THE PROBLEMS FOR THE SECOND TEST FOR 18.102 WILL BE SELECTED FROM THIS LIST

RICHARD MELROSE

Question 1

Show that if $A \in \mathcal{B}(H)$, where H is a separable Hilbert space, has the property that $u_n \rightharpoonup u$ (converges weakly) implies that Au_n is Cauchy. Show that $\overline{A(\{u \in H; ||u|| \leq 1\})}$ is compact.

Question 2

A sequence of bounded operators $A_n \in \mathcal{B}(H)$ is said to *converge strongly* if for each $u \in H$, $A_n u$ converges in H. Show that $Au = \lim_n A_n u$ is necessarily a bounded linear operator on H (called the strong limit of the sequence).

Question 3

A sequence of bounded operators $A_n \in \mathcal{B}(H)$ is said to *converge weakly* if for each pair of elements $u, v \in H$, $\langle A_n u, v \rangle$ converges in \mathbb{C} . Show that there exists a bounded linear operator $A \in \mathcal{B}(H)$ (called the weak limit of the sequence) such that $\langle Au, v \rangle = \lim_n \langle A_n u, v \rangle$.

Question 4

If H is a separable, infinite dimensional, Hilbert space set

(1)
$$l^{2}(H) = \{u : \mathbb{N} \longrightarrow H; ||u||_{l^{2}(H)}^{2} = \sum_{i} ||u_{i}||_{H}^{2} < \infty\}.$$

Show that $l^2(H)$ has a Hilbert space structure and construct an explicit isometric (norm-preserving) isomorphism (bijection) from $l^2(H)$ to H.

Question 5

Starting from the definition of weak convergence of a sequence in a separable Hilbert space, $v_n \rightharpoonup v$, that $\langle v_n, w \rangle \rightarrow \langle v, w \rangle$ in $\mathbb C$ for each $w \in H$, show that a weakly convergent sequence $\{v_n\}$, is (strongly) convergent if and only if

(2)
$$||v||_H = \lim_{n \to \infty} ||v_n||_H.$$

Let e_k , $k \in \mathbb{N}$, be an orthonormal basis in a separable Hilbert space, H. Show that there is a unique bounded linear operator $T: H \longrightarrow H$ satisfying

(3)
$$Te_j = e_{j-1} \ \forall \ j \ge 2, \ Te_1 = 0,$$

and that if $B \in \mathcal{B}(H)$ has ||B|| < 1 then T + B has one-dimensional null space.

Question 7

Suppose H is an infinite dimensional separable Hilbert space with an orthonormal basis $\{e_k\}_{k=1}^{\infty}$. Show that a continuous function $K:[0,1]\longrightarrow H$ has the property that the Fourier-Bessel series of $K(x)\in H$, for $x\in[0,1]$, converges uniformly in the sense that if $K_n(x)=\sum\limits_{k\leq n}\langle K(x),e_k\rangle e_k$ then $K_n:[0,1]\longrightarrow H$ is also continuous and

(4)
$$\sup_{x \in [0,1]} ||K(x) - K_n(x)||_H \to 0.$$

Question 8

– I decided this was too hard/long so will not be on the test – If $A \in \mathcal{B}(H)$ is a bounded operator on a separable, infinite-dimensional, Hilbert space H, explain why $|A| = (A^*A)^{1/2} \in \mathcal{B}(H)$ is well-defined. For $p \in [1, \infty)$ let $\mathcal{L}^p(H) \subset \mathcal{B}(H)$ consist of those operators such that |A| is compact and for any orthonormal basis of H consisting of eigenvectors of |A|,

(5)
$$||A||_{\mathcal{L}^p} = \left(\sum_i |\langle Ae_i, Ae_i \rangle|^{p/2}\right)^{1/p} < \infty.$$

Show that this is a norm making $\mathcal{L}^p(H)$ into a Banach space.

Question 9

Show that a separable Hilbert space H with the property that every bounded operator from H to itself is compact is necessarily finite dimensional.

Question 10

Show that if B is a compact operator on a separable Hilbert space H and A is an invertible operator then

$$\{u \in H; Bu = Au\}$$

is finite dimensional.

Question 11

Assuming the Stone-Weierstrass theorem, show that there is a complete orthonormal basis of $L^2([0,2\pi])$ consisting of polynomials.

Question 12

Let H be a separable Hilbert space and let $\mathcal{C}_{\mathrm{c}}(\mathbb{R};H)$ be the linear space of continuous maps from \mathbb{R} to H which vanish outside some interval [-R,R] depending on the function Show that

(7)
$$||u||^2 = \int_{\mathbb{R}} ||u(x)||_H^2$$

defines a norm which comes from a pre-Hilbert structure on $C_c(\mathbb{R}; H)$. Show that if u_n is a Cauchy sequence in this pre-Hilbert space and $h \in H$ then $\langle u_n(x), h \rangle_H$ converges in $L^2(\mathbb{R})$.

Department of Mathematics, Massachusetts Institute of Technology $E\text{-}mail\ address$: rbm@math.mit.edu