number of a
closed curve with values in C∗ = C \ {0}. We take as given the following fact:2 If
Q = [0, 1]N and f : Q −→ C∗ is continuous then for each choice of b ∈ C satisfying
exp(2πib) = f(0), there exists a unique continuous function F : Q −→ C satisfying

(5.107) exp(2πiF (q)) = f(q), ∀ q ∈ Q and F (0) = b.

Of course, you are free to change b to b + n for any n ∈ Z but then F changes to
F + n, just shifting by the same integer.

(1) Now, suppose c : [0, 1] −→ C∗ is a closed curve – meaning it is continuous
and c(1) = c(0). Let C : [0, 1] −→ C be a choice of F for N = 1 and
f = c. Show that the winding number of the closed curve c may be defined
unambiguously as

(5.108) wn(c) = C(1)− C(0) ∈ Z.

1Kuiper’s theorem says that for any (norm) continuous map, say from any compact metric
space, g : M −→ GL(H) with values in the invertible operators on a separable infinite-dimensional
Hilbert space there exists a continuous map, an homotopy, h : M × [0, 1] −→ GL(H) such that

h(m, 0) = g(m) and h(m, 1) = IdH for all m ∈M.
2Of course, you are free to give a proof – it is not hard.
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(2) Show that wn(c) is constant under homotopy. That is if ci : [0, 1] −→ C∗,
i = 1, 2, are two closed curves so ci(1) = ci(0), i = 1, 2, which are homo-
topic through closed curves in the sense that there exists f : [0, 1]2 −→ C∗
continuous and such that f(0, x) = c1(x), f(1, x) = c2(x) for all x ∈ [0, 1]
and f(y, 0) = f(y, 1) for all y ∈ [0, 1], then wn(c1) = wn(c2).

(3) Consider the closed curve Ln : [0, 1] 3 x 7−→ e2πix Idn×n of n×n matrices.
Using the standard properties of the determinant, show that this curve
is not homotopic to the identity through closed curves in the sense that
there does not exist a continuous map G : [0, 1]2 −→ GL(n), with values in
the invertible n×n matrices, such that G(0, x) = Ln(x), G(1, x) ≡ Idn×n
for all x ∈ [0, 1], G(y, 0) = G(y, 1) for all y ∈ [0, 1].

Problem 1.108. Consider the closed curve corresponding to Ln above in the
case of a separable but now infinite dimensional Hilbert space:

(5.109) L : [0, 1] 3 x 7−→ e2πix IdH ∈ GL(H) ⊂ B(H)

taking values in the invertible operators on H. Show that after identifying H with
H ⊕H as above, there is a continuous map

(5.110) M : [0, 1]2 −→ GL(H ⊕H)

with values in the invertible operators and satisfying
(5.111)
M(0, x) = L(x), M(1, x)(u1, u2) = (e4πixu1, u2), M(y, 0) = M(y, 1), ∀ x, y ∈ [0, 1].

Hint: So, think of H ⊕H as being 2-vectors (u1, u2) with entries in H. This allows
one to think of ‘rotation’ between the two factors. Indeed, show that

(5.112) U(y)(u1, u2) = (cos(πy/2)u1 + sin(πy/2)u2,− sin(πy/2)u1 + cos(πy/2)u2)

defines a continuous map [0, 1] 3 y 7−→ U(y) ∈ GL(H ⊕H) such that U(0) = Id,
U(1)(u1, u2) = (u2,−u1). Now, consider the 2-parameter family of maps

(5.113) U−1(y)V2(x)U(y)V1(x)

where V1(x) and V2(x) are defined on H⊕H as multiplication by exp(2πix) on the
first and the second component respectively, leaving the other fixed.

Problem 1.113. Using a rotation similar to the one in the preceeding problem
(or otherwise) show that there is a continuous map

(5.114) G : [0, 1]2 −→ GL(H ⊕H)

such that

(5.115) G(0, x)(u1, u2) = (e2πixu1, e
−2πixu2),

G(1, x)(u1, u2) = (u1, u2), G(y, 0) = G(y, 1) ∀ x, y ∈ [0, 1].

Problem 1.115. Now, think about combining the various constructions above
in the following way. Show that on l2(H) there is an homotopy like (5.114), G̃ :
[0, 1]2 −→ GL(l2(H)), (very like in fact) such that

(5.116) G̃(0, x) {uk}∞k=1 =
{

exp((−1)k2πix)uk
}∞
k=1

,

G̃(1, x) = Id, G̃(y, 0) = G̃(y, 1) ∀ x, y ∈ [0, 1].
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Problem 1.116. “Eilenberg’s swindle” For an infinite dimenisonal separable
Hilbert space, construct an homotopy – meaning a continuous map G : [0, 1]2 −→
GL(H) – with G(0, x) = L(x) in (5.109) and G(1, x) = Id and of course G(y, 0) =
G(y, 1) for all x, y ∈ [0, 1].

Hint: Just put things together – of course you can rescale the interval at the end
to make it all happen over [0, 1]. First ‘divide H into 2 copies of itself’ and deform
from L to M(1, x) in (5.111). Now, ‘divide the second H up into l2(H)’ and apply
an argument just like the preceding problem to turn the identity on this factor into
alternating terms multiplying by exp(±4πix) – starting with −. Now, you are on
H ⊕ l2(H), ‘renumbering’ allows you to regard this as l2(H) again and when you
do so your curve has become alternate multiplication by exp(±4πix) (with + first).
Finally then, apply the preceding problem again, to deform to the identity (always
of course through closed curves). Presto, Eilenberg’s swindle!

Problem 1.116. Check that we really can understand all the 2π periodic eigen-
functions of the Schrödinger operator using the discussion above. First of all, there
was nothing sacred about the addition of 1 to −d2/dx2, we could add any positive
number and get a similar result – the problem with 0 is that the constants satisfy
the homogeneous equation d2u/dx2 = 0. What we have shown is that the operator

(5.117) u 7−→ Qu = −d
2u

dx2
u+ V u

applied to twice continuously differentiable functions has at least a left inverse
unless there is a non-trivial solution of

(5.118) −d
2u

dx2
u+ V u = 0.

Namely, the left inverse is R = F (Id +F (V −1)F )−1F. This is a compact self-adjoint
operator. Show – and there is still a bit of work to do – that (twice continuously
differentiable) eigenfunctions of Q, meaning solutions of Qu = τu are precisely the
non-trivial solutions of Ru = τ−1u.

What to do in case (5.118) does have a non-trivial solution? Show that the
space of these is finite dimensional and conclude that essentially the same result
holds by working on the orthocomplement in L2(S).

5. Exam Preparation Problems

EP.1 Let H be a Hilbert space with inner product (·, ·) and suppose that

(5.119) B : H ×H ←→ C

is a(nother) sesquilinear form – so for all c1, c2 ∈ C, u, u1, u2 and v ∈ H,

(5.120) B(c1u1 + c2u2, v) = c1B(u1, v) + c2B(u2, v), B(u, v) = B(v, u).

Show that B is continuous, with respect to the norm ‖(u, v)‖ = ‖u‖H + ‖v‖H on
H ×H if and only if it is bounded, in the sense that for some C > 0,

(5.121) |B(u, v)| ≤ C‖u‖H‖v‖H .

EP.2 A continuous linear map T : H1 −→ H2 between two, possibly different,
Hilbert spaces is said to be compact if the image of the unit ball in H1 under T is
precompact in H2. Suppose A : H1 −→ H2 is a continuous linear operator which
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is injective and surjective and T : H1 −→ H2 is compact. Show that there is a
compact operator K : H2 −→ H2 such that T = KA.

EP.3 Suppose P ⊂ H is a (non-trivial, i.e. not {0}) closed linear subspace of
a Hilbert space. Deduce from a result done in class that each u in H has a unique
decomposition

(5.122) u = v + v′, v ∈ P, v′ ⊥ P

and that the map πP : H 3 u 7−→ v ∈ P has the properties

(5.123) (πP )∗ = πP , (πP )2 = πP , ‖πP ‖B(H) = 1.

EP.4 Show that for a sequence of non-negative step functions fj , defined on
R, which is absolutely summable, meaning

∑
j

∫
fj <∞, the series

∑
j

fj(x) cannot

diverge for all x ∈ (a, b), for any a < b.
EP.5 Let Aj ⊂ [−N,N ] ⊂ R (for N fixed) be a sequence of subsets with the

property that the characteristic function, χj of Aj , is integrable for each j. Show
that the characteristic function of

(5.124) A =
⋃
j

Aj

is integrable.

EP.6 Let ej = cjC
je−x

2/2, cj > 0, C = − d
dx + x the creation operator, be

the orthonormal basis of L2(R) consisting of the eigenfunctions of the harmonic
oscillator discussed in class. Define an operator on L2(R) by

(5.125) Au =

∞∑
j=0

(2j + 1)−
1
2 (u, ej)L2ej .

(1) Show that A is compact as an operator on L2(R).
(2) Suppose that V ∈ C0

∞(R) is a bounded, real-valued, continuous function
on R. What can you say about the eigenvalues τj , and eigenfunctions vj ,
of K = AV A, where V is acting by multiplication on L2(R)?

(3) Show that for C > 0 a large enough constant, Id +A(V +C)A is invertible
(with bounded inverse on L2(R)).

(4) Show that L2(R) has an orthonormal basis of eigenfunctions of J =
A(Id +A(V + C)A)−1A.

(5) What would you need to show to conclude that these eigenfunctions of J
satisfy

(5.126) −d
2vj(x)

dx2
+ x2vj(x) + V (x)vj(x) = λjvj?

(6) What would you need to show to check that all the square-integrable,
twice continuously differentiable, solutions of (5.126), for some λj ∈ C,
are eigenfunctions of K?

EP.7 Test 1 from last year (N.B. There may be some confusion between L1

and L1 here, just choose the correct interpretation!):-
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Q1. Recall Lebesgue’s Dominated Convergence Theorem and use it to show
that if u ∈ L2(R) and v ∈ L1(R) then

(Eq1)

lim
N→∞

∫
|x|>N

|u|2 = 0, lim
N→∞

∫
|CNu− u|2 = 0,

lim
N→∞

∫
|x|>N

|v| = 0 and lim
N→∞

∫
|CNv − v| = 0.

where

(Eq2) CNf(x) =


N if f(x) > N

−N if f(x) < −N
f(x) otherwise.

Q2. Show that step functions are dense in L1(R) and in L2(R) (Hint:- Look at
Q1 above and think about f−fN , fN = CNfχ[−N,N ] and its square. So it

suffices to show that fN is the limit in L2 of a sequence of step functions.
Show that if gn is a sequence of step functions converging to fN in L1

then CNgnχ[−N,N ] is converges to fN in L2.) and that if f ∈ L1(R) then

there is a sequence of step functions un and an element g ∈ L1(R) such
that un → f a.e. and |un| ≤ g.

Q3. Show that L1(R) and L2(R) are separable, meaning that each has a count-
able dense subset.

Q4. Show that the minimum and the maximum of two locally integrable func-
tions is locally integrable.

Q5. A subset of R is said to be (Lebesgue) measurable if its characteristic
function is locally integrable. Show that a countable union of measurable
sets is measurable. Hint: Start with two!

Q6. Define L∞(R) as consisting of the locally integrable functions which are
bounded, supR |u| <∞. IfN∞ ⊂ L∞(R) consists of the bounded functions
which vanish outside a set of measure zero show that

(Eq3) ‖u+N∞‖L∞ = inf
h∈N∞

sup
x∈R
|u(x) + h(x)|

is a norm on L∞(R) = L∞(R)/N∞.
Q7. Show that if u ∈ L∞(R) and v ∈ L1(R) then uv ∈ L1(R) and that

(Eq4) |
∫
uv| ≤ ‖u‖L∞‖v‖L1 .

Q8. Show that each u ∈ L2(R) is continuous in the mean in the sense that
Tzu(x) = u(x− z) ∈ L2(R) for all z ∈ R and that

(Eq5) lim
|z|→0

∫
|Tzu− u|2 = 0.

Q9. If {uj} is a Cauchy sequence in L2(R) show that both (Eq5) and (Eq1)
are uniform in j, so given ε > 0 there exists δ > 0 such that

(Eq6)

∫
|Tzuj − uj |2 < ε,

∫
|x|>1/δ

|uj |2 < ε ∀ |z| < δ and all j.

Q10. Construct a sequence in L2(R) for which the uniformity in (Eq6) does not
hold.

EP.8 Test 2 from last year.
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(1) Recall the discussion of the Dirichlet problem for d2/dx2 from class and
carry out an analogous discussion for the Neumann problem to arrive at
a complete orthonormal basis of L2([0, 1]) consisting of ψn ∈ C2 functions
which are all eigenfunctions in the sense that

(NeuEig)
d2ψn(x)

dx2
= γnψn(x) ∀ x ∈ [0, 1],

dψn
dx

(0) =
dψn
dx

(1) = 0.

This is actually a little harder than the Dirichlet problem which I did in
class, because there is an eigenfunction of norm 1 with γ = 0. Here are
some individual steps which may help you along the way!

What is the eigenfunction with eigenvalue 0 for (NeuEig)?
What is the operator of orthogonal projection onto this function?
What is the operator of orthogonal projection onto the orthocom-

plement of this function?
The crucual part. Find an integral operator AN = B −BN , where

B is the operator from class,

(B-Def) (Bf)(x) =

∫ x

0

(x− s)f(s)ds

and BN is of finite rank, such that if f is continuous then u = ANf is

twice continuously differentiable, satisfies
∫ 1

0
u(x)dx = 0, AN1 = 0 (where

1 is the constant function) and

(GI)

∫ 1

0

f(x)dx = 0 =⇒

d2u

dx2
= f(x) ∀ x ∈ [0, 1],

du

dx
(0) =

du

dx
(1) = 0.

Show that AN is compact and self-adjoint.
Work out what the spectrum of AN is, including its null space.
Deduce the desired conclusion.

(2) Show that these two orthonormal bases of L2([0, 1]) (the one above and the
one from class) can each be turned into an orthonormal basis of L2([0, π])
by change of variable.

(3) Construct an orthonormal basis of L2([−π, π]) by dividing each element
into its odd and even parts, resticting these to [0, π] and using the Neu-
mann basis above on the even part and the Dirichlet basis from class on
the odd part.

(4) Prove the basic theorem of Fourier series, namely that for any function
u ∈ L2([−π, π]) there exist unique constants ck ∈ C, k ∈ Z such that

(FS) u(x) =
∑
k∈Z

cke
ikx converges in L2([−π, π])

and give an integral formula for the constants.
EP.9 Let B ∈ C([0, 1]2) be a continuous function of two variables.

Explain why the integral operator

Tu(x) =

∫
[0,1]

B(x, y)u(y)

defines a bounded linear map L1([0, 1]) −→ C([0, 1]) and hence a bounded
operator on L2([0, 1]).
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(a) Explain why T is not surjective as a bounded operator on L2([0, 1]).
(b) Explain why Id−T has finite dimensional null space N ⊂ L2([0, 1])

as an operator on L2([0, 1])
(c) Show that N ⊂ C([0, 1]).
(d) Show that Id−T has closed range R ⊂ L2([0, 1])) as a bounded op-

erator on L2([0, 1]).
(e) Show that the orthocomplement of R is a subspace of C([0, 1]).

EP.10 Let c : N2 −→ C be an ‘infinite matrix’ of complex numbers
satisfying

(5.127)

∞∑
i,j=1

|cij |2 <∞.

If {ei}∞i=1 is an orthornomal basis of a (separable of course) Hilbert space
H, show that

(5.128) Au =

∞∑
i,j=1

cij(u, ej)ei

defines a compact operator on H.

6. Solutions to problems

Solution 14 (Problem 1.0). Write out a proof (you can steal it from one of
many places but at least write it out in your own hand) either for p = 2 or for each
p with 1 ≤ p <∞ that

lp = {a : N −→ C;

∞∑
j=1

|aj |p <∞, aj = a(j)}

is a normed space with the norm

‖a‖p =

 ∞∑
j=1

|aj |p
 1

p

.

This means writing out the proof that this is a linear space and that the three
conditions required of a norm hold.

Solution:- We know that the functions from any set with values in a linear space
form a linear space – under addition of values (don’t feel bad if you wrote this out,
it is a good thing to do once). So, to see that lp is a linear space it suffices to see
that it is closed under addition and scalar multiplication. For scalar multiples this
is clear:-

(5.129) |tai| = |t||ai| so ‖ta‖p = |t|‖a‖p
which is part of what is needed for the proof that ‖ · ‖p is a norm anyway. The fact
that a, b ∈ lp imples a + b ∈ lp follows once we show the triangle inequality or we
can be a little cruder and observe that

(5.130)

|ai + bi|p ≤ (2 max(|a|i, |bi|))p = 2p max(|a|pi , |bi|
p) ≤ 2p(|ai|+ |bi|)

‖a+ b‖pp =
∑
j

|ai + bi|p ≤ 2p(‖a‖p + ‖b‖p),

where we use the fact that tp is an increasing function of t ≥ 0.
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Now, to see that lp is a normed space we need to check that ‖a‖p is indeed a
norm. It is non-negative and ‖a‖p = 0 implies ai = 0 for all i which is to say a = 0.
So, only the triangle inequality remains. For p = 1 this is a direct consequence of
the usual triangle inequality:

(5.131) ‖a+ b‖1 =
∑
i

|ai + bi| ≤
∑
i

(|ai|+ |bi|) = ‖a‖1 + ‖b‖1.

For 1 < p < ∞ it is known as Minkowski’s inequality. This in turn is deduced
from Hölder’s inequality – which follows from Young’s inequality! The latter says
if 1/p+ 1/q = 1, so q = p/(p− 1), then

(5.132) αβ ≤ αp

p
+
βq

q
∀ α, β ≥ 0.

To check it, observe that as a function of α = x,

(5.133) f(x) =
xp

p
− xβ +

βq

q

if non-negative at x = 0 and clearly positive when x >> 0, since xp grows faster
than xβ. Moreover, it is differentiable and the derivative only vanishes at xp−1 =
β, where it must have a global minimum in x > 0. At this point f(x) = 0 so
Young’s inequality follows. Now, applying this with α = |ai|/‖a‖p and β = |bi|/‖b‖q
(assuming both are non-zero) and summing over i gives Hölder’s inequality

(5.134)

|
∑
i

aibi|/‖a‖p‖b‖q ≤
∑
i

|ai||bi|/‖a‖p‖b‖q ≤
∑
i

(
|ai|p

‖a‖ppp
+
|bi|q

‖b‖qqq

)
= 1

=⇒ |
∑
i

aibi| ≤ ‖a‖p‖b‖q.

Of course, if either ‖a‖p = 0 or ‖b‖q = 0 this inequality holds anyway.

Now, from this Minkowski’s inequality follows. Namely from the ordinary tri-
angle inequality and then Minkowski’s inequality (with q power in the first factor)

(5.135)
∑
i

|ai + bi|p =
∑
i

|ai + bi|(p−1)|ai + bi|

≤
∑
i

|ai + bi|(p−1)|ai|+
∑
i

|ai + bi|(p−1)|bi|

≤

(∑
i

|ai + bi|p
)1/q

(‖a‖p + ‖b‖p)

gives after division by the first factor on the right

(5.136) ‖a+ b‖p ≤ ‖a‖p + ‖b‖p.

Thus, lp is indeed a normed space.
I did not necessarily expect you to go through the proof of Young-Hölder-

Minkowksi, but I think you should do so at some point since I will not do it in
class.



6. SOLUTIONS TO PROBLEMS 197

Solution 15. Problem 1.1 The ‘tricky’ part in Problem 1.0 is the triangle
inequality. Suppose you knew – meaning I tell you – that for each N N∑

j=1

|aj |p
 1

p

is a norm on CN

would that help?

Solution. Yes indeed it helps. If we know that for each N

(5.137)

 N∑
j=1

|aj + bj |p
 1

p

≤

 N∑
j=1

|aj |p
 1

p

+

 N∑
j=1

|bj |p
 1

p

then for elements of lp the norms always bounds the right side from above, meaning

(5.138)

 N∑
j=1

|aj + bj |p
 1

p

≤ ‖a‖p + ‖b‖p.

Since the left side is increasing with N it must converge and be bounded by the
right, which is independent of N. That is, the triangle inequality follows. Really
this just means it is enough to go through the discussion in the first problem for
finite, but arbitrary, N. �

Solution 16. Prove directly that each lp as defined in Problem 1.0 – or just l2

– is complete, i.e. it is a Banach space. At the risk of offending some, let me say
that this means showing that each Cauchy sequence converges. The problem here is
to find the limit of a given Cauchy sequence. Show that for each N the sequence in
CN obtained by truncating each of the elements at point N is Cauchy with respect
to the norm in Problem 1.1 on CN . Show that this is the same as being Cauchy
in CN in the usual sense (if you are doing p = 2 it is already the usual sense)
and hence, this cut-off sequence converges. Use this to find a putative limit of the
Cauchy sequence and then check that it works.

Solution. So, suppose we are given a Cauchy sequence a(n) in lp. Thus, each

element is a sequence {a(n)
j }∞j=1 in lp. From the continuity of the norm in Problem

?? below, ‖a(n)‖ must be Cauchy in R and so converges. In particular the sequence
is norm bounded, there exists A such that ‖a(n)‖p ≤ A for all n. The Cauchy
condition itself is that given ε > 0 there exists M such that for all m,n > M,

(5.139) ‖a(n) − a(m)‖p =

(∑
i

|a(n)
i − a(m)

i |p
) 1
p

< ε/2.

Now for each i, |a(n)
i − a(m)

i | ≤ ‖a(n) − a(m)‖p so each of the sequences a
(n)
i must

be Cauchy in C. Since C is complete

(5.140) lim
n→∞

a
(n)
i = ai exists for each i = 1, 2, . . . .

So, our putative limit is a, the sequence {ai}∞i=1. The boundedness of the norms
shows that

(5.141)

N∑
i=1

|a(n)
i |

p ≤ Ap
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and we can pass to the limit here as n → ∞ since there are only finitely many
terms. Thus

(5.142)

N∑
i=1

|ai|p ≤ Ap ∀ N =⇒ ‖a‖p ≤ A.

Thus, a ∈ lp as we hoped. Similarly, we can pass to the limit as m → ∞ in the
finite inequality which follows from the Cauchy conditions

(5.143) (

N∑
i=1

|a(n)
i − a(m)

i |p)
1
p < ε/2

to see that for each N

(5.144) (

N∑
i=1

|a(n)
i − ai|p)

1
p ≤ ε/2

and hence

(5.145) ‖a(n) − a‖ < ε ∀ n > M.

Thus indeed, a(n) → a in lp as we were trying to show.
Notice that the trick is to ‘back off’ to finite sums to avoid any issues of inter-

changing limits. �

Solution 17. Consider the ‘unit sphere’ in lp – where if you want you can set
p = 2. This is the set of vectors of length 1 :

S = {a ∈ lp; ‖a‖p = 1}.
(1) Show that S is closed.
(2) Recall the sequential (so not the open covering definition) characterization

of compactness of a set in a metric space (e .g . by checking in Rudin).
(3) Show that S is not compact by considering the sequence in lp with kth

element the sequence which is all zeros except for a 1 in the kth slot. Note
that the main problem is not to get yourself confused about sequences of
sequences!

Solution. By the next problem, the norm is continuous as a function, so

(5.146) S = {a; ‖a‖ = 1}
is the inverse image of the closed subset {1}, hence closed.

Now, the standard result on metric spaces is that a subset is compact if and
only if every sequence with values in the subset has a convergent subsequence with
limit in the subset (if you drop the last condition then the closure is compact).

In this case we consider the sequence (of sequences)

(5.147) a
(n)
i =

{
0 i 6= n

1 i = n
.

This has the property that ‖a(n) − a(m)‖p = 2
1
p whenever n 6= m. Thus, it cannot

have any Cauchy subsequence, and hence cannot have a convergent subsequence,
so S is not compact.

This is important. In fact it is a major difference between finite-dimensional
and infinite-dimensional normed spaces. In the latter case the unit sphere cannot
be compact whereas in the former it is. �
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Solution 18. Problem ?? Show that the norm on any normed space is con-
tinuous.

Solution:- Right, so I should have put this problem earlier!
The triangle inequality shows that for any u, v in a normed space

(5.148) ‖u‖ ≤ ‖u− v‖+ ‖v‖, ‖v‖ ≤ ‖u− v‖+ ‖u‖
which implies that

(5.149) |‖u‖ − ‖v‖| ≤ ‖u− v‖.
This shows that ‖ · ‖ is continuous, indeed it is Lipschitz continuous.

Solution 19. Finish the proof of the completeness of the space B constructed
in lecture on February 10. The description of that construction can be found in the
notes to Lecture 3 as well as an indication of one way to proceed.

Solution. The proof could be shorter than this, I have tried to be fairly
complete.

To recap. We start of with a normed space V. From this normed space we
construct the new linear space Ṽ with points the absolutely summable series in V.
Then we consider the subspace S ⊂ Ṽ of those absolutely summable series which
converge to 0 in V. We are interested in the quotient space

(5.150) B = Ṽ /S.

What we know already is that this is a normed space where the norm of b = {vn}+S
– where {vn} is an absolutely summable series in V is

(5.151) ‖b‖B = lim
N→∞

‖
N∑
n=1

vn‖V .

This is independent of which series is used to represent b – i.e. is the same if an
element of S is added to the series.

Now, what is an absolutely summable series in B? It is a sequence {bn}, thought
of a series, with the property that

(5.152)
∑
n

‖bn‖B <∞.

We have to show that it converges in B. The first task is to guess what the limit
should be. The idea is that it should be a series which adds up to ‘the sum of the

bn’s’. Each bn is represented by an absolutely summable series v
(n)
k in V. So, we

can just look for the usual diagonal sum of the double series and set

(5.153) wj =
∑

n+k=j

v
(n)
k .

The problem is that this will not in generall be absolutely summable as a series in
V. What we want is the estimate

(5.154)
∑
j

‖wj‖ =
∑
j

‖
∑

j=n+k

v
(n)
k ‖ <∞.

The only way we can really estimate this is to use the triangle inequality and
conclude that

(5.155)

∞∑
j=1

‖wj‖ ≤
∑
k,n

‖v(n)
k ‖V .
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Each of the sums over k on the right is finite, but we do not know that the sum
over k is then finite. This is where the first suggestion comes in:-

We can choose the absolutely summable series v
(n)
k representing bn such that

(5.156)
∑
k

‖v(n)
k ‖ ≤ ‖bn‖B + 2−n.

Suppose an initial choice of absolutely summable series representing bn is uk, so

‖bn‖ = limN→∞ ‖
N∑
k=1

uk‖ and
∑
k

‖uk‖V <∞. Choosing M large it follows that

(5.157)
∑
k>M

‖uk‖V ≤ 2−n−1.

With this choice of M set v
(n)
1 =

M∑
k=1

uk and v
(n)
k = uM+k−1 for all k ≥ 2. This does

still represent bn since the difference of the sums,

(5.158)

N∑
k=1

v
(n)
k −

N∑
k=1

uk = −
N+M−1∑
k=N

uk

for all N. The sum on the right tends to 0 in V (since it is a fixed number of terms).
Moreover, because of (5.157),
(5.159)∑
k

‖v(n)
k ‖V = ‖

M∑
j=1

uj‖V +
∑
k>M

‖uk‖ ≤ ‖
N∑
j=1

uj‖+ 2
∑
k>M

‖uk‖ ≤ ‖
N∑
j=1

uj‖+ 2−n

for all N. Passing to the limit as N →∞ gives (5.156).
Once we have chosen these ‘nice’ representatives of each of the bn’s if we define

the wj ’s by (5.153) then (5.154) means that

(5.160)
∑
j

‖wj‖V ≤
∑
n

‖bn‖B +
∑
n

2−n <∞

because the series bn is absolutely summable. Thus {wj} defines an element of Ṽ
and hence b ∈ B.

Finally then we want to show that
∑
n
bn = b in B. This just means that we

need to show

(5.161) lim
N→∞

‖b−
N∑
n=1

bn‖B = 0.

The norm here is itself a limit – b −
N∑
n=1

bn is represented by the summable series

with nth term

(5.162) wk −
N∑
n=1

v
(n)
k

and the norm is then

(5.163) lim
p→∞

‖
p∑
k=1

(wk −
N∑
n=1

v
(n)
k )‖V .
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Then we need to understand what happens as N → ∞! Now, wk is the diagonal

sum of the v
(n)
j ’s so sum over k gives the difference of the sum of the v

(n)
j over the

first p anti-diagonals minus the sum over a square with height N (in n) and width
p. So, using the triangle inequality the norm of the difference can be estimated by
the sum of the norms of all the ‘missing terms’ and then some so

(5.164) ‖
p∑
k=1

(wk −
N∑
n=1

v
(n)
k )‖V ≤

∑
l+m≥L

‖v(m)
l ‖V

where L = min(p,N). This sum is finite and letting p→∞ is replaced by the sum
over l + m ≥ N. Then letting N → ∞ it tends to zero by the absolute (double)
summability. Thus

(5.165) lim
N→∞

‖b−
N∑
n=1

bn‖B = 0

which is the statelent we wanted, that
∑
n
bn = b. �

Problem 1.165. Let’s consider an example of an absolutely summable se-
quence of step functions. For the interval [0, 1) (remember there is a strong pref-
erence for left-closed but right-open intervals for the moment) consider a variant
of the construction of the standard Cantor subset based on 3 proceeding in steps.
Thus, remove the ‘central interval [1/3, 2/3). This leave C1 = [0, 1/3) ∪ [2/3, 1).
Then remove the central interval from each of the remaining two intervals to get
C2 = [0, 1/9)∪[2/9, 1/3)∪[2/3, 7/9)∪[8/9, 1). Carry on in this way to define succes-
sive sets Ck ⊂ Ck−1, each consisting of a finite union of semi-open intervals. Now,
consider the series of step functions fk where fk(x) = 1 on Ck and 0 otherwise.

(1) Check that this is an absolutely summable series.
(2) For which x ∈ [0, 1) does

∑
k

|fk(x)| converge?

(3) Describe a function on [0, 1) which is shown to be Lebesgue integrable
(as defined in Lecture 4) by the existence of this series and compute its
Lebesgue integral.

(4) Is this function Riemann integrable (this is easy, not hard, if you check
the definition of Riemann integrability)?

(5) Finally consider the function g which is equal to one on the union of all
the subintervals of [0, 1) which are removed in the construction and zero
elsewhere. Show that g is Lebesgue integrable and compute its integral.

Solution. (1) The total length of the intervals is being reduced by a

factor of 1/3 each time. Thus l(Ck) = 2k

3k
. Thus the integral of f, which

is non-negative, is actually

(5.166)

∫
fk =

2k

3k
=⇒

∑
k

∫
|fk| =

∞∑
k=1

2k

3k
= 2

Thus the series is absolutely summable.
(2) Since the Ck are decreasing, Ck ⊃ Ck+1, only if

(5.167) x ∈ E =
⋂
k

Ck
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does the series
∑
k

|fk(x)| diverge (to +∞) otherwise it converges.

(3) The function defined as the sum of the series where it converges and zero
otherwise

(5.168) f(x) =


∑
k

fk(x) x ∈ R \ E

0 x ∈ E

is integrable by definition. Its integral is by definition

(5.169)

∫
f =

∑
k

∫
fk = 2

from the discussion above.
(4) The function f is not Riemann integrable since it is not bounded – and

this is part of the definition. In particular for x ∈ Ck \Ck+1, which is not
an empty set, f(x) = k.

(5) The set F, which is the union of the intervals removed is [0, 1)\E. Taking
step functions equal to 1 on each of the intervals removed gives an abso-
lutely summable series, since they are non-negative and the kth one has
integral 1/3× (2/3)k−1 for k = 1, . . . . This series converges to g on F so
g is Lebesgue integrable and hence

(5.170)

∫
g = 1.

�

Problem 1.170. The covering lemma for R2. By a rectangle we will mean a set
of the form [a1, b1)× [a2, b2) in R2. The area of a rectangle is (b1 − a1)× (b2 − a2).

(1) We may subdivide a rectangle by subdividing either of the intervals –
replacing [a1, b1) by [a1, c1) ∪ [c1, b1). Show that the sum of the areas of
rectangles made by any repeated subdivision is always the same as that
of the original.

(2) Suppose that a finite collection of disjoint rectangles has union a rectangle
(always in this same half-open sense). Show, and I really mean prove, that
the sum of the areas is the area of the whole rectange. Hint:- proceed by
subdivision.

(3) Now show that for any countable collection of disjoint rectangles contained
in a given rectange the sum of the areas is less than or equal to that of
the containing rectangle.

(4) Show that if a finite collection of rectangles has union containing a given
rectange then the sum of the areas of the rectangles is at least as large of
that of the rectangle contained in the union.

(5) Prove the extension of the preceeding result to a countable collection of
rectangles with union containing a given rectangle.

Solution. (1) For the subdivision of one rectangle this is clear enough.
Namely we either divide the first side in two or the second side in two at
an intermediate point c. After subdivision the area of the two rectanges
is either

(5.171)
(c− a1)(b2 − a2) + (b1 − c)(b2 − a2) = (b1 − c1)(b2 − a2) or

(b1 − a1)(c− a2) + (b1 − a1)(b2 − c) = (b1 − c1)(b2 − a2).
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this shows by induction that the sum of the areas of any the rectangles
made by repeated subdivision is always the same as the original.

(2) If a finite collection of disjoint rectangles has union a rectangle, say
[a1, b2) × [a2, b2) then the same is true after any subdivision of any of
the rectangles. Moreover, by the preceeding result, after such subdivi-
sion the sum of the areas is always the same. Look at all the points
C1 ⊂ [a1, b1) which occur as an endpoint of the first interval of one of
the rectangles. Similarly let C2 be the corresponding set of end-points of
the second intervals of the rectangles. Now divide each of the rectangles
repeatedly using the finite number of points in C1 and the finite number
of points in C2. The total area remains the same and now the rectangles
covering [a1, b1)× [A2, b2) are precisely the Ai×Bj where the Ai are a set
of disjoint intervals covering [a1, b1) and the Bj are a similar set covering
[a2, b2). Applying the one-dimensional result from class we see that the
sum of the areas of the rectangles with first interval Ai is the product

(5.172) length of Ai × (b2 − a2).

Then we can sum over i and use the same result again to prove what we
want.

(3) For any finite collection of disjoint rectangles contained in [a1, b1)×[a2, b2)
we can use the same division process to show that we can add more disjoint
rectangles to cover the whole big rectangle. Thus, from the preceeding
result the sum of the areas must be less than or equal to (b1−a1)(b2−a2).
For a countable collection of disjoint rectangles the sum of the areas is
therefore bounded above by this constant.

(4) Let the rectangles be Di, i = 1, . . . , N the union of which contains the
rectangle D. Subdivide D1 using all the endpoints of the intervals of D.
Each of the resulting rectangles is either contained in D or is disjoint from
it. Replace D1 by the (one in fact) subrectangle contained in D. Proceed-
ing by induction we can suppose that the first N − k of the rectangles are
disjoint and all contained in D and together all the rectangles cover D.
Now look at the next one, DN−k+1. Subdivide it using all the endpoints
of the intervals for the earlier rectangles D1, . . . , Dk and D. After subdi-
vision of DN−k+1 each resulting rectangle is either contained in one of the
Dj , j ≤ N − k or is not contained in D. All these can be discarded and
the result is to decrease k by 1 (maybe increasing N but that is okay). So,
by induction we can decompose and throw away rectangles until what is
left are disjoint and individually contained in D but still cover. The sum
of the areas of the remaining rectangles is precisely the area of D by the
previous result, so the sum of the areas must originally have been at least
this large.

(5) Now, for a countable collection of rectangles covering D = [a1, b1)×[a2, b2)
we proceed as in the one-dimensional case. First, we can assume that
there is a fixed upper bound C on the lengths of the sides. Make the
kth rectangle a little larger by extending both the upper limits by 2−kδ
where δ > 0. The area increases, but by no more than 2C2−k. After
extension the interiors of the countable collection cover the compact set
[a1, b1 − δ] × [a2, b1 − δ]. By compactness, a finite number of these open
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rectangles cover, and hence there semi-closed version, with the same end-
points, covers [a1, b1−δ)×[a2, b1−δ). Applying the preceeding finite result
we see that

(5.173) Sum of areas + 2Cδ ≥ Area D − 2Cδ.

Since this is true for all δ > 0 the result follows.
�

I encourage you to go through the discussion of integrals of step functions – now
based on rectangles instead of intervals – and see that everything we have done can
be extended to the case of two dimensions. In fact if you want you can go ahead
and see that everything works in Rn!

Problem 2.4

(1) Show that any continuous function on [0, 1] is the uniform limit on [0, 1)
of a sequence of step functions. Hint:- Reduce to the real case, divide
the interval into 2n equal pieces and define the step functions to take
infimim of the continuous function on the corresponding interval. Then
use uniform convergence.

(2) By using the ‘telescoping trick’ show that any continuous function on [0, 1)
can be written as the sum

(5.174)
∑
i

fj(x) ∀ x ∈ [0, 1)

where the fj are step functions and
∑
j

|fj(x)| <∞ for all x ∈ [0, 1).

(3) Conclude that any continuous function on [0, 1], extended to be 0 outside
this interval, is a Lebesgue integrable function on R.

Solution. (1) Since the real and imaginary parts of a continuous func-
tion are continuous, it suffices to consider a real continous function f and
then add afterwards. By the uniform continuity of a continuous function
on a compact set, in this case [0, 1], given n there exists N such that
|x − y| ≤ 2−N =⇒ |f(x) − f(y)| ≤ 2−n. So, if we divide into 2N equal
intervals, where N depends on n and we insist that it be non-decreasing
as a function of n and take the step function fn on each interval which is
equal to min f = inf f on the closure of the interval then

(5.175) |f(x)− Fn(x)| ≤ 2−n ∀ x ∈ [0, 1)

since this even works at the endpoints. Thus Fn → f uniformly on [0, 1).
(2) Now just define f1 = F1 and fk = Fk − Fk−1 for all k > 1. It follows that

these are step functions and that

(5.176)

n∑
k=1

= fn.

Moreover, each interval for Fn+1 is a subinterval for Fn. Since f can
varying by no more than 2−n on each of the intervals for Fn it follows
that

(5.177) |fn(x)| = |Fn+1(x)− Fn(x)| ≤ 2−n ∀ n > 1.

Thus
∫
|fn| ≤ 2−n and so the series is absolutely summable. Moreover, it

actually converges everywhere on [0, 1) and uniformly to f by (5.175).
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(3) Hence f is Lebesgue integrable.
(4) For some reason I did not ask you to check that

(5.178)

∫
f =

∫ 1

0

f(x)dx

where on the right is the Riemann integral. However this follows from the
fact that

(5.179)

∫
f = lim

n→∞

∫
Fn

and the integral of the step function is between the Riemann upper and
lower sums for the corresponding partition of [0, 1].

�

Solution 20. If f and g ∈ L1(R) are Lebesgue integrable functions on the line
show that

(1) If f(x) ≥ 0 a.e. then
∫
f ≥ 0.

(2) If f(x) ≤ g(x) a.e. then
∫
f ≤

∫
g.

(3) If f is complex valued then its real part, Re f, is Lebesgue integrable and
|
∫

Re f | ≤
∫
|f |.

(4) For a general complex-valued Lebesgue integrable function

(5.180) |
∫
f | ≤

∫
|f |.

Hint: You can look up a proof of this easily enough, but the usual trick
is to choose θ ∈ [0, 2π) so that eiθ

∫
f =

∫
(eiθf) ≥ 0. Then apply the

preceeding estimate to g = eiθf.
(5) Show that the integral is a continuous linear functional

(5.181)

∫
: L1(R) −→ C.

Solution. (1) If f is real and fn is a real-valued absolutely summable
series of step functions converging to f where it is absolutely convergent
(if we only have a complex-valued sequence use part (3)). Then we know
that

(5.182) g1 = |f1|, gj = |fj | − |fj−1|, f ≥ 1

is an absolutely convergent sequence converging to |f | almost everywhere.
It follows that f+ = 1

2 (|f |+f) = f, if f ≥ 0, is the limit almost everywhere

of the series obtained by interlacing 1
2gj and 1

2fj :

(5.183) hn =

{
1
2gk n = 2k − 1

fk n = 2k.

Thus f+ is Lebesgue integrable. Moreover we know that

(5.184)

∫
f+ = lim

k→∞

∑
n≤2k

∫
hk = lim

k→∞

∫ | k∑
j=1

fj |+
k∑
j=1

fj


where each term is a non-negative step function, so

∫
f+ ≥ 0.
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(2) Apply the preceeding result to g − f which is integrable and satisfies

(5.185)

∫
g −

∫
f =

∫
(g − f) ≥ 0.

(3) Arguing from first principles again, if fn is now complex valued and an
absolutely summable series of step functions converging a .e . to f then
define

(5.186) hn =


Re fk n = 3k − 2

Im fk n = 3k − 1

− Im fk n = 3k.

This series of step functions is absolutely summable and

(5.187)
∑
n

|hn(x)| <∞⇐⇒
∑
n

|fn(x)| <∞ =⇒
∑
n

hn(x) = Re f.

Thus Re f is integrable. Since ±Re f ≤ |f |

(5.188) ±
∫

Re f ≤
∫
|f | =⇒ |

∫
Re f | ≤

∫
|f |.

(4) For a complex-valued f proceed as suggested. Choose z ∈ C with |z| = 1
such that z

∫
f ∈ [0,∞) which is possible by the properties of complex

numbers. Then by the linearity of the integral
(5.189)

z

∫
f =

∫
(zf) =

∫
Re(zf) ≤

∫
|zRe f | ≤

∫
|f | =⇒ |

∫
f | = z

∫
f ≤

∫
|f |.

(where the second equality follows from the fact that the integral is equal
to its real part).

(5) We know that the integral defines a linear map

(5.190) I : L1(R) 3 [f ] 7−→
∫
f ∈ C

since
∫
f =

∫
g if f = g a.e. are two representatives of the same class in

L1(R). To say this is continuous is equivalent to it being bounded, which
follows from the preceeding estimate

(5.191) |I([f ])| = |
∫
f | ≤

∫
|f | = ‖[f ]‖L1

(Note that writing [f ] instead of f ∈ L1(R) is correct but would normally
be considered pedantic – at least after you are used to it!)

(6) I should have asked – and might do on the test: What is the norm of I
as an element of the dual space of L1(R). It is 1 – better make sure that
you can prove this.

�

Problem 3.2 If I ⊂ R is an interval, including possibly (−∞, a) or (a,∞),
we define Lebesgue integrability of a function f : I −→ C to mean the Lebesgue
integrability of

(5.192) f̃ : R −→ C, f̃(x) =

{
f(x) x ∈ I
0 x ∈ R \ I.
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The integral of f on I is then defined to be

(5.193)

∫
I

f =

∫
f̃ .

(1) Show that the space of such integrable functions on I is linear, denote it
L1(I).

(2) Show that is f is integrable on I then so is |f |.
(3) Show that if f is integrable on I and

∫
I
|f | = 0 then f = 0 a.e. in the

sense that f(x) = 0 for all x ∈ I \ E where E ⊂ I is of measure zero as a
subset of R.

(4) Show that the set of null functions as in the preceeding question is a linear
space, denote it N (I).

(5) Show that
∫
I
|f | defines a norm on L1(I) = L1(I)/N (I).

(6) Show that if f ∈ L1(R) then

(5.194) g : I −→ C, g(x) =

{
f(x) x ∈ I
0 x ∈ R \ I

is in L1(R) an hence that f is integrable on I.
(7) Show that the preceeding construction gives a surjective and continuous

linear map ‘restriction to I’

(5.195) L1(R) −→ L1(I).

(Notice that these are the quotient spaces of integrable functions modulo
equality a.e.)

Solution:

(1) If f and g are both integrable on I then setting h = f + g, h̃ = f̃ + g̃,
directly from the definitions, so f + g is integrable on I if f and g are by
the linearity of L1(R). Similarly if h = cf then h̃ = cf̃ is integrable for

any constant c if f̃ is integrable. Thus L1(I) is linear.

(2) Again from the definition, |f̃ | = h̃ if h = |f |. Thus f integrable on I

implies f̃ ∈ L1(R), which, as we know, implies that |f̃ | ∈ L1(R). So in

turn h̃ ∈ L1(R) where h = |f |, so |f | ∈ L1(I).

(3) If f ∈ L1(I) and
∫
I
|f | = 0 then

∫
R |f̃ | = 0 which implies that f̃ = 0 on

R \ E where E ⊂ R is of measure zero. Now, EI = E ∩ I ⊂ E is also of
measure zero (as a subset of a set of measure zero) and f vanishes outside
EI .

(4) If f, g : I −→ C are both of measure zero in this sense then f +g vanishes
on I \ (Ef ∪ Eg) where Ef ⊂ I and Ef ⊂ I are of measure zero. The
union of two sets of measure zero (in R) is of measure zero so this shows
f + g is null. The same is true of cf + dg for constant c and d, so N (I)
is a linear space.

(5) If f ∈ L1(I) and g ∈ N (I) then |f + g| − |f | ∈ N (I), since it vanishes
where g vanishes. Thus

(5.196)

∫
I

|f + g| =
∫
I

|f | ∀ f ∈ L1(I), g ∈ N (I).

Thus

(5.197) ‖[f ]‖I =

∫
I

|f |
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is a well-defined function on L1(I) = L1(R)/N (I) since it is constant
on equivalence classes. Now, the norm properties follow from the same
properties on the whole of R.

(6) Suppose f ∈ L1(R) and g is defined in (5.194) above by restriction to I.
We need to show that g ∈ L1(R). If fn is an absolutely summable series
of step functions converging to f wherever, on R, it converges absolutely
consider

(5.198) gn(x) =

{
fn(x) on Ĩ

0 on R \ Ĩ

where Ĩ is I made half-open if it isn’t already – by adding the lower
end-point (if there is one) and removing the upper end-point (if there is

one). Then gn is a step function (which is why we need Ĩ). Moreover,∫
|gn| ≤

∫
|fn| so the series gn is absolutely summable and converges

to gn outside I and at all points inside I where the series is absolutely
convergent (since it is then the same as fn). Thus g is integrable, and since

f̃ differs from g by its values at two points, at most, it too is integrable
so f is integrable on I by definition.

(7) First we check we do have a map. Namely if f ∈ N (R) then g in (5.194)
is certainly an element of N (I). We have already seen that ‘restriction
to I’ maps L1(R) into L1(I) and since this is clearly a linear map it
defines (5.195) – the image only depends on the equivalence class of f. It
is clearly linear and to see that it is surjective observe that if g ∈ L1(I)
then extending it as zero outside I gives an element of L1(R) and the class
of this function maps to [g] under (5.195).

Problem 3.3 Really continuing the previous one.

(1) Show that if I = [a, b) and f ∈ L1(I) then the restriction of f to Ix = [x, b)
is an element of L1(Ix) for all a ≤ x < b.

(2) Show that the function

(5.199) F (x) =

∫
Ix

f : [a, b) −→ C

is continuous.
(3) Prove that the function x−1 cos(1/x) is not Lebesgue integrable on the

interval (0, 1]. Hint: Think about it a bit and use what you have shown
above.

Solution:

(1) This follows from the previous question. If f ∈ L1([a, b)) with f ′ a repre-
sentative then extending f ′ as zero outside the interval gives an element of
L1(R), by defintion. As an element of L1(R) this does not depend on the
choice of f ′ and then (5.195) gives the restriction to [x, b) as an element
of L1([x, b)). This is a linear map.

(2) Using the discussion in the preceeding question, we now that if fn is an
absolutely summable series converging to f ′ (a representative of f) where
it converges absolutely, then for any a ≤ x ≤ b, we can define

(5.200) f ′n = χ([a, x))fn, f
′′
n = χ([x, b))fn
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where χ([a, b)) is the characteristic function of the interval. It follows
that f ′n converges to fχ([a, x)) and f ′′n to fχ([x, b)) where they converge
absolutely. Thus

(5.201)

∫
[x,b)

f =

∫
fχ([x, b)) =

∑
n

∫
f ′′n ,

∫
[a,x)

f =

∫
fχ([a, x)) =

∑
n

∫
f ′n.

Now, for step functions, we know that
∫
fn =

∫
f ′n +

∫
f ′′n so

(5.202)

∫
[a,b)

f =

∫
[a,x)

f +

∫
[x,b)

f

as we have every right to expect. Thus it suffices to show (by moving the
end point from a to a general point) that

(5.203) lim
x→a

∫
[a,x)

f = 0

for any f integrable on [a, b). Thus can be seen in terms of a defining
absolutely summable sequence of step functions using the usual estimate
that

(5.204) |
∫

[a,x)

f | ≤
∫

[a,x)

|
∑
n≤N

fn|+
∑
n>N

∫
[a,x)

|fn|.

The last sum can be made small, independent of x, by choosing N large
enough. On the other hand as x→ a the first integral, for fixed N, tends
to zero by the definition for step functions. This proves (5.204) and hence
the continuity of F.

(3) If the function x−1 cos(1/x) were Lebesgue integrable on the interval (0, 1]
(on which it is defined) then it would be integrable on [0, 1) if we define
it arbitrarily, say to be 0, at 0. The same would be true of the absolute
value and Riemann integration shows us easily that

(5.205) lim
t↓0

∫ 1

t

x| cos(1/x)|dx =∞.

This is contrary to the continuity of the integral as a function of the limits
just shown.

Problem 3.4 [Harder but still doable] Suppose f ∈ L1(R).

(1) Show that for each t ∈ R the translates

(5.206) ft(x) = f(x− t) : R −→ C
are elements of L1(R).

(2) Show that

(5.207) lim
t→0

∫
|ft − f | = 0.

This is called ‘Continuity in the mean for integrable functions’. Hint: I
will add one!

(3) Conclude that for each f ∈ L1(R) the map (it is a ‘curve’)

(5.208) R 3 t 7−→ [ft] ∈ L1(R)

is continuous.

Solution:



210 5. PROBLEMS

(1) If fn is an absolutely summable series of step functions converging to f
where it converges absolutely then fn(· − t) is such a series converging to
f(· − t) for each t ∈ R. Thus, each of the f(x− t) is Lebesgue integrable,
i.e. are elements of L1(R)

(2) Now, we know that if fn is a series converging to f as above then

(5.209)

∫
|f | ≤

∑
n

∫
|fn|.

We can sum the first terms and then start the series again and so it follows
that for any N,

(5.210)

∫
|f | ≤

∫
|
∑
n≤N

fn|+
∑
n>N

∫
|fn|.

Applying this to the series fn(· − t)− fn(·) we find that

(5.211)

∫
|ft − f | ≤

∫
|
∑
n≤N

fn(· − t)− fn(·)|+
∑
n>N

∫
|fn(· − t)− fn(·)|

The second sum here is bounded by 2
∑
n>N

∫
|fn|. Given δ > 0 we can

choose N so large that this sum is bounded by δ/2, by the absolute con-
vergence. So the result is reduce to proving that if |t| is small enough
then

(5.212)

∫
|
∑
n≤N

fn(· − t)− fn(·)| ≤ δ/2.

This however is a finite sum of step functions. So it suffices to show that

(5.213) |
∫
g(· − t)− g(·)| → 0 as t→ 0

for each component, i.e. a constant, c, times the characteristic function
of an interval [a, b) where it is bounded by 2|c||t|.

(3) For the ‘curve’ ft which is a map

(5.214) R 3 t 7−→ ft ∈ L1(R)

it follows that ft+s = (ft)s so we can apply the argument above to show
that for each s,

(5.215) lim
t→s

∫
|ft − fs| = 0 =⇒ lim

t→s
‖[ft]− [fs]‖L1 = 0

which proves continuity of the map (5.214).

Problem 3.5 In the last problem set you showed that a continuous function
on a compact interval, extended to be zero outside, is Lebesgue integrable. Using
this, and the fact that step functions are dense in L1(R) show that the linear space
of continuous functions on R each of which vanishes outside a compact set (which
depends on the function) form a dense subset of L1(R).

Solution: Since we know that step functions (really of course the equivalence
classes of step functions) are dense in L1(R) we only need to show that any step
function is the limit of a sequence of continuous functions each vanishing outside a
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compact set, with respect to L1. So, it suffices to prove this for the charactertistic
function of an interval [a, b) and then multiply by constants and add. The sequence

(5.216) gn(x) =



0 x < a− 1/n

n(x− a+ 1/n) a− 1/n ≤ x ≤ a
0 a < x < b

n(b+ 1/n− x) b ≤ x ≤ b+ 1/n

0 x > b+ 1/n

is clearly continuous and vanishes outside a compact set. Since

(5.217)

∫
|gn − χ([a, b))| =

∫ 1

a−1/n

gn +

∫ b+1/n

b

gn ≤ 2/n

it follows that [gn] → [χ([a, b))] in L1(R). This proves the density of continuous
functions with compact support in L1(R).

Problem 3.6

(1) If g : R −→ C is bounded and continuous and f ∈ L1(R) show that
gf ∈ L1(R) and that

(5.218)

∫
|gf | ≤ sup

R
|g| ·

∫
|f |.

(2) Suppose now that G ∈ C([0, 1]×[0, 1]) is a continuous function (I use C(K)
to denote the continuous functions on a compact metric space). Recall
from the preceeding discussion that we have defined L1([0, 1]). Now, using
the first part show that if f ∈ L1([0, 1]) then

(5.219) F (x) =

∫
[0,1]

G(x, ·)f(·) ∈ C

(where · is the variable in which the integral is taken) is well-defined for
each x ∈ [0, 1].

(3) Show that for each f ∈ L1([0, 1]), F is a continuous function on [0, 1].
(4) Show that

(5.220) L1([0, 1]) 3 f 7−→ F ∈ C([0, 1])

is a bounded (i.e. continuous) linear map into the Banach space of con-
tinuous functions, with supremum norm, on [0, 1].

Solution:

(1) Let’s first assume that f = 0 outside [−1, 1]. Applying a result form Prob-
lem set there exists a sequence of step functions gn such that for any R,
gn → g uniformly on [0, 1). By passing to a subsequence we can arrange
that sup[−1,1] |gn(x)− gn−1(x)| < 2−n. If fn is an absolutly summable se-

ries of step functions converging a .e . to f we can replace it by fnχ([−1, 1])
as discussed above, and still have the same conclusion. Thus, from the
uniform convergence of gn,

(5.221) gn(x)

n∑
k=1

fk(x)→ g(x)f(x) a.e. on R.
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So define h1 = g1f1, hn = gn(x)
n∑
k=1

fk(x)− gn−1(x)
n−1∑
k=1

fk(x). This series

of step functions converges to gf(x) almost everywhere and since
(5.222)

|hn| ≤ A|fn(x)|+ 2−n
∑
k<n

|fk(x)|,
∑
n

∫
|hn| ≤ A

∑
n

∫
|fn|+ 2

∑
n

∫
|fn| <∞

it is absolutely summable. Here A is a bound for |gn| independent of n.
Thus gf ∈ L1(R) under the assumption that f = 0 outside [0, 1) and

(5.223)

∫
|gf | ≤ sup |g|

∫
|f |

follows from the limiting argument. Now we can apply this argument to
fp which is the restriction of p to the interval [p, p + 1), for each p ∈ Z.
Then we get gf as the limit a .e . of the absolutely summable series gfp
where (5.223) provides the absolute summablitly since

(5.224)
∑
p

∫
|gfp| ≤ sup |g|

∑
p

∫
[p,p+1)

|f | <∞.

Thus, gf ∈ L1(R) by a theorem in class and

(5.225)

∫
|gf | ≤ sup |g|

∫
|f |.

(2) If f ∈ L1[(0, 1]) has a representative f ′ then G(x, ·)f ′(·) ∈ L1([0, 1)) so

(5.226) F (x) =

∫
[0,1]

G(x, ·)f(·) ∈ C

is well-defined, since it is indpendent of the choice of f ′, changing by a
null function if f ′ is changed by a null function.

(3) Now by the uniform continuity of continuous functions on a compact met-
ric space such as S = [0, 1]× [0, 1] given δ > 0 there exist ε > 0 such that

(5.227) sup
y∈[0,1]

|G(x, y)−G(x′, y)| < δ if |x− x′| < ε.

Then if |x− x′| < ε,

(5.228) |F (x)− F (x′)| = |
∫

[0,1]

(G(x, ·)−G(x′, ·))f(·)| ≤ δ
∫
|f |.

Thus F ∈ C([0, 1]) is a continuous function on [0, 1]. Moreover the map
f 7−→ F is linear and

(5.229) sup
[0,1]

|F | ≤ sup
S
|G|
∫

[0,1]

||f |

which is the desired boundedness, or continuity, of the map

(5.230) I : L1([0, 1]) −→ C([0, 1]), F (f)(x) =

∫
G(x, ·)f(·),

‖I(f)‖sup ≤ sup |G|‖f‖L1 .
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You should be thinking about using Lebesgue’s dominated convergence at sev-
eral points below.

Problem 5.1
Let f : R −→ C be an element of L1(R). Define

(5.231) fL(x) =

{
f(x) x ∈ [−L,L]

0 otherwise.

Show that fL ∈ L1(R) and that
∫
|fL − f | → 0 as L→∞.

Solution. If χL is the characteristic function of [−N,N ] then fL = fχL. If
fn is an absolutely summable series of step functions converging a.e. to f then
fnχL is absolutely summable, since

∫
|fnχL| ≤

∫
|fn| and converges a.e. to fL, so

fL
∫
L1(R). Certainly |fL(x)−f(x)| → 0 for each x as L→∞ and |fL(x)−f(x)| ≤

|fl(x)|+ |f(x)| ≤ 2|f(x)| so by Lebesgue’s dominated convergence,
∫
|f − fL| → 0.

Problem 5.2 Consider a real-valued function f : R −→ R which is locally
integrable in the sense that

(5.232) gL(x) =

{
f(x) x ∈ [−L,L]

0 x ∈ R \ [−L,L]

is Lebesgue integrable of each L ∈ N.
(1) Show that for each fixed L the function

(5.233) g
(N)
L (x) =


gL(x) if gL(x) ∈ [−N,N ]

N if gL(x) > N

−N if gL(x) < −N

is Lebesgue integrable.

(2) Show that
∫
|g(N)
L − gL| → 0 as N →∞.

(3) Show that there is a sequence, hn, of step functions such that

(5.234) hn(x)→ f(x) a.e. in R.

(4) Defining

(5.235) h
(N)
n,L =


0 x 6∈ [−L,L]

hn(x) if hn(x) ∈ [−N,N ], x ∈ [−L,L]

N if hn(x) > N, x ∈ [−L,L]

−N if hn(x) < −N, x ∈ [−L,L]

.

Show that
∫
|h(N)
n,L − g

(N)
L | → 0 as n→∞.

Solution:

(1) By definition g
(N)
L = max(−NχL,min(NχL, gL)) where χL is the charac-

teristic funciton of −[L,L], thus it is in L1(R).

(2) Clearly g
(N)
L (x) → gL(x) for every x and |g(N)

L (x)| ≤ |gL(x)| so by Dom-

inated Convergence, g
(N)
L → gL in L1, i.e.

∫
|g(N)
L − gL| → 0 as N → ∞

since the sequence converges to 0 pointwise and is bounded by 2|g(x)|.
(3) Let SL,n be a sequence of step functions converging a.e. to gL – for ex-

ample the sequence of partial sums of an absolutely summable series of
step functions converging to gL which exists by the assumed integrability.
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Then replacing SL,n by SL,nχL we can assume that the elements all van-
ish outside [−N,N ] but still have convergence a.e. to gL. Now take the
sequence

(5.236) hn(x) =

{
Sk,n−k on [k,−k] \ [(k − 1),−(k − 1)], 1 ≤ k ≤ n,
0 on R \ [−n, n].

This is certainly a sequence of step functions – since it is a finite sum of
step functions for each n – and on [−L,L] \ [−(L − 1), (L − 1)] for large
integral L is just SL,n−L → gL. Thus hn(x) → f(x) outside a countable
union of sets of measure zero, so also almost everywhere.

(4) This is repetition of the first problem, h
(N)
n,L(x)→ g

(N)
L almost everywhere

and |h(N)
n,L | ≤ NχL so g

(N)
L ∈ L1(R) and

∫
|h(N)
n,L − g

(N)
L | → 0 as n→∞.

Problem 5.3 Show that L2(R) is a Hilbert space – since it is rather central to
the course I wanted you to go through the details carefully!

First working with real functions, define L2(R) as the set of functions f : R −→
R which are locally integrable and such that |f |2 is integrable.

(1) For such f choose hn and define gL, g
(N)
L and h

(N)
n by (5.232), (5.233) and

(5.235).

(2) Show using the sequence h
(N)
n,L for fixed N and L that g

(N)
L and (g

(N)
L )2

are in L1(R) and that
∫
|(h(N)

n,L)2 − (g
(N)
L )2| → 0 as n→∞.

(3) Show that (gL)2 ∈ L1(R) and that
∫
|(g(N)

L )2 − (gL)2| → 0 as N →∞.
(4) Show that

∫
|(gL)2 − f2| → 0 as L→∞.

(5) Show that f, g ∈ L2(R) then fg ∈ L1(R) and that

(5.237) |
∫
fg| ≤

∫
|fg| ≤ ‖f‖L2‖g‖L2 , ‖f‖2L2 =

∫
|f |2.

(6) Use these constructions to show that L2(R) is a linear space.
(7) Conclude that the quotient space L2(R) = L2(R)/N , whereN is the space

of null functions, is a real Hilbert space.
(8) Extend the arguments to the case of complex-valued functions.

Solution:

(1) Done. I think it should have been h
(N)
n,L .

(2) We already checked that g
(N)
L ∈ L1(R) and the same argument applies to

(g
(N)
L ), namely (h

(N)
n,L)2 → g

(N)
L almost everywhere and both are bounded

by N2χL so by dominated convergence

(5.238)

(h
(N)
n,L)2 → g

(N)
L )2 ≤ N2χL a.e. =⇒ g

(N)
L )2 ∈ L1(R) and

|h(N)
n,L)2 − g(N)

L )2| → 0 a.e. ,

|h(N)
n,L)2 − g(N)

L )2| ≤ 2N2χL =⇒
∫
|h(N)
n,L)2 − g(N)

L )2| → 0.

(3) Now, as N → ∞, (g
(N)
L )2 → (gL)2 a .e . and (g

(N)
L )2 → (gL)2 ≤ f2 so

by dominated convergence, (gL)2 ∈ L1 and
∫
|(g(N)

L )2 − (gL)2| → 0 as
N →∞.

(4) The same argument of dominated convergence shows now that g2
L → f2

and
∫
|g2
L − f2| → 0 using the bound by f2 ∈ L1(R).
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(5) What this is all for is to show that fg ∈ L1(R) if f, F = g ∈ L2(R) (for
easier notation). Approximate each of them by sequences of step functions

as above, h
(N)
n,L for f and H

(N)
n,L for g. Then the product sequence is in L1

– being a sequence of step functions – and

(5.239) h
(N)
n,L(x)H

(N)
n,L (x)→ g

(N)
L (x)G

(N)
L (x)

almost everywhere and with absolute value bounded by N2χL. Thus

by dominated convergence g
(N)
L G

(N)
L ∈ L1(R). Now, let N → ∞; this

sequence converges almost everywhere to gL(x)GL(x) and we have the
bound

(5.240) |g(N)
L (x)G

(N)
L (x)| ≤ |f(x)F (x)|1

2
(f2 + F 2)

so as always by dominated convergence, the limit gLGL ∈ L1. Finally,
letting L → ∞ the same argument shows that fF ∈ L1(R). Moreover,
|fF | ∈ L1(R) and

(5.241) |
∫
fF | ≤

∫
|fF | ≤ ‖f‖L2‖F‖L2

where the last inequality follows from Cauchy’s inequality – if you wish,
first for the approximating sequences and then taking limits.

(6) So if f, g ∈ L2(R) are real-value, f + g is certainly locally integrable and

(5.242) (f + g)2 = f2 + 2fg + g2 ∈ L1(R)

by the discussion above. For constants f ∈ L2(R) implies cf ∈ L2(R) is
directly true.

(7) The argument is the same as for L1 versus L1. Namely
∫
f2 = 0 implies

that f2 = 0 almost everywhere which is equivalent to f = 0 a@ė. Then
the norm is the same for all f + h where h is a null function since fh and
h2 are null so (f + h)2 = f2 + 2fh + h2. The same is true for the inner
product so it follows that the quotient by null functions

(5.243) L2(R) = L2(R)/N

is a preHilbert space.
However, it remains to show completeness. Suppose {[fn]} is an ab-

solutely summable series in L2(R) which means that
∑
n
‖fn‖L2 < ∞. It

follows that the cut-off series fnχL is absolutely summable in the L1 sense
since

(5.244)

∫
|fnχL| ≤ L

1
2 (

∫
f2
n)

1
2

by Cauchy’s inequality. Thus if we set Fn =
n∑
k−1

fk then Fn(x)χL con-

verges almost everywhere for each L so in fact

(5.245) Fn(x)→ f(x) converges almost everywhere.

We want to show that f ∈ L2(R) where it follows already that f is locally
integrable by the completeness of L1. Now consider the series

(5.246) g1 = F 2
1 , gn = F 2

n − F 2
n−1.
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The elements are in L1(R) and by Cauchy’s inequality for n > 1,

(5.247)

∫
|gn| =

∫
|F 2
n − Fn−1|2 ≤ ‖Fn − Fn−1‖L2‖Fn + Fn−1‖L2

≤ ‖fn‖L22
∑
k

‖fk‖L2

where the triangle inequality has been used. Thus in fact the series gn is
absolutely summable in L1

(5.248)
∑
n

∫
|gn| ≤ 2(

∑
n

‖fn‖L2)2.

So indeed the sequence of partial sums, the F 2
n converge to f2 ∈ L1(R).

Thus f ∈ L2(R) and moroever

(5.249)

∫
(Fn − f)2 =

∫
F 2
n +

∫
f2 − 2

∫
Fnf → 0 as n→∞.

Indeed the first term converges to
∫
f2 and, by Cauchys inequality, the

series of products fnf is absulutely summable in L1 with limit f2 so the
third term converges to −2

∫
f2. Thus in fact [Fn]→ [f ] in L2(R) and we

have proved completeness.
(8) For the complex case we need to check linearity, assuming f is locally

integrable and |f |2 ∈ L1(R). The real part of f is locally integrable and the

approximation F
(N)
L discussed above is square integrable with (F

(N)
L )2 ≤

|f |2 so by dominated convergence, letting first N →∞ and then L→∞
the real part is in L2(R). Now linearity and completeness follow from the
real case.

Problem 5.4
Consider the sequence space

(5.250) h2,1 =

c : N 3 j 7−→ cj ∈ C;
∑
j

(1 + j2)|cj |2 <∞

 .

(1) Show that

(5.251) h2,1 × h2,1 3 (c, d) 7−→ 〈c, d〉 =
∑
j

(1 + j2)cjdj

is an Hermitian inner form which turns h2,1 into a Hilbert space.
(2) Denoting the norm on this space by ‖ · ‖2,1 and the norm on l2 by ‖ · ‖2,

show that

(5.252) h2,1 ⊂ l2, ‖c‖2 ≤ ‖c‖2,1 ∀ c ∈ h2,1.

Solution:

(1) The inner product is well defined since the series defining it converges
absolutely by Cauchy’s inequality:

(5.253)

〈c, d〉 =
∑
j

(1 + j2)
1
2 cj(1 + j2)

1
2 dj ,∑

j

|(1 + j2)
1
2 cj(1 + j2)

1
2 dj | ≤ (

∑
j

(1 + j2)|cj |2)
1
2 (
∑
j

(1 + j2)|dj |2)
1
2 .
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It is sesquilinear and positive definite since

(5.254) ‖c‖2,1 = (
∑
j

(1 + j2)|cj |2)
1
2

only vanishes if all cj vanish. Completeness follows as for l2 – if c(n) is a

Cauchy sequence then each component c
(n)
j converges, since (1 + j)

1
2 c

(n)
j

is Cauchy. The limits cj define an element of h2,1 since the sequence is
bounded and

(5.255)

N∑
j=1

(1 + j2)
1
2 |cj |2 = lim

n→∞

N∑
j=1

(1 + j2)|c(n)
j |

2 ≤ A

where A is a bound on the norms. Then from the Cauchy condition
c(n) → c in h2,1 by passing to the limit as m→∞ in ‖c(n)− c(m)‖2,1 ≤ ε.

(2) Clearly h2,2 ⊂ l2 since for any finite N

(5.256)

N∑
j=1

|cj |2
N∑
j=1

(1 + j)2|cj |2 ≤ ‖c‖22,1

and we may pass to the limit as N →∞ to see that

(5.257) ‖c‖l2 ≤ ‖c‖2,1.
Problem 5.5 In the separable case, prove Riesz Representation Theorem di-

rectly.
Choose an orthonormal basis {ei} of the separable Hilbert space H. Suppose

T : H −→ C is a bounded linear functional. Define a sequence

(5.258) wi = T (ei), i ∈ N.
(1) Now, recall that |Tu| ≤ C‖u‖H for some constant C. Show that for every

finite N,

(5.259)

N∑
j=1

|wi|2 ≤ C2.

(2) Conclude that {wi} ∈ l2 and that

(5.260) w =
∑
i

wiei ∈ H.

(3) Show that

(5.261) T (u) = 〈u,w〉H ∀ u ∈ H and ‖T‖ = ‖w‖H .
Solution:

(1) The finite sum wN =
N∑
i=1

wiei is an element of the Hilbert space with norm

‖wN‖2N =
N∑
i=1

|wi|2 by Bessel’s identity. Expanding out

(5.262) T (wN ) = T (

N∑
i=1

wiei) =

n∑
i=1

wiT (ei) =

N∑
i=1

|wi|2

and from the continuity of T,

(5.263) |T (wN )| ≤ C‖wN‖H =⇒ ‖wN‖2H ≤ C‖wN‖H =⇒ ‖wN‖2 ≤ C2
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which is the desired inequality.
(2) Letting N →∞ it follows that the infinite sum converges and

(5.264)
∑
i

|wi|2 ≤ C2 =⇒ w =
∑
i

wiei ∈ H

since ‖wN − w‖ ≤
∑
j>N

|wi|2 tends to zero with N.

(3) For any u ∈ H uN =
N∑
i=1

〈u, ei〉ei by the completness of the {ei} so from

the continuity of T

(5.265) T (u) = lim
N→∞

T (uN ) = lim
N→∞

N∑
i=1

〈u, ei〉T (ei)

= lim
N→∞

N∑
i=1

〈u,wiei〉 = lim
N→∞

〈u,wN 〉 = 〈u,w〉

where the continuity of the inner product has been used. From this and
Cauchy’s inequality it follows that ‖T‖ = sup‖u‖H=1 |T (u)| ≤ ‖w‖. The

converse follows from the fact that T (w) = ‖w‖2H .

Solution 21. If f ∈ L1(Rk ×Rp) show that there exists a set of measure zero
E ⊂ Rk such that

(5.266) x ∈ Rk \ E =⇒ gx(y) = f(x, y) defines gx ∈ L1(Rp),

that F (x) =
∫
gx defines an element F ∈ L1(Rk) and that

(5.267)

∫
Rk
F =

∫
Rk×Rp

f.

Note: These identities are usually written out as an equality of an iterated
integral and a ‘regular’ integral:

(5.268)

∫
Rk

∫
Rp
f(x, y) =

∫
f.

It is often used to ‘exchange the order of integration’ since the hypotheses are
the same if we exchange the variables.

Solution. This is not hard but is a little tricky (I believe Fubini never under-
stood what the fuss was about).

Certainly this result holds for step functions, since ultimately it reduces to the
case of the characterisitic function for a ‘rectrangle’.

In the general case we can take an absolutely summable sequence fj of step
functions summing to f

(5.269) f(x, y) =
∑
j

fj(x, y) whenever
∑
j

|fj(x, y)| <∞.

This, after all, is our definition of integrability.
Now, consider the functions

(5.270) hj(x) =

∫
Rp
|fj(x, ·)|
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which are step functions. Moreover this series is absolutely summable since

(5.271)
∑
j

∫
Rk
|hj | =

∑
j

∫
Rk×Rp

|fj |.

Thus the series
∑
j

hj(x) converges (absolutely) on the complement of a set E ⊂ Rk

of measure zero. It follows that the series of step functions

(5.272) Fj(x) =

∫
Rp
fj(x, ·)

converges absolutely on Rk \ E since |fj(x)| ≤ hj(x). Thus,

(5.273) F (x) =
∑
j

Fj(x) converges absolutely on Rk \ E

defines F ∈ L1(Rk) with

(5.274)

∫
Rk
F =

∑
j

∫
Rk
Fj =

∑
j

∫
Rk×Rp

fj =

∫
Rk×Rp

f.

The absolute convergence of
∑
j

hj(x) for a given x is precisely the absolutely

summability of fk(x, y) as a series of functions of y,

(5.275)
∑
j

∫
Rp
|fj(x, ·)| =

∑
j

hj(x).

Thus for each x /∈ E the series
∑
j

fk(x, y) must converge absolutely for y ∈ (Rp\Ex)

where Ex is a set of measure zero. But (5.269) shows that the sum is gx(y) = f(x, y)
at all such points, so for x /∈ E, f(x, ·) ∈ L1(Rp) (as the limit of an absolutely
summable series) and

(5.276) F (x) =

∫
Rp
gx.

With (5.274) this is what we wanted to show. �

Problem 4.1
Let H be a normed space in which the norm satisfies the parallelogram law:

(5.277) ‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2) ∀ u, v ∈ H.
Show that the norm comes from a positive definite sesquilinear (i.e. Hermitian)
inner product. Big Hint:- Try

(5.278) (u, v) =
1

4

(
‖u+ v‖2 − ‖u− v‖2 + i‖u+ iv‖2 − i‖u− iv‖2

)
!

Solution: Setting u = v, even without the parallelogram law,

(5.279) (u, u) =
1

4

∥∥2u‖2 + i‖(1 + i)u‖2 − i‖(1− i)u‖2
)

= ‖u‖2.

So the point is that the parallelogram law shows that (u, v) is indeed an Hermitian
inner product. Taking complex conjugates and using properties of the norm, ‖u+
iv‖ = ‖v − iu‖ etc

(5.280) (u, v) =
1

4

(
‖v + u‖2 − ‖v − u‖2 − i‖v − iu‖2 + i‖v + iu‖2

)
= (v, u).
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Thus we only need check the linearity in the first variable. This is a little tricky!
First compute away. Directly from the identity (u,−v) = −(u, v) so (−u, v) =
−(u, v) using (5.280). Now,
(5.281)

(2u, v) =
1

4

(
‖u+ (u+ v)‖2 − ‖u+ (u− v)‖2

+ i‖u+ (u+ iv)‖2 − i‖u+ (u− iv)‖2
)

=
1

2

(
‖u+ v‖2 + ‖u‖2 − ‖u− v‖2 − ‖u‖2

+ i‖(u+ iv)‖2 + i‖u‖2 − i‖u− iv‖2 − i‖u‖2
)

− 1

4

(
‖u− (u+ v)‖2 − ‖u− (u− v)‖2 + i‖u− (u+ iv)‖2 − i‖u− (u− iv)‖2

)
=2(u, v).

Using this and (5.280), for any u, u′ and v,

(5.282)

(u+ u′, v) =
1

2
(u+ u′, 2v)

=
1

2

1

4

(
‖(u+ v) + (u′ + v)‖2 − ‖(u− v) + (u′ − v)‖2

+ i‖(u+ iv) + (u− iv)‖2 − i‖(u− iv) + (u′ − iv)‖2
)

=
1

4

(
‖u+ v‖+ ‖u′ + v‖2 − ‖u− v‖ − ‖u′ − v‖2

+ i‖(u+ iv)‖2 + i‖u− iv‖2 − i‖u− iv‖ − i‖u′ − iv‖2
)

− 1

2

1

4

(
‖(u+ v)− (u′ + v)‖2 − ‖(u− v)− (u′ − v)‖2

+ i‖(u+ iv)− (u− iv)‖2 − i‖(u− iv) = (u′ − iv)‖2
)

= (u, v) + (u′, v).

Using the second identity to iterate the first it follows that (ku, v) = k(u, v) for any
u and v and any positive integer k. Then setting nu′ = u for any other positive
integer and r = k/n, it follows that

(5.283) (ru, v) = (ku′, v) = k(u′, v) = rn(u′, v) = r(u, v)

where the identity is reversed. Thus it follows that (ru, v) = r(u, v) for any rational
r. Now, from the definition both sides are continuous in the first element, with
respect to the norm, so we can pass to the limit as r → x in R. Also directly from
the definition,

(5.284) (iu, v) =
1

4

(
‖iu+ v‖2 − ‖iu− v‖2 + i‖iu+ iv‖2 − i‖iu− iv‖2

)
= i(u, v)

so now full linearity in the first variable follows and that is all we need.
Problem 4.2
Let H be a finite dimensional (pre)Hilbert space. So, by definition H has a

basis {vi}ni=1, meaning that any element of H can be written

(5.285) v =
∑
i

civi
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and there is no dependence relation between the vi’s – the presentation of v = 0 in
the form (5.285) is unique. Show that H has an orthonormal basis, {ei}ni=1 satis-
fying (ei, ej) = δij (= 1 if i = j and 0 otherwise). Check that for the orthonormal
basis the coefficients in (5.285) are ci = (v, ei) and that the map

(5.286) T : H 3 v 7−→ ((v, ei)) ∈ Cn

is a linear isomorphism with the properties

(5.287) (u, v) =
∑
i

(Tu)i(Tv)i, ‖u‖H = ‖Tu‖Cn ∀ u, v ∈ H.

Why is a finite dimensional preHilbert space a Hilbert space?
Solution: Since H is assumed to be finite dimensional, it has a basis vi, i =

1, . . . , n. This basis can be replaced by an orthonormal basis in n steps. First
replace v1 by e1 = v1/‖v1‖ where ‖v1‖ 6= 0 by the linear indepedence of the basis.
Then replace v2 by

(5.288) e2 = w2/‖w2‖, w2 = v2 − (v2, e1)e1.

Here w2 ⊥ e1 as follows by taking inner products; w2 cannot vanish since v2 and e1

must be linearly independent. Proceeding by finite induction we may assume that
we have replaced v1, v2, . . . , vk, k < n, by e1, e2, . . . , ek which are orthonormal
and span the same subspace as the vi’s i = 1, . . . , k. Then replace vk+1 by

(5.289) ek+1 = wk+1/‖wk+1‖, wk+1 = vk+1 −
k∑
i=1

(vk+1, ei)ei.

By taking inner products, wk+1 ⊥ ei, i = 1, . . . , k and wk+1 6= 0 by the linear
independence of the vi’s. Thus the orthonormal set has been increased by one
element preserving the same properties and hence the basis can be orthonormalized.

Now, for each u ∈ H set

(5.290) ci = (u, ei).

It follows that U = u−
n∑
i=1

ciei is orthogonal to all the ei since

(5.291) (u, ej) = (u, ej)−
∑
i

ci(ei, ej) = (u.ej)− cj = 0.

This implies that U = 0 since writing U =
∑
i

diei it follows that di = (U, ei) = 0.

Now, consider the map (5.286). We have just shown that this map is injective,
since Tu = 0 implies ci = 0 for all i and hence u = 0. It is linear since the ci depend
linearly on u by the linearity of the inner product in the first variable. Moreover
it is surjective, since for any ci ∈ C, u =

∑
i

ciei reproduces the ci through (5.290).

Thus T is a linear isomorphism and the first identity in (5.287) follows by direct
computation:-

(5.292)

n∑
i=1

(Tu)i(Tv)i =
∑
i

(u, ei)

= (u,
∑
i

(v, ei)ei)

= (u, v).
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Setting u = v shows that ‖Tu‖Cn = ‖u‖H .
Now, we know that Cn is complete with its standard norm. Since T is an

isomorphism, it carries Cauchy sequences in H to Cauchy sequences in Cn and T−1

carries convergent sequences in Cn to convergent sequences in H, so every Cauchy
sequence in H is convergent. Thus H is complete.

Hint: Don’t pay too much attention to my hints, sometimes they are a little off-
the-cuff and may not be very helpfult. An example being the old hint for Problem
6.2!

Problem 6.1 Let H be a separable Hilbert space. Show that K ⊂ H is compact
if and only if it is closed, bounded and has the property that any sequence in K
which is weakly convergent sequence in H is (strongly) convergent.

Hint:- In one direction use the result from class that any bounded sequence has
a weakly convergent subsequence.

Problem 6.2 Show that, in a separable Hilbert space, a weakly convergent
sequence {vn}, is (strongly) convergent if and only if the weak limit, v satisfies

(5.293) ‖v‖H = lim
n→∞

‖vn‖H .

Hint:- To show that this condition is sufficient, expand

(5.294) (vn − v, vn − v) = ‖vn‖2 − 2 Re(vn, v) + ‖v‖2.

Problem 6.3 Show that a subset of a separable Hilbert space is compact if
and only if it is closed and bounded and has the property of ‘finite dimensional
approximation’ meaning that for any ε > 0 there exists a linear subspace DN ⊂ H
of finite dimension such that

(5.295) d(K,DN ) = sup
u∈K

inf
v∈DN

{d(u, v)} ≤ ε.

Hint:- To prove necessity of this condition use the ‘equi-small tails’ property of
compact sets with respect to an orthonormal basis. To use the finite dimensional
approximation condition to show that any weakly convergent sequence in K is
strongly convergent, use the convexity result from class to define the sequence {v′n}
in DN where v′n is the closest point in DN to vn. Show that v′n is weakly, hence
strongly, convergent and hence deduce that {vn} is Cauchy.

Problem 6.4 Suppose that A : H −→ H is a bounded linear operator with the
property that A(H) ⊂ H is finite dimensional. Show that if vn is weakly convergent
in H then Avn is strongly convergent in H.

Problem 6.5 Suppose that H1 and H2 are two different Hilbert spaces and
A : H1 −→ H2 is a bounded linear operator. Show that there is a unique bounded
linear operator (the adjoint) A∗ : H2 −→ H1 with the property

(5.296) (Au1, u2)H2 = (u1, A
∗u2)H1 ∀ u1 ∈ H1, u2 ∈ H2.

Problem 8.1 Show that a continuous function K : [0, 1] −→ L2(0, 2π) has
the property that the Fourier series of K(x) ∈ L2(0, 2π), for x ∈ [0, 1], converges
uniformly in the sense that if Kn(x) is the sum of the Fourier series over |k| ≤ n
then Kn : [0, 1] −→ L2(0, 2π) is also continuous and

(5.297) sup
x∈[0,1]

‖K(x)−Kn(x)‖L2(0,2π) → 0.

Hint. Use one of the properties of compactness in a Hilbert space that you
proved earlier.
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Problem 8.2
Consider an integral operator acting on L2(0, 1) with a kernel which is contin-

uous – K ∈ C([0, 1]2). Thus, the operator is

(5.298) Tu(x) =

∫
(0,1)

K(x, y)u(y).

Show that T is bounded on L2 (I think we did this before) and that it is in the
norm closure of the finite rank operators.

Hint. Use the previous problem! Show that a continuous function such as K in
this Problem defines a continuous map [0, 1] 3 x 7−→ K(x, ·) ∈ C([0, 1]) and hence
a continuous function K : [0, 1] −→ L2(0, 1) then apply the previous problem with
the interval rescaled.

Here is an even more expanded version of the hint: You can think of K(x, y) as
a continuous function of x with values in L2(0, 1). Let Kn(x, y) be the continuous
function of x and y given by the previous problem, by truncating the Fourier series
(in y) at some point n. Check that this defines a finite rank operator on L2(0, 1)
– yes it maps into continuous functions but that is fine, they are Lebesgue square
integrable. Now, the idea is the difference K−Kn defines a bounded operator with
small norm as n becomes large. It might actually be clearer to do this the other
way round, exchanging the roles of x and y.

Problem 8.3 Although we have concentrated on the Lebesgue integral in one
variable, you proved at some point the covering lemma in dimension 2 and that is
pretty much all that was needed to extend the discussion to 2 dimensions. Let’s just
assume you have assiduously checked everything and so you know that L2((0, 2π)2)
is a Hilbert space. Sketch a proof – noting anything that you are not sure of – that
the functions exp(ikx+ ily)/2π, k, l ∈ Z, form a complete orthonormal basis.

P9.1: Periodic functions
Let S be the circle of radius 1 in the complex plane, centered at the origin,

S = {z; |z| = 1}.
(1) Show that there is a 1-1 correspondence

(5.299) C0(S) = {u : S −→ C, continuous} −→
{u : R −→ C; continuous and satisfying u(x+ 2π) = u(x) ∀ x ∈ R}.

Solution: The map E : R 3 θ 7−→ e2πiθ ∈ S is continuous, surjective
and 2π-periodic and the inverse image of any point of the circle is precisly
of the form θ + 2πZ for some θ ∈ R. Thus composition defines a map

(5.300) E∗ : C0(S) −→ C0(R), E∗f = f ◦ E.
This map is a linear bijection.

(2) Show that there is a 1-1 correspondence

(5.301) L2(0, 2π)←→ {u ∈ L1
loc(R);u

∣∣
(0,2π)

∈ L2(0, 2π)

and u(x+ 2π) = u(x) ∀ x ∈ R}/NP
where NP is the space of null functions on R satisfying u(x+ 2π) = u(x)
for all x ∈ R.

Solution: Our original definition of L2(0, 2π) is as functions on R
which are square-integrable and vanish outside (0, 2π). Given such a func-
tion u we can define an element of the right side of (5.301) by assigning a
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value at 0 and then extending by periodicity

(5.302) ũ(x) = u(x− 2nπ), n ∈ Z

where for each x ∈ R there is a unique integer n so that x−2nπ ∈ [0, 2π).
Null functions are mapped to null functions his way and changing the
choice of value at 0 changes ũ by a null function. This gives a map as in
(5.301) and restriction to (0, 2π) is a 2-sided invese.

(3) If we denote by L2(S) the space on the left in (5.301) show that there is
a dense inclusion

(5.303) C0(S) −→ L2(S).

Solution: Combining the first map and the inverse of the second gives
an inclusion. We know that continuous functions vanishing near the end-
points of (0, 2π) are dense in L2(0, 2π) so density follows.

So, the idea is that we can freely think of functions on S as 2π-periodic functions
on R and conversely.

P9.2: Schrödinger’s operator
Since that is what it is, or at least it is an example thereof:

(5.304) −d
2u(x)

dx2
+ V (x)u(x) = f(x), x ∈ R,

(1) First we will consider the special case V = 1. Why not V = 0? – Don’t
try to answer this until the end!

Solution: The reason we take V = 1, or at least some other positive
constant is that there is 1-d space of periodic solutions to d2u/dx2 = 0,
namely the constants.

(2) Recall how to solve the differential equation

(5.305) −d
2u(x)

dx2
+ u(x) = f(x), x ∈ R,

where f(x) ∈ C0(S) is a continuous, 2π-periodic function on the line. Show
that there is a unique 2π-periodic and twice continuously differentiable
function, u, on R satisfying (5.305) and that this solution can be written
in the form

(5.306) u(x) = (Sf)(x) =

∫
0,2π

A(x, y)f(y)

where A(x, y) ∈ C0(R2) satisfies A(x+2π, y+2π) = A(x, y) for all (x, y) ∈
R.

Extended hint: In case you managed to avoid a course on differential
equations! First try to find a solution, igonoring the periodicity issue. To
do so one can (for example, there are other ways) factorize the differential
operator involved, checking that

(5.307) −d
2u(x)

dx2
+ u(x) = −(

dv

dx
+ v) if v =

du

dx
− u



6. SOLUTIONS TO PROBLEMS 225

since the cross terms cancel. Then recall the idea of integrating factors to
see that

(5.308)

du

dx
− u = ex

dφ

dx
, φ = e−xu,

dv

dx
+ v = e−x

dψ

dx
, ψ = exv.

Now, solve the problem by integrating twice from the origin (say) and
hence get a solution to the differential equation (5.305). Write this out
explicitly as a double integral, and then change the order of integration
to write the solution as

(5.309) u′(x) =

∫
0,2π

A′(x, y)f(y)dy

where A′ is continuous on R×[0, 2π]. Compute the difference u′(2π)−u′(0)

and du′

dx (2π)− du′

dx (0) as integrals involving f. Now, add to u′ as solution
to the homogeneous equation, for f = 0, namely c1e

x + c2e
−x, so that the

new solution to (5.305) satisfies u(2π) = u(0) and du
dx (2π) = du

dx (0). Now,
check that u is given by an integral of the form (5.306) with A as stated.

Solution: Integrating once we find that if v = du
dx − u then

(5.310) v(x) = −e−x
∫ x

0

esf(s)ds, u′(x) = ex
∫ x

0

e−tv(t)dt

gives a solution of the equation −d
2u′

dx2 +u′(x) = f(x) so combinging these
two and changing the order of integration

(5.311)

u′(x) =

∫ x

0

Ã(x, y)f(y)dy, Ã(x, y) =
1

2

(
ey−x − ex−y

)
u′(x) =

∫
(0,2π)

A′(x, y)f(y)dy, A′(x, y) =

{
1
2 (ey−x − ex−y) x ≥ y
0 x ≤ y.

Here A′ is continuous since Ã vanishes at x = y where there might other-
wise be a discontinuity. This is the only solution which vanishes with its
derivative at 0. If it is to extend to be periodic we need to add a solution
of the homogeneous equation and arrange that

(5.312) u = u′ + u′′, u′′ = cex + de−x, u(0) = u(2π),
du

dx
(0) =

du

dx
(2π).

So, computing away we see that
(5.313)

u′(2π) =

∫ 2π

0

1

2

(
ey−2π − e2π−y) f(y),

du′

dx
(2π) = −

∫ 2π

0

1

2

(
ey−2π + e2π−y) f(y).

Thus there is a unique solution to (5.312) which must satify
(5.314)

c(e2π − 1) + d(e−2π − 1) = −u′(2π), c(e2π − 1)− d(e−2π − 1) = −du
′

dx
(2π)

(e2π − 1)c =
1

2

∫ 2π

0

(
e2π−y) f(y), (e−2π − 1)d = −1

2

∫ 2π

0

(
ey−2π

)
f(y).
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Putting this together we get the solution in the desired form:
(5.315)

u(x) =

∫
(0.2π)

A(x, y)f(y), A(x, y) = A′(x, y) +
1

2

e2π−y+x

e2π − 1
− 1

2

e−2π+y−x

e−2π − 1
=⇒

A(x, y) =
cosh(|x− y| − π)

eπ − e−π
.

(3) Check, either directly or indirectly, that A(y, x) = A(x, y) and that A is
real.

Solution: Clear from (5.315).
(4) Conclude that the operator S extends by continuity to a bounded operator

on L2(S).

Solution. We know that ‖S‖ ≤
√

2π sup |A|.
(5) Check, probably indirectly rather than directly, that

(5.316) S(eikx) = (k2 + 1)−1eikx, k ∈ Z.
Solution. We know that Sf is the unique solution with periodic

boundary conditions and eikx satisfies the boundary conditions and the
equation with f = (k2 + 1)eikx.

(6) Conclude, either from the previous result or otherwise that S is a compact
self-adjoint operator on L2(S).

Soluion: Self-adjointness and compactness follows from (5.316) since

we know that the eikx/
√

2π form an orthonormal basis, so the eigenvalues
of S tend to 0. (Myabe better to say it is approximable by finite rank
operators by truncating the sum).

(7) Show that if g ∈ C0(S)) then Sg is twice continuously differentiable. Hint:
Proceed directly by differentiating the integral.

Solution: Clearly Sf is continuous. Going back to the formula in
terms of u′ + u′′ we see that both terms are twice continuously differen-
tiable.

(8) From (5.316) conclude that S = F 2 where F is also a compact self-adjoint

operator on L2(S) with eigenvalues (k2 + 1)−
1
2 .

Solution: Define F (eikx) = (k2 + 1)−
1
2 eikx. Same argument as above

applies to show this is compact and self-adjoint.
(9) Show that F : L2(S) −→ C0(S).

Solution. The series for Sf

(5.317) Sf(x) =
1

2π

∑
k

(2k2 + 1)−
1
2 (f, eikx)eikx

converges absolutely and uniformly, using Cauchy’s inequality – for in-
stance it is Cauchy in the supremum norm:

(5.318) ‖
∑
|k|>p

(2k2 + 1)−
1
2 (f, eikx)eikx| ≤ ε‖f‖L2

for p large since the sum of the squares of the eigenvalues is finite.
(10) Now, going back to the real equation (5.304), we assume that V is contin-

uous, real-valued and 2π-periodic. Show that if u is a twice-differentiable
2π-periodic function satisfying (5.304) for a given f ∈ C0(S) then

(5.319) u+ S((V − 1)u) = Sf and hence u = −F 2((V − 1)u) + F 2f
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and hence conclude that

(5.320) u = Fv where v ∈ L2(S) satisfies v + (F (V − 1)F )v = Ff

where V − 1 is the operator defined by multiplication by V − 1.
Solution: If u satisfies (5.304) then

(5.321) −d
2u(x)

dx2
+ u(x) = −(V (x)− 1)u(x) + f(x)

so by the uniqueness of the solution with periodic boundary conditions,
u = −S(V − 1)u+ Sf so u = F (−F (V − 1)u+Ff). Thus indeed u = Fv
with v = −F (V − 1)u+ Ff which means that v satisfies

(5.322) v + F (V − 1)Fv = Ff.

(11) Show the converse, that if v ∈ L2(S) satisfies

(5.323) v + (F (V − 1)F )v = Ff, f ∈ C0(S)

then u = Fv is 2π-periodic and twice-differentiable on R and satisfies
(5.304).

Solution. If v ∈ L2(0, 2π) satisfies (5.323) then u = Fv ∈ C0(S)
satisfies u + F 2(V − 1)u = F 2f and since F 2 = S maps C0(S) into twice
continuously differentiable functions it follows that u satisfies (5.304).

(12) Apply the Spectral theorem to F (V − 1)F (including why it applies) and
show that there is a sequence λj in R \ {0} with |λj | → 0 such that for all
λ ∈ C \ {0}, the equation

(5.324) λv + (F (V − 1)F )v = g, g ∈ L2(S)

has a unique solution for every g ∈ L2(S) if and only if λ 6= λj for any j.
Solution: We know that F (V − 1)F is self-adjoint and compact so

L2(0.2π) has an orthonormal basis of eigenfunctions of −F (V − 1)F with
eigenvalues λj . This sequence tends to zero and (5.324), for given λ ∈
C \ {0}, if and only if has a solution if and only if it is an isomorphism,
meaning λ 6= λj is not an eigenvalue of −F (V − 1)F.

(13) Show that for the λj the solutions of

(5.325) λjv + (F (V − 1)F )v = 0, v ∈ L2(S),

are all continuous 2π-periodic functions on R.
Solution: If v satisfies (5.325) with λj 6= 0 then v = −F (V −1)F/λj ∈

C0(S).
(14) Show that the corresponding functions u = Fv where v satisfies (5.325) are

all twice continuously differentiable, 2π-periodic functions on R satisfying

(5.326) −d
2u

dx2
+ (1− sj + sjV (x))u(x) = 0, sj = 1/λj .

Solution: Then u = Fv satisfies u = −S(V − 1)u/λj so is twice
continuously differentiable and satisfies (5.326).

(15) Conversely, show that if u is a twice continuously differentiable and 2π-
periodic function satisfying

(5.327) −d
2u

dx2
+ (1− s+ sV (x))u(x) = 0, s ∈ C,

and u is not identically 0 then s = sj for some j.
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Solution: From the uniquess of periodic solutions u = −S(V −1)u/λj
as before.

(16) Finally, conclude that Fredholm’s alternative holds for the equation in
(5.304)

Theorem 5.2. For a given real-valued, continuous 2π-periodic func-
tion V on R, either (5.304) has a unique twice continuously differentiable,
2π-periodic, solution for each f which is continuous and 2π-periodic or
else there exists a finite, but positive, dimensional space of twice continu-
ously differentiable 2π-periodic solutions to the homogeneous equation

(5.328) −d
2w(x)

dx2
+ V (x)w(x) = 0, x ∈ R,

and (5.304) has a solution if and only if
∫

(0,2π)
fw = 0 for every 2π-

periodic solution, w, to (5.328).

Solution: This corresponds to the special case λj = 1 above. If λj is not an
eigenvalue of −F (V − 1)F then

(5.329) v + F (V − 1)Fv = Ff

has a unque solution for all f, otherwise the necessary and sufficient condition is
that (v, Ff) = 0 for all v′ satisfying v′ + F (V − 1)Fv′ = 0. Correspondingly either
(5.304) has a unique solution for all f or the necessary and sufficient condition is
that (Fv′, f) = 0 for all w = Fv′ (remember that F is injetive) satisfying (5.328).

Problem P10.1 Let H be a separable, infinite dimensional Hilbert space. Show
that the direct sum of two copies of H is a Hilbert space with the norm

(5.330) H ⊕H 3 (u1, u2) 7−→ (‖u1‖2H + ‖u2‖2H)
1
2

either by constructing an isometric isomorphism

(5.331) T : H −→ H ⊕H, 1-1 and onto, ‖u‖H = ‖Tu‖H⊕H
or otherwise. In any case, construct a map as in (5.331).

Solution: Let {ei}i∈N be an orthonormal basis of H, which exists by virtue of
the fact that it is an infinite-dimensional but separable Hilbert space. Define the
map

(5.332) T : H 3 u −→ (

∞∑
i=1

(u, e2i−1)ei,

∞∑
i=1

(u, e2i)ei) ∈ H ⊕H

The convergence of the Fourier Bessel series shows that this map is well-defined
and linear. Injectivity similarly follows from the fact that Tu = 0 in the image
implies that (u, ei) = 0 for all i and hence u = 0. Surjectivity is also clear from the
fact that

(5.333) S : H ⊕H 3 (u1, u2) 7−→
∞∑
i=1

((u1, ei)e2i−1 + (u2, ei)e2i) ∈ H

is a 2-sided inverse and Bessel’s identity implies isometry since ‖S(u1, u2)‖2 =
‖u1‖2 + ‖u2‖2

Problem P10.2 One can repeat the preceding construction any finite number
of times. Show that it can be done ‘countably often’ in the sense that if H is a
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separable, infinite dimensional, Hilbert space then

(5.334) l2(H) = {u : N −→ H; ‖u‖2l2(H) =
∑
i

‖ui‖2H <∞}

has a Hilbert space structure and construct an explicit isometric isomorphism from
l2(H) to H.

Solution: A similar argument as in the previous problem works. Take an
orthormal basis ei for H. Then the elements Ei,j ∈ l2(H), which for each i, i consist
of the sequences with 0 entries except the jth, which is ei, given an orthonromal
basis for l2(H). Orthormality is clear, since with the inner product is

(5.335) (u, v)l2(H) =
∑
j

(uj , vj)H .

Completeness follows from completeness of the orthonormal basis of H since if
v = {vj} (v,Ej,i) = 0 for all j implies vj = 0 in H. Now, to construct an isometric
isomorphism just choose an isomorphism m : N2 −→ N then

(5.336) Tu = v, vj =
∑
i

(u, em(i,j))ei ∈ H.

I would expect you to go through the argument to check injectivity, surjectivity
and that the map is isometric.

Problem P10.3 Recall, or perhaps learn about, the winding number of a closed
curve with values in C∗ = C \ {0}. We take as given the following fact:3 If Q =
[0, 1]N and f : Q −→ C∗ is continuous then for each choice of b ∈ C satisfying
exp(2πib) = f(0), there exists a unique continuous function F : Q −→ C satisfying

(5.337) exp(2πiF (q)) = f(q), ∀ q ∈ Q and F (0) = b.

Of course, you are free to change b to b + n for any n ∈ Z but then F changes to
F + n, just shifting by the same integer.

(1) Now, suppose c : [0, 1] −→ C∗ is a closed curve – meaning it is continuous
and c(1) = c(0). Let C : [0, 1] −→ C be a choice of F for N = 1 and
f = c. Show that the winding number of the closed curve c may be defined
unambiguously as

(5.338) wn(c) = C(1)− C(0) ∈ Z.

Solution: Let C ′, be another choice of F in this case. Now, g(t) =
C ′(t) − C(t) is continuous and satisfies exp(2πg(t)) = 1 for all t ∈ [0, 1]
so by the uniqueness must be constant, thus C ′(1)−C ′(0) = C(1)−C(0)
and the winding number is well-defined.

(2) Show that wn(c) is constant under homotopy. That is if ci : [0, 1] −→ C∗,
i = 1, 2, are two closed curves so ci(1) = ci(0), i = 1, 2, which are homo-
topic through closed curves in the sense that there exists f : [0, 1]2 −→ C∗
continuous and such that f(0, x) = c1(x), f(1, x) = c2(x) for all x ∈ [0, 1]
and f(y, 0) = f(y, 1) for all y ∈ [0, 1], then wn(c1) = wn(c2).

Solution: Choose F using the ‘fact’ corresponding to this homotopy
f. Since f is periodic in the second variable – the two curves f(y, 0),
and f(y, 1) are the same – so by the uniquess F (y, 0) − F (y, 1) must be
constant, hence wn(c2) = F (1, 1)− F (1, 0) = F (0, 1)− F (0, 0) = wn(c1).

3Of course, you are free to give a proof – it is not hard.
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(3) Consider the closed curve Ln : [0, 1] 3 x 7−→ e2πix Idn×n of n×n matrices.
Using the standard properties of the determinant, show that this curve
is not homotopic to the identity through closed curves in the sense that
there does not exist a continuous map G : [0, 1]2 −→ GL(n), with values in
the invertible n×n matrices, such that G(0, x) = Ln(x), G(1, x) ≡ Idn×n
for all x ∈ [0, 1], G(y, 0) = G(y, 1) for all y ∈ [0, 1].

Solution: The determinant is a continuous (actually it is analytic)
map which vanishes precisely on non-invertible matrices. Moreover, it is
given by the product of the eigenvalues so

(5.339) det(Ln) = exp(2πixn).

This is a periodic curve with winding number n since it has the ‘lift’ xn.
Now, if there were to exist such an homotopy of periodic curves of matri-
ces, always invertible, then by the previous result the winding number of
the determinant would have to remain constant. Since the winding num-
ber for the constant curve with value the identity is 0 such an homotopy
cannot exist.

Problem P10.4 Consider the closed curve corresponding toLn above in the case
of a separable but now infinite dimensional Hilbert space:

(5.340) L : [0, 1] 3 x 7−→ e2πix IdH ∈ GL(H) ⊂ B(H)

taking values in the invertible operators on H. Show that after identifying H with
H ⊕H as above, there is a continuous map

(5.341) M : [0, 1]2 −→ GL(H ⊕H)

with values in the invertible operators and satisfying
(5.342)
M(0, x) = L(x), M(1, x)(u1, u2) = (e4πixu1, u2), M(y, 0) = M(y, 1), ∀ x, y ∈ [0, 1].

Hint: So, think of H ⊕H as being 2-vectors (u1, u2) with entries in H. This allows
one to think of ‘rotation’ between the two factors. Indeed, show that

(5.343) U(y)(u1, u2) = (cos(πy/2)u1 + sin(πy/2)u2,− sin(πy/2)u1 + cos(πy/2)u2)

defines a continuous map [0, 1] 3 y 7−→ U(y) ∈ GL(H ⊕H) such that U(0) = Id,
U(1)(u1, u2) = (u2,−u1). Now, consider the 2-parameter family of maps

(5.344) U−1(y)V2(x)U(y)V1(x)

where V1(x) and V2(x) are defined on H⊕H as multiplication by exp(2πix) on the
first and the second component respectively, leaving the other fixed.

Solution: Certainly U(y) is invertible since its inverse is U(−y) as follows in
the two dimensional case. Thus the map W (x, y) on [0, 1]2 in (5.344) consists
of invertible and bounded operators on H ⊕ H, meaning a continuous map W :
[0, 1]2 −→ GL(H ⊕H). When x = 0 or x = 1, both V1(x) and v2(x) reduce to the
identiy, and hence W (0, y) = W (1, y) for all y, so W is periodic in x. Moreove at
y = 0 W (x, 0) = V2(x)V1(x) is exactly L(x), a multiple of the identity. On the
other hand, at x = 1 we can track composite as

(5.345)

(
u1

u2

)
7−→

(
e2πixu1

u2

)
7−→

(
u2

−e2πxu1

)
7−→

(
u2

−e4πxu1

)
7−→

(
e4πxu1

u2

)
.

This is what is required of M in (5.342).
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Problem P10.5 Using a rotation similar to the one in the preceeding problem
(or otherwise) show that there is a continuous map

(5.346) G : [0, 1]2 −→ GL(H ⊕H)

such that

(5.347) G(0, x)(u1, u2) = (e2πixu1, e
−2πixu2),

G(1, x)(u1, u2) = (u1, u2), G(y, 0) = G(y, 1) ∀ x, y ∈ [0, 1].

Solution: We can take

(5.348) G(y, x) = U(−y)

(
Id 0
0 e−2πix

)
U(y)

(
e2πix 0

0 Id

)
.

By the same reasoning as above, this is an homotopy of closed curves of invertible
operators on H ⊕H which satisfies (5.347).

Problem P10.6 Now, think about combining the various constructions above
in the following way. Show that on l2(H) there is an homotopy like (5.346), G̃ :
[0, 1]2 −→ GL(l2(H)), (very like in fact) such that

(5.349) G̃(0, x) {uk}∞k=1 =
{

exp((−1)k2πix)uk
}∞
k=1

,

G̃(1, x) = Id, G̃(y, 0) = G̃(y, 1) ∀ x, y ∈ [0, 1].

Solution: We can divide l2(H) into its odd an even parts

(5.350) D : l2(H) 3 v 7−→ ({v2i−1}, {v2i}) ∈ l2(H)⊕ l2(H)←→ H ⊕H.

and then each copy of l2(H) on the right with H (using the same isometric isomor-
phism). Then the homotopy in the previous problem is such that

(5.351) G̃(x, y) = D−1G(y, x)D

accomplishes what we want.
Problem P10.7: Eilenberg’s swindle For any separable, infinite-dimensional,

Hilbert space, construct an homotopy – meaning a continuous map G : [0, 1]2 −→
GL(H) – with G(0, x) = L(x) in (5.340) and G(1, x) = Id and of course G(y, 0) =
G(y, 1) for all x, y ∈ [0, 1].

Hint: Just put things together – of course you can rescale the interval at the end
to make it all happen over [0, 1]. First ‘divide H into 2 copies of itself’ and deform
from L to M(1, x) in (5.342). Now, ‘divide the second H up into l2(H)’ and apply
an argument just like the preceding problem to turn the identity on this factor into
alternating terms multiplying by exp(±4πix) – starting with −. Now, you are on
H ⊕ l2(H), ‘renumbering’ allows you to regard this as l2(H) again and when you
do so your curve has become alternate multiplication by exp(±4πix) (with + first).
Finally then, apply the preceding problem again, to deform to the identity (always
of course through closed curves). Presto, Eilenberg’s swindle!

Solution: By rescaling the variables above, we now have three homotopies,
always through periodic families. On H ⊕ H between L(x) = e2πix Id and the
matrix

(5.352)

(
e4πix Id 0

0 Id

)
.



232 5. PROBLEMS

Then on H ⊕ l2(H) we can deform from

(5.353)

(
e4πix Id 0

0 Id

)
to

(
e4πix Id 0

0 G̃(0, x)

)
with G̃(0, x) in (5.349). However we can then identify

(5.354) H ⊕ l2(H) = l2(H), (u, v) 7−→ w = {wj}, w1 = u, wj+1 = vj , j ≥ 1.

This turns the matrix of operators in (5.353) into G̃(0, x)−1. Now, we can apply
the same construction to deform this curve to the identity. Notice that this really
does ultimately give an homotopy, which we can renormalize to be on [0, 1] if you
insist, of curves of operators on H – at each stage we transfer the homotopy back
to H.
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