
THE PROBLEMS FOR THE SECOND TEST FOR 18.102

BRIEF SOLUTIONS

RICHARD MELROSE

Question.1
Show that a subset of a separable Hilbert space is compact if and only if it

is closed and bounded and has the property of ‘finite dimensional approximation’
meaning that for any ε > 0 there exists a linear subspace DN ⊂ H of finite dimen-
sion such that

(1) d(K,DN ) = sup
u∈K

inf
v∈DN

{d(u, v)} ≤ ε.

Solution: A compact set K is closed and bounded and has the ‘equi-small tails’
property with respect to any onb. So, given ε > 0 then exists N such that

(2)
∑
j>N

|〈u, ej〉|2 < ε2 ∀ u ∈ K.

Let DN be the linear space spanned by the ej for j ≤ N then if the orthogonal
decomposition H = DN ⊕D⊥N gives u = u′ + u′′ and the distance d(u,DN ) = ‖u′′‖
so the finite dimensional approximation property follows from (2).

Conversely, suppose that K is closed and bounded and has the FDAP. By the
assumed boundedness, any sequence in K has a weakly convergent subsequence.
Denote such a sequence un. For each DN let PN be the orthogonal projection
onto DN . The sequence PNun is weakly convergent in DN (because bounded maps
preserve weak convergence) but since this is finite dimensional, PNun is convergent,
and hence Cauchy. If DN satisfies (1) for ε/3, and n is large enough then for m ≥ n,

(3) ‖un − um‖ ≤ ‖(Id−PN )un‖+ ‖PNun − PNum‖+ ‖(Id−PN )um‖ < ε,

and it follows that un is Cauchy, hence convergent with limit in K. Note that
‖(Id−PN )un‖ = d(un, DN ). Thus K is compact since every sequence in it has a
convergent subsequence.

Question.2
Strong convergence of a sequence of bounded operators An ∈ B(H) means that

for each u ∈ H, Anu converges in H. Show that Au = limnAnu is necessarily a
bounded linear operator on H (called the strong limit of the sequence).

Solution: By assumption, Anu converges for each u so by the uniform bounded-
ness principle ‖An‖ is bounded. Define Au = limn→∞Anu. This is a linear map
A : H −→ H, since An(au+bv)→ aAu+bAv. Moreover, if ‖u‖ ≤ 1 and C is an up-
per bound for the ‖An‖ then ‖Au‖ ≤ C, as the limit if a sequence with ‖Anu‖ ≤ C.
Thus A is bounded.
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Queston.3
If H is a separable, infinite dimensional, Hilbert space set

(4) l2(H) = {u : N −→ H; ‖u‖2l2(H) =
∑
i

‖ui‖2H <∞}.

Show that l2(H) has a Hilbert space structure and construct an explicit isometric
(norm-preserving) isomorphism (bijection) from l2(H) to H.

Solution: The inner product

(5) 〈u, v〉 =
∑
j

〈uj , vj〉H , u, v ∈ l2(H)

is well-defined since the series converges absolutely

(6)
∑
j

|〈uj , vj〉H | ≤
1

2

∑
j

‖uj‖2H +
∑
j

‖vj‖2H

 <∞.

This makes l2(H) into a pre-Hilbert space. If u(i) is a Cauchy sequence in l2(H),
then, as in any normed space it is bounded. The sequence in H formed by the jth
components for any j are Cauchy since

(7) ‖u(i),j − u(i′),j‖H ≤ ‖u(i) − u(i′)‖.

Since H is complete it follows that limi u(i),j = vj exists in H. The bound on the

norm in l2(H) for the sequence implies that

(8)
∑
j

‖u(i),j‖2H < C2

for some C independent of i. Truncating the series at some finite point and then
passing to the limit in the finite sum that results shows that

(9)
∑
j≤N

‖u(i),j‖2H →
∑
j≤N

‖vj‖2H ≤ C2

for all N. Passing to the limit as N → ∞ shows v ∈ l2(H). Similarly, the Cauchy
condition shows that given ε > 0 there exists M such that for i′ > i > M

(10)
∑
j

‖u(i),j − u(i′),j‖2H < ε2.

Again truncating the series at N and passing to the limit as i′ →∞ shows that for
i > M,

(11)
∑
j≤N

‖u(i),j − vj‖2H ≤ ε2.

Now, letting N →∞ we conclude that u(i) → v in l2(H) since for i > M,

‖u(i) − v‖l2(H) ≤ ε.

Thus l2(H) is complete and hence is a Hilbert space.
To find an isomorphism of l2(H) to H choose an orthonormal basis ei of H. Then

the sequence

Ej,i,k =

{
0 if k 6= j

ei if k = j
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(the sequence which is zero except for ei in the jth position) form an orthonormal
basis of l2(H). They are orthonormal by inspection and complete since if u ∈ l2(H)
then 〈u,Ej,i〉 = 〈uj , ei〉H and if this vanishes for all j and i then u = 0. Choosing
an ordering of the Ej,i to a sequence fl, the isometric isomorphism follows by linear
extension of the map on bases

U(fi) = ei, U : l2(H) −→ H

which is norm-preserving, linear and a bijection.

Question.4
Show that, in a separable Hilbert space, a weakly convergent sequence {vn}, is

(strongly) convergent if and only if

(12) ‖v‖H = lim
n→∞

‖vn‖H

where v is the weak limit.
Solution: If a weakly convergent sequence is strongly convergent it has the same

limit and (12) follows from the continuity of the norm.
Conversely, if uj conveges weakly to u then

‖uj − u‖2 = 〈uj − u, uj − u〉 = ‖uj‖2 − 〈uj , u〉 − 〈u, uj〉+ ‖u‖2.

By weak convergent the middle two terms on the right each converge to −‖u‖2 so
if ‖uj‖ → ‖u‖ it follows that ‖uj − u‖ → 0 and uj → u.

Question.5
Let ek, k ∈ N, be an orthonormal basis in a separable Hilbert space, H. Show

that there is a uniquely defined bounded linear operator T : H −→ H, satisfying

(13) Tej = ej−1 ∀ j ≥ 2, T e1 = 0,

and that T +B has one-dimensional null space if B is bounded and ‖B‖ < 1.
Solution: Extending T by linearity gives a bounded operator since

(14) T (
∑
i≥1

ciei) =
∑
i≥2

ciei−1 =⇒ ‖Tu‖ ≤ ‖u‖.

Define B′ = B(Id−P1) where P1 is the orthogonal projection onto e1. Now, both
T and B′ can be restricted to bounded operators between the Hilbert spaces e⊥1
and H. Moreover, T is then invertible with inverse fixed by

(15) Sej = ej+1, j ≥ 1

also of norm one. Since ‖B′‖ ≤ ‖B‖ < 1, it follows that T + B′ is inverible with
inverse S′ : H −→ e⊥1 . Now, an element of the null space of T + B is a vector
u = u1 + u′, u1 = P1u, which satisfies

(16) (T +B)u = (T +B)(Id−P1)u+BP1u = 0⇐⇒ u′ = −S′BP1u1.

This is one-dimensional since if u1 = e1 then u′ ∈ e⊥1 is uniquely determined by
(16) and conversely any element of the null space is a multiple of this vector.
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Question.6
Show that a continuous function K : [0, 1] −→ L2(0, 2π) has the property that

the Fourier series of K(x) ∈ L2(0, 2π), for x ∈ [0, 1], converges uniformly in the
sense that if Kn(x) is the sum of the Fourier series over |k| ≤ n then Kn : [0, 1] −→
L2(0, 2π) is also continuous and

(17) sup
x∈[0,1]

‖K(x)−Kn(x)‖L2(0,2π) → 0.

Solution: The image under K of [0, 1] is compact and hence the Fourier series
converges uniformly on the range, which is precisely the content of (17). The Kn(x)
are given as PnK(x) where Pn is the self-adjoint projection onto the span of the part
of the Fourier basis with |k| ≤ n; since Pn is continuous, Kn : [0, 1] −→ L2(0, 2π)
is continuous as the composite of continuous maps.

Question.7
Prove that for appropriate constants dk, the functions dk sin(kx/2), k ∈ N, form

an orthonormal basis for L2(0, 2π).
Solution: We can embed L2(0, 2π) as a closed subspace of L2(−2π, 2π) by ex-

tending each element to be odd:

A : L2(0, 2π) 3 f 7−→ 2−
1
2 g ∈ L2(−2π, 2π), g(x) =

{
f(x) if x > 0

−f(x) if x < 0.

Consider the Fourier basis eikx/2/2
√
π for L2(−2π, 2π). The Fourier coefficients of

an inner product with an odd function reduced to multiples of the pairing with
sin(kx/2) which therefore are complete as a subspace of the odd part and hence
restrict to be complete on L2(0, 2π) where they are still orthogonal. It follows that
they form a basis for the correct choice of constants dk – which I did not ask you
to compute although who knows why!

Question.8
Show that a separable Hilbert space in which every bounded operator is compact

is finite dimensional.
Solution: If every bounded operator on H is compact then the identity operator

is compact and hence the unit ball in H is equal to its image under a compact
operator so it is contained in a compact set and hence is itself compact, being
closed. It follows that H is finite-dimensional.

Question.9
Show that if B is a compact operator on a separable Hilbert space H and A is

an invertible operator then

(18) {u ∈ H;Bu = Au}

is finite dimensional.
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Solution: The linear space N = {u ∈ H;Bu = Au} is the null space of the
bounded operator A − B, so is closed and hence a Hilbert subspace of H. Since
A is invertible, any element u ∈ N is equal to A−1Bu. Thus the unit ball of N is
equal to its image under A−1B, which is compact. It follows that N is contained
in a compact set and since it is closed it is also compact. The unit ball of a Hilbert
space is non-compact if the space is infinite dimensional, so N is finite-dimensional.

Question.10
Show that there is a complete orthonormal basis of L2([0, 2π]) consisting of

polynomials.
Solution: The Stone-Weierstrass Theorem asserts that the polynomial on any

compact interval are dense in the continuous functions in the supremum norm. It
follows that the countable collection of polynomials with coefficients which have
rational real and imaginary parts are dense in L2([0, 2π]). Applying the Gram-
Schmidt procedure to this set gives an orthonormal basis of polynomials.

Question.11
Let H be a separable Hilbert space and let C(R;H) be the linear space of con-

tinuous maps from R to H which vanish outside some interval [−R,R] depending
on the function. Show that

(19) ‖u‖2 =

∫
R
‖u(x)‖2H

defines a norm which comes from a preHilbert structure on C(R;H). Show that
if un is a Cauchy sequence in this preHilbert space and h ∈ H then 〈un(x), h〉H
converges in L2(R).

Solution: By the continuity of the norm on a Hilbert space, if u ∈ C(R;H) then
‖u(x)‖H ∈ C(R) and hence (19) is well-defined. It is non-negative and vanishes
precisely when ‖u(x)‖H = 0 and hence when u = 0 as an element of C(R;H). The
underlying inner product

〈u, v〉 =

∫
R
〈u(x), v(x)〉H

is well-defined for the same reason, that the integrand is a continuous function
vanishing outside some bounded set. Moreover, it is Hermitian symmetric and as
noted above positive definite. Thus (19) is a pre-Hilbert norm.

A sequence un in C(R;H) is Cauchy if given ε > 0 there exists N such that∫
R
‖un(x)− um‖2H < ε2 ∀ n,m > N,

If h ∈ H is fixed then the sequence

|〈un(x), h〉H − 〈um(x), h〉|2 ≤ ‖un(x)− um(x)‖2H‖h‖2H
so integrating gives

‖〈un(x), h〉H − 〈um(x), h〉‖L2 ≤ ε‖h‖H
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from which it follows that the sequence 〈un(x), h〉H is Cauchy, and hence converges,
in L2(R).
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