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PREFACE 5

Preface

These are notes for the course ‘Introduction to Functional Analysis’ – or in
the MIT style, 18.102, from various years culminating in Spring 2015. There are
many people who I should like to thank for comments on and corrections to the
notes over the years, but for the moment I would simply like to thank the MIT
undergraduates who have made this course a joy to teach, as a result of their
interest and enthusiasm.
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Introduction

This course is intended for ‘well-prepared undergraduates’ meaning specifically
that they have a rigourous background in analysis at roughly the level of the first
half of Rudin’s book [3] – at MIT this is 18.100B. In particular the basic theory of
metric spaces is used freely. Some familiarity with linear algebra is also assumed,
but not at a very sophisticated level.

The main aim of the course in a mathematical sense is the presentation of the
standard constructions of linear functional analysis, centred on Hilbert space and
its most significant analytic realization as the Lebesgue space L2(R) and leading up
to the spectral theory of ordinary differential operators. In a one-semester course
at MIT it is only just possible to get this far. Beyond the core material I have
included other topics that I believe may prove useful both in showing how to apply
the ‘elementary’ material and more directly.

Dirichlet problem. The eigenvalue problem with potential perturbation on
an interval is one of the proximate aims of this course, so let me describe it briefly
here for orientation.

Let V : [0, 1] −→ R be a real-valued continuous function. We are interested in
‘oscillating modes’ on the interval; something like this arises in quantum mechanics
for instance. Namely we want to know about functions u(x) – twice continuously
differentiable on [0, 1] so that things make sense – which satisfy the differential
equation

(1)
−d

2u

dx2
(x) + V (x)u(x) = λu(x) and the

boundary conditions u(0) = u(1) = 0.

Here the eigenvalue, λ is an ‘unknown’ constant. More precisely we wish to know
which such λ’s can occur. In fact all λ’s can occur with u ≡ 0 but this is the ‘trivial
solution’ which will always be there for such an equation. What other solutions are
there? The main result is that there is an infinite sequence of λ’s for which there
is a non-trivial solution of (1) λj ∈ R – they are all real, no non-real complex λ’s
can occur. For each of the λj there is at least one (and maybe more) non-trivial
solution uj to (1). We can say a lot more about everything here but one main aim
of this course is to get at least to this point. From a Physical point of view, (1)
represents a linearized oscillating string with fixed ends.

So the journey to a discussion of the Dirichlet problem is rather extended and
apparently wayward. The relevance of Hilbert space and the Lebesgue integral is
not immediately apparent, but I hope this will become clear as we proceed. In fact
in this one-dimensional setting it can be avoided, although at some cost in terms
of elegance. The basic idea is that we consider a space of all ‘putative’ solutions to
the problem at hand. In this case one might take the space of all twice continuously
differentiable functions on [0, 1] – we will consider such spaces at least briefly below.
One of the weaknesses of such an approach is that it is not closely connected with
the ‘energy’ invariant of a solution, which is the integral

(2)

∫ 1

0

(|du
dx
|2 + V (x)|u(x)|2)dx.

It is the importance of such integrals which brings in the Lebesgue integral and
leads to a Hilbert space structure.
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In any case one of the significant properties of the equation (1) is that it is
‘linear’. So we start with a brief discussion of linear spaces. What we are dealing
with here can be thought of as the an eigenvalue problem for an ‘infinite matrix’.
This in fact is not a very good way of looking at things (there was such a matrix
approach to quantum mechanics in the early days but it was replaced by the sort
of ‘operator’ theory on Hilbert space that we will use here.) One of the crucial
distinctions between the treatment of finite dimensional matrices and an infinite
dimensional setting is that in the latter topology is encountered. This is enshrined
in the notion of a normed linear space which is the first important topic treated.

After a brief treatment of normed and Banach spaces, the course proceeds to the
construction of the Lebesgue integral. Usually I have done this in one dimension, on
the line, leading to the definition of the space L1(R). To some extent I follow here
the idea of Jan Mikusiński that one can simply define integrable functions as the
almost everywhere limits of absolutely summable series of step functions and more
significantly the basic properties can be deduced this way. While still using this
basic approach I have dropped the step functions almost completely and instead
emphasize the completion of the space of continuous functions to get the Lebesgue
space. Even so, Mikusiński’s approach still underlies the explicit identification of
elements of the completion with Lebesgue ‘functions’. This approach is followed in
the book of Debnaith and Mikusiński.

After about a three-week stint of integration and then a little measure theory
the course proceeds to the more gentle ground of Hilbert spaces. Here I have been
most guided by the (old now) book of Simmons. We proceed to a short discussion
of operators and the spectral theorem for compact self-adjoint operators. Then
in the last third or so of the semester this theory is applied to the treatment of
the Dirichlet eigenvalue problem and treatment of the harmonic oscillator with a
short discussion of the Fourier transform. Finally various loose ends are brought
together, or at least that is my hope.





CHAPTER 1

Normed and Banach spaces

In this chapter we introduce the basic setting of functional analysis, in the form
of normed spaces and bounded linear operators. We are particularly interested in
complete, i.e. Banach, spaces and the process of completion of a normed space to
a Banach space. In lectures I proceed to the next chapter, on Lebesgue integration
after Section 7 and then return to the later sections of this chapter at appropriate
points in the course.

There are many good references for this material and it is always a good idea
to get at least a couple of different views. I suggest the following on-line sources
Wilde [5], Chen [1] and Ward [4]. The treatment here, whilst quite brief, does
cover what is needed later.

1. Vector spaces

You should have some familiarity with linear, or I will usually say ‘vector’,
spaces. Should I break out the axioms? Not here I think, but they are included
in Section 14 at the end of the chapter. In short it is a space V in which we can
add elements and multiply by scalars with rules quite familiar to you from the the
basic examples of Rn or Cn. Whilst these special cases are (very) important below,
this is not what we are interested in studying here. The main examples are spaces
of functions hence the name of the course.

Note that for us the ‘scalars’ are either the real numbers or the complex numbers
– usually the latter. To be neutral we denote by K either R or C, but of course
consistently. Then our set V – the set of vectors with which we will deal, comes
with two ‘laws’. These are maps

(1.1) + : V × V −→ V, · : K× V −→ V.

which we denote not by +(v, w) and ·(s, v) but by v+w and sv. Then we impose the
axioms of a vector space – see Section (14) below! These are commutative group
axioms for +, axioms for the action of K and the distributive law linking the two.

The basic examples:

• The field K which is either R or C is a vector space over itself.
• The vector spaces Kn consisting of ordered n-tuples of elements of K.

Addition is by components and the action of K is by multiplication on
all components. You should be reasonably familiar with these spaces and
other finite dimensional vector spaces.

• Seriously non-trivial examples such as C([0, 1]) the space of continuous
functions on [0, 1] (say with complex values).

In these and many other examples we will encounter below the ‘component
addition’ corresponds to the addition of functions.

9
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Lemma 1. If X is a set then the spaces of all functions

(1.2) F(X;R) = {u : X −→ R}, F(X;C) = {u : X −→ C}

are vector spaces over R and C respectively.

Non-Proof. Since I have not written out the axioms of a vector space it is
hard to check this – and I leave it to you as the first of many important exercises.
In fact, better do it more generally as in Problem 5.1 – then you can sound sophis-
ticated by saying ‘if V is a linear space then F(X;V ) inherits a linear structure’.
The main point to make sure you understand is that, because we do know how
to add and multiply in either R and C, we can add functions and multiply them
by constants (we can multiply functions by each other but that is not part of the
definition of a vector space so we ignore it for the moment since many of the spaces
of functions we consider below are not multiplicative in this sense):-

(1.3) (c1f1 + c2f2)(x) = c1f1(x) + c2f2(x)

defines the function c1f1 + c2f2 if c1, c2 ∈ K and f1, f2 ∈ F(X;K). �

You should also be familiar with the notions of linear subspace and quotient
space. These are discussed a little below and most of the linear spaces we will meet
are either subspaces of these function-type spaces, or quotients of such subspaces –
see Problems 5.2 and 5.3.

Although you are probably most comfortable with finite-dimensional vector
spaces it is the infinite-dimensional case that is most important here. The notion
of dimension is based on the concept of the linear independence of a subset of a
vector space. Thus a subset E ⊂ V is said to be linearly independent if for any
finite collection of elements vi ∈ E, i = 1, . . . , N, and any collection of ‘constants’
ai ∈ K, i = 1, . . . , N we have the following implication

(1.4)

N∑
i=1

aivi = 0 =⇒ ai = 0 ∀ i.

That is, it is a set in which there are ‘no non-trivial finite linear dependence rela-
tions between the elements’. A vector space is finite-dimensional if every linearly
independent subset is finite. It follows in this case that there is a finite and maxi-
mal linearly independent subset – a basis – where maximal means that if any new
element is added to the set E then it is no longer linearly independent. A basic
result is that any two such ‘bases’ in a finite dimensional vector space have the
same number of elements – an outline of the finite-dimensional theory can be found
in Problem 1.

Still it is time to leave this secure domain behind, since we are most interested
in the other case, namely infinite-dimensional vector spaces. As usual with such
mysterious-sounding terms as ‘infinite-dimensional’ it is defined by negation.

Definition 1. A vector space is infinite-dimensional if it is not finite dimen-
sional, i.e. for any N ∈ N there exist N elements with no, non-trivial, linear depen-
dence relation between them.

As is quite typical the idea of an infinite-dimensional space, which you may be quite
keen to understand, appears just as the non-existence of something. That is, it is
the ‘residual’ case, where there is no finite basis. This means that it is ‘big’.
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So, finite-dimensional vector spaces have finite bases, infinite-dimensional vec-
tor spaces do not. The notion of a basis in an infinite-dimensional vector spaces
needs to be modified to be useful analytically. Convince yourself that the vector
space in Lemma 1 is infinite dimensional if and only if X is infinite.

2. Normed spaces

In order to deal with infinite-dimensional vector spaces we need the control
given by a metric (or more generally a non-metric topology, but we will not quite
get that far). A norm on a vector space leads to a metric which is ‘compatible’
with the linear structure.

Definition 2. A norm on a vector space is a function, traditionally denoted

(1.5) ‖ · ‖ : V −→ [0,∞),

with the following properties

(Definiteness)

(1.6) v ∈ V, ‖v‖ = 0 =⇒ v = 0.

(Absolute homogeneity) For any λ ∈ K and v ∈ V,
(1.7) ‖λv‖ = |λ|‖v‖.
(Triangle Inequality) The triangle inequality holds, in the sense that for any two
elements v, w ∈ V
(1.8) ‖v + w‖ ≤ ‖v‖+ ‖w‖.

Note that (1.7) implies that ‖0‖ = 0. Thus (1.6) means that ‖v‖ = 0 is equiv-
alent to v = 0. This definition is based on the same properties holding for the
standard norm(s), |z|, on R and C. You should make sure you understand that

(1.9)
R 3 x −→ |x| =

{
x if x ≥ 0

−x if x ≤ 0
∈ [0,∞) is a norm as is

C 3 z = x+ iy −→ |z| = (x2 + y2)
1
2 .

Situations do arise in which we do not have (1.6):-

Definition 3. A function (1.5) which satisfes (1.7) and (1.8) but possibly not
(1.6) is called a seminorm.

A metric, or distance function, on a set is a map

(1.10) d : X ×X −→ [0,∞)

satisfying three standard conditions

d(x, y) = 0⇐⇒ x = y,(1.11)

d(x, y) = d(y, x) ∀ x, y ∈ X and(1.12)

d(x, y) ≤ d(x, z) + d(z, y) ∀ x, y, z ∈ X.(1.13)

As you are no doubt aware, a set equipped with such a metric function is called a
metric space.

If you do not know about metric spaces, then you are in trouble. I suggest that
you take the appropriate course now and come back next year. You could read the
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first few chapters of Rudin’s book [3] before trying to proceed much further but it
will be a struggle to say the least. The point of course is

Proposition 1. If ‖ · ‖ is a norm on V then

(1.14) d(v, w) = ‖v − w‖
is a distance on V turning it into a metric space.

Proof. Clearly (1.11) corresponds to (1.6), (1.12) arises from the special case
λ = −1 of (1.7) and (1.13) arises from (1.8). �

We will not use any special notation for the metric, nor usually mention it
explicitly – we just subsume all of metric space theory from now on. So ‖v−w‖ is
the distance between two points in a normed space.

Now, we need to talk about a few examples; there are more in Section 7.
The most basic ones are the usual finite-dimensional spaces Rn and Cn with their
Euclidean norms

(1.15) |x| =

(∑
i

|xi|2
) 1

2

where it is at first confusing that we just use single bars for the norm, just as for
R and C, but you just need to get used to that.

There are other norms on Cn (I will mostly talk about the complex case, but
the real case is essentially the same). The two most obvious ones are

(1.16)

|x|∞ = max |xi|, x = (x1, . . . , xn) ∈ Cn,

|x|1 =
∑
i

|xi|

but as you will see (if you do the problems) there are also the norms

(1.17) |x|p = (
∑
i

|xi|p)
1
p , 1 ≤ p <∞.

In fact, for p = 1, (1.17) reduces to the second norm in (1.16) and in a certain sense
the case p =∞ is consistent with the first norm there.

In lectures I usually do not discuss the notion of equivalence of norms straight
away. However, two norms on the one vector space – which we can denote ‖ · ‖(1)

and ‖ · ‖(2) are equivalent if there exist constants C1 and C2 such that

(1.18) ‖v‖(1) ≤ C1‖v‖(2), ‖v‖(2) ≤ C2‖v‖(1) ∀ v ∈ V.
The equivalence of the norms implies that the metrics define the same open sets –
the topologies induced are the same. You might like to check that the reverse is also
true, if two norms induced the same topologies (just meaning the same collection
of open sets) through their associated metrics, then they are equivalent in the sense
of (1.18) (there are more efficient ways of doing this if you wait a little).

Look at Problem 5.6 to see why we are not so interested in norms in the finite-
dimensional case – namely any two norms on a finite-dimensional vector space are
equivalent and so in that case a choice of norm does not tell us much, although it
certainly has its uses.

One important class of normed spaces consists of the spaces of bounded con-
tinuous functions on a metric space X :

(1.19) C∞(X) = C∞(X;C) = {u : X −→ C, continuous and bounded} .
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That this is a linear space follows from the (obvious) result that a linear combi-
nation of bounded functions is bounded and the (less obvious) result that a linear
combination of continuous functions is continuous; this we know. The norm is the
best bound

(1.20) ‖u‖∞ = sup
x∈X
|u(x)|.

That this is a norm is straightforward to check. Absolute homogeneity is clear,
‖λu‖∞ = |λ|‖u‖∞ and ‖u‖∞ = 0 means that u(x) = 0 for all x ∈ X which is
exactly what it means for a function to vanish. The triangle inequality ‘is inherited
from C’ since for any two functions and any point,

(1.21) |(u+ v)(x)| ≤ |u(x)|+ |v(x)| ≤ ‖u‖∞ + ‖v‖∞
by the definition of the norms, and taking the supremum of the left gives

‖u+ v‖∞ ≤ ‖u‖∞ + ‖v‖∞.
Of course the norm (1.20) is defined even for bounded, not necessarily contin-

uous functions on X. Note that convergence of a sequence un ∈ C∞(X) (remember
this means with respect to the distance induced by the norm) is precisely uniform
convergence

(1.22) ‖un − v‖∞ → 0⇐⇒ un(x)→ v(x) uniformly on X.

Other examples of infinite-dimensional normed spaces are the spaces lp, 1 ≤
p ≤ ∞ discussed in the problems below. Of these l2 is the most important for us.
It is in fact one form of Hilbert space, with which we are primarily concerned:-

(1.23) l2 = {a : N −→ C;
∑
j

|a(j)|2 <∞}.

It is not immediately obvious that this is a linear space, nor that

(1.24) ‖a‖2 =

∑
j

|a(j)|2
 1

2

is a norm. It is. From now on we will generally use sequential notation and think
of a map from N to C as a sequence, so setting a(j) = aj . Thus the ‘Hilbert space’
l2 consists of the square summable sequences.

3. Banach spaces

You are supposed to remember from metric space theory that there are three
crucial properties, completeness, compactness and connectedness. It turns out that
normed spaces are always connected, so that is not very interesting, and they
are never compact (unless you consider the trivial case V = {0}) so that is not
very interesting either – although we will ultimately be very interested in compact
subsets – so that leaves completeness. That is so important that we give it a special
name in honour of Stefan Banach.

Definition 4. A normed space which is complete with respect to the induced
metric is a Banach space.

Lemma 2. The space C∞(X), defined in (1.19) for any metric space X, is a
Banach space.
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Proof. This is a standard result from metric space theory – basically that the
uniform limit of a sequence of (bounded) continuous functions on a metric space is
continuous. However, it is worth recalling how one proves completeness at least in
outline. Suppose un is a Cauchy sequence in C∞(X). This means that given δ > 0
there exists N such that

(1.25) n,m > N =⇒ ‖un − um‖∞ = sup
X
|un(x)− um(x)| < δ.

Fixing x ∈ X this implies that the sequence un(x) is Cauchy in C. We know that
this space is complete, so each sequence un(x) must converge (we say the sequence
of functions converges pointwise). Since the limit of un(x) can only depend on x, we
define u(x) = limn un(x) in C for each x ∈ X and so define a function u : X −→ C.
Now, we need to show that this is bounded and continuous and is the limit of un
with respect to the norm. Any Cauchy sequence is bounded in norm – take δ = 1
in (1.25) and it follows from the triangle inequality that

(1.26) ‖um‖∞ ≤ ‖uN+1‖∞ + 1, m > N

and the finite set ‖un‖∞ for n ≤ N is certainly bounded. Thus ‖un‖∞ ≤ C, but this
means |un(x)| ≤ C for all x ∈ X and hence |u(x)| ≤ C by properties of convergence
in C and thus ‖u‖∞ ≤ C.

The uniform convergence of un to u now follows from (1.25) since we may pass
to the limit in the inequality to find

(1.27)
n > N =⇒ |un(x)− u(x)| = lim

m→∞
|un(x)− um(x)| ≤ δ

=⇒ ‖un − u‖|infty ≤ δ.

The continuity of u at x ∈ X follows from the triangle inequality in the form

|u(y)− u(x)| ≤ |u(y)− un(y)|+ |un(y)− un(x)|+ |un(x)− un(x)|
≤ 2‖u− un‖∞ + |un(x)− un(y)|.

Give δ > 0 the first term on the far right can be make less than δ/2 by choosing n
large using (1.27) and then the second term can be made less than δ/2 by choosing
d(x, y) small enough. �

I have written out this proof (succinctly) because this general structure arises
often below – first find a candidate for the limit and then show it has the properties
that are required.

There is a space of sequences which is really an example of this Lemma.
Consider the space c0 consisting of all the sequences {aj} (valued in C) such
that limj→∞ aj = 0. As remarked above, sequences are just functions N −→ C.
If we make {aj} into a function α : D = {1, 1/2, 1/3, . . . } −→ C by setting
α(1/j) = aj then we get a function on the metric space D. Add 0 to D to get

D = D ∪ {0} ⊂ [0, 1] ⊂ R; clearly 0 is a limit point of D and D is, as the nota-
tion dangerously indicates, the closure of D in R. Now, you will easily check (it is
really the definition) that α : D −→ C corresponding to a sequence, extends to a
continuous function on D vanishing at 0 if and only if limj→∞ aj = 0, which is to
say, {aj} ∈ c0. Thus it follows, with a little thought which you should give it, that
c0 is a Banach space with the norm

(1.28) ‖a‖∞ = sup
j
‖aj‖.
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What is an example of a non-complete normed space, a normed space which is
not a Banach space? These are legion of course. The simplest way to get one is to
‘put the wrong norm’ on a space, one which does not correspond to the definition.
Consider for instance the linear space T of sequences N −→ C which ‘terminate’,
i.e. each element {aj} ∈ T has aj = 0 for j > J, where of course the J may depend
on the particular sequence. Then T ⊂ c0, the norm on c0 defines a norm on T but
it cannot be complete, since the closure of T is easily seen to be all of c0 – so there
are Cauchy sequences in T without limit in T . Make sure you are not lost here –
you need to get used to the fact that we often need to discuss the ‘convergence of
sequences of convergent sequences’ as here.

One result we will exploit below, and I give it now just as preparation, concerns
absolutely summable series. Recall that a series is just a sequence where we ‘think’
about adding the terms. Thus if vn is a sequence in some vector space V then there

is the corresponding sequence of partial sums wN =
N∑
i=1

vi. I will say that {vn} is a

series if I am thinking about summing it.
So a sequence {vn} with partial sums {wN} is said to be absolutely summable

if

(1.29)
∑
n

‖vn‖V <∞, i.e.
∑
N>1

‖wN − wN−1‖V <∞.

Proposition 2. The sequence of partial sums of any absolutely summable se-
ries in a normed space is Cauchy and a normed space is complete if and only if
every absolutely summable series in it converges, meaning that the sequence of par-
tial sums converges.

Proof. The sequence of partial sums is

(1.30) wn =

n∑
j=1

vj .

Thus, if m ≥ n then

(1.31) wm − wn =

m∑
j=n+1

vj .

It follows from the triangle inequality that

(1.32) ‖wn − wm‖V ≤
m∑

j=n+1

‖vj‖V .

So if the series is absolutely summable then
∞∑
j=1

‖vj‖V <∞ and lim
n→∞

∞∑
j=n+1

‖vj‖V = 0.

Thus {wn} is Cauchy if {vj} is absolutely summable. Hence if V is complete then
every absolutely summable series is summable, i.e. the sequence of partial sums
converges.

Conversely, suppose that every absolutely summable series converges in this
sense. Then we need to show that every Cauchy sequence in V converges. Let
un be a Cauchy sequence. It suffices to show that this has a subsequence which
converges, since a Cauchy sequence with a convergent subsequence is convergent.
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To do so we just proceed inductively. Using the Cauchy condition we can for every
k find an integer Nk such that

(1.33) n,m > Nk =⇒ ‖un − um‖ < 2−k.

Now choose an increasing sequence nk where nk > Nk and nk > nk−1 to make it
increasing. It follows that

(1.34) ‖unk − unk−1
‖ ≤ 2−k+1.

Denoting this subsequence as u′k = unk it follows from (1.34) and the triangle
inequality that

(1.35)

∞∑
n=1

‖u′n − u′n−1‖ ≤ 4

so the sequence v1 = u′1, vk = u′k − u′k−1, k > 1, is absolutely summable. Its
sequence of partial sums is wj = u′j so the assumption is that this converges, hence
the original Cauchy sequence converges and V is complete. �

Notice the idea here, of ‘speeding up the convergence’ of the Cauchy sequence
by dropping a lot of terms. We will use this idea of absolutely summable series
heavily in the discussion of Lebesgue integration.

4. Operators and functionals

As above, I suggest that you read this somewhere else (as well) for instance
Wilde, [5], Chapter 2 to 2.7, Chen, [1], the first part of Chapter 6 and of Chapter
7 and/or Ward, [4], Chapter 3, first 2 sections.

The vector spaces we are most interested in are, as already remarked, spaces
of functions (or something a little more general). The elements of these are the
objects of primary interest but they are related by linear maps. A map between
two vector spaces (over the same field, for us either R or C) is linear if it takes
linear combinations to linear combinations:-

(1.36) T : V −→W, T (a1v1+a2v2) = a1T (v1)+a2T (v2), ∀ v1, v2 ∈ V, a1, a2 ∈ K.

The sort of examples we have in mind are differential, or more especially, integral
operators. For instance if u ∈ C([0, 1]) then its indefinite Riemann integral

(1.37) (Tu)(x) =

∫ x

0

u(s)ds

is continuous in x ∈ [0, 1] and so this defines a map

(1.38) T : C([0, 1]) −→ C([0, 1]).

This is a linear map, with linearity being one of the standard properties of the
Riemann integral.

In the finite-dimensional case linearity is enough to allow maps to be studied.
However in the case of infinite-dimensional normed spaces we need to impose con-
tinuity. Of course it makes perfectly good sense to say, demand or conclude, that
a map as in (1.36) is continuous if V and W are normed spaces since they are then
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metric spaces. Recall that for metric spaces there are several different equivalent
conditions that ensure a map, T : V −→W, is continuous:

vn → v in V =⇒ Tvn → Tv in W(1.39)

O ⊂W open =⇒ T−1(O) ⊂ V open(1.40)

C ⊂W closed =⇒ T−1(C) ⊂ V closed.(1.41)

For a linear map between normed spaces there is a direct characterization of
continuity in terms of the norm.

Proposition 3. A linear map (1.36) between normed spaces is continuous if
and only if it is bounded in the sense that there exists a constant C such that

(1.42) ‖Tv‖W ≤ C‖v‖V ∀ v ∈ V.

Of course bounded for a function on a metric space already has a meaning and this
is not it! The usual sense would be ‖Tv‖ ≤ C but this would imply ‖T (av)‖ =
|a|‖Tv‖ ≤ C so Tv = 0. Hence it is not so dangerous to use the term ‘bounded’ for
(1.42) – it is really ‘relatively bounded’, i.e. takes bounded sets into bounded sets.
From now on, bounded for a linear map means (1.42).

Proof. If (1.42) holds then if vn → v in V it follows that ‖Tv − Tvn‖ =
‖T (v − vn)‖ ≤ C‖v − vn‖ → 0 as n→∞ so Tvn → Tv and continuity follows.

For the reverse implication we use the second characterization of continuity
above. Denote the ball around v ∈ V of radius ε > 0 by

BV (v, ε) = {w ∈ V ; ‖v − w‖ < ε}.
Thus if T is continuous then the inverse image of the the unit ball around the
origin, T−1(BW (0, 1)) = {v ∈ V ; ‖Tv‖W < 1}, contains the origin in V and so,
being open, must contain some BV (0, ε). This means that

(1.43) T (BV (0, ε)) ⊂ BW (0, 1) so ‖v‖V < ε =⇒ ‖Tv‖W ≤ 1.

Now proceed by scaling. If 0 6= v ∈ V then ‖v′‖ < ε where v′ = εv/2‖v‖. So (1.43)
shows that ‖Tv′‖ ≤ 1 but this implies (1.42) with C = 2/ε – it is trivially true if
v = 0. �

As a general rule we drop the distinguishing subscript for norms, since which
norm we are using can be determined by what it is being applied to.

So, if T : V −→ W is continous and linear between normed spaces, or from
now on ‘bounded’, then

(1.44) ‖T‖ = sup
‖v‖=1

‖Tv‖ <∞.

Lemma 3. The bounded linear maps between normed spaces V and W form a
linear space B(V,W ) on which ‖T‖ defined by (1.44) or equivalently

(1.45) ‖T‖ = inf{C; (1.42) holds}
is a norm.

Proof. First check that (1.44) is equivalent to (1.45). Define ‖T‖ by (1.44).
Then for any v ∈ V, v 6= 0,

(1.46) ‖T‖ ≥ ‖T (
v

‖v‖
)‖ =

‖Tv‖
‖v‖

=⇒ ‖Tv‖ ≤ ‖T‖‖v‖
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since as always this is trivially true for v = 0. Thus C = ‖T‖ is a constant for which
(1.42) holds.

Conversely, from the definition of ‖T‖, if ε > 0 then there exists v ∈ V with
‖v‖ = 1 such that ‖T‖ − ε < ‖Tv‖ ≤ C for any C for which (1.42) holds. Since
ε > 0 is arbitrary, ‖T‖ ≤ C and hence ‖T‖ is given by (1.45).

From the definition of ‖T‖, ‖T‖ = 0 implies Tv = 0 for all v ∈ V and for λ 6= 0,

(1.47) ‖λT‖ = sup
‖v‖=1

‖λTv‖ = |λ|‖T‖

and this is also obvious for λ = 0. This only leaves the triangle inequality to check
and for any T, S ∈ B(V,W ), and v ∈ V with ‖v‖ = 1

(1.48) ‖(T + S)v‖W = ‖Tv + Sv‖W ≤ ‖Tv‖W + ‖Sv‖W ≤ ‖T‖+ ‖S‖

so taking the supremum, ‖T + S‖ ≤ ‖T‖+ ‖S‖. �

Thus we see the very satisfying fact that the space of bounded linear maps
between two normed spaces is itself a normed space, with the norm being the best
constant in the estimate (1.42). Make sure you absorb this! Such bounded linear
maps between normed spaces are often called ‘operators’ because we are thinking
of the normed spaces as being like function spaces.

You might like to check boundedness for the example of a linear operator in
(1.38), namely that in terms of the supremum norm on C([0, 1]), ‖T‖ ≤ 1.

One particularly important case is when W = K is the field, for us usually C.
Then a simpler notation is handy and one sets V ′ = B(V,C) – this is called the
dual space of V (also sometimes denoted V ∗.)

Proposition 4. If W is a Banach space then B(V,W ), with the norm (1.44),
is a Banach space.

Proof. We simply need to show that ifW is a Banach space then every Cauchy
sequence in B(V,W ) is convergent. The first thing to do is to find the limit. To
say that Tn ∈ B(V,W ) is Cauchy, is just to say that given ε > 0 there exists N
such that n, m > N implies ‖Tn−Tm‖ < ε. By the definition of the norm, if v ∈ V
then ‖Tnv − Tmv‖W ≤ ‖Tn − Tm‖‖v‖V so Tnv is Cauchy in W for each v ∈ V. By
assumption, W is complete, so

(1.49) Tnv −→ w in W.

However, the limit can only depend on v so we can define a map T : V −→ W by
Tv = w = limn→∞ Tnv as in (1.49).

This map defined from the limits is linear, since Tn(λv) = λTnv −→ λTv and
Tn(v1 +v2) = Tnv1 +Tnv2 −→ Tv2 +Tv2 = T (v1 +v2). Moreover, |‖Tn‖−‖Tm‖| ≤
‖Tn − Tm‖ so ‖Tn‖ is Cauchy in [0,∞) and hence converges, with limit S, and

(1.50) ‖Tv‖ = lim
n→∞

‖Tnv‖ ≤ S‖v‖

so ‖T‖ ≤ S shows that T is bounded.
Returning to the Cauchy condition above and passing to the limit in ‖Tnv −

Tmv‖ ≤ ε‖v‖ as m→∞ shows that ‖Tn − T‖ ≤ ε if n > M and hence Tn → T in
B(V,W ) which is therefore complete. �

Note that this proof is structurally the same as that of Lemma 2.
One simple consequence of this is:-
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Corollary 1. The dual space of a normed space is always a Banach space.

However you should be a little suspicious here since we have not shown that
the dual space V ′ is non-trivial, meaning we have not eliminated the possibility
that V ′ = {0} even when V 6= {0}. The Hahn-Banach Theorem, discussed below,
takes care of this.

One game you can play is ‘what is the dual of that space’. Of course the dual
is the dual, but you may well be able to identify the dual space of V with some
other Banach space by finding a linear bijection between V ′ and the other space,
W, which identifies the norms as well. We will play this game a bit later.

5. Subspaces and quotients

The notion of a linear subspace of a vector space is natural enough, and you
are likely quite familiar with it. Namely W ⊂ V where V is a vector space is a
(linear) subspace if any linear combinations λ1w1 + λ2w2 ∈ W if λ1, λ2 ∈ K and
w1, w2 ∈ W. Thus W ‘inherits’ its linear structure from V. Since we also have a
topology from the metric we will be especially interested in closed subspaces. Check
that you understand the (elementary) proof of

Lemma 4. A subspace of a Banach space is a Banach space in terms of the
restriction of the norm if and only if it is closed.

There is a second very important way to construct new linear spaces from old.
Namely we want to make a linear space out of ‘the rest’ of V, given that W is
a linear subspace. In finite dimensions one way to do this is to give V an inner
product and then take the subspace orthogonal to W. One problem with this is that
the result depends, although not in an essential way, on the inner product. Instead
we adopt the usual ‘myopia’ approach and take an equivalence relation on V which
identifies points which differ by an element of W. The equivalence classes are then
‘planes parallel to W ’. I am going through this construction quickly here under
the assumption that it is familiar to most of you, if not you should think about it
carefully since we need to do it several times later.

So, if W ⊂ V is a linear subspace of V we define a relation on V – remember
this is just a subset of V × V with certain properties – by

(1.51) v ∼W v′ ⇐⇒ v − v′ ∈W ⇐⇒ ∃ w ∈W s.t. v = v′ + w.

This satisfies the three conditions for an equivalence relation:

(1) v ∼W v
(2) v ∼W v′ ⇐⇒ v′ ∼W v
(3) v ∼W v′, v′ ∼W w′′ =⇒ v ∼W v′′

which means that we can regard it as a ‘coarser notion of equality.’
Then V/W is the set of equivalence classes with respect to ∼W . You can think

of the elements of V/W as being of the form v + W – a particular element of V
plus an arbitrary element of W. Then of course v′ ∈ v+W if and only if v′−v ∈W
meaning v ∼W v′.

The crucial point here is that

(1.52) V/W is a vector space.

You should check the details – see Problem 1. Note that the ‘is’ in (1.52) should
really be expanded to ‘is in a natural way’ since as usual the linear structure is
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inherited from V :

(1.53) λ(v +W ) = λv +W, (v1 +W ) + (v2 +W ) = (v1 + v2) +W.

The subspace W appears as the origin in V/W.
Now, two cases of this are of special interest to us.

Proposition 5. If ‖ · ‖ is a seminorm on V then

(1.54) E = {v ∈ V ; ‖v‖ = 0} ⊂ V

is a linear subspace and

(1.55) ‖v + E‖V/E = ‖v‖

defines a norm on V/E.

Proof. That E is linear follows from the properties of a seminorm, since
‖λv‖ = |λ|‖v‖ shows that λv ∈ E if v ∈ E and λ ∈ K. Similarly the triangle
inequality shows that v1 + v2 ∈ E if v1, v2 ∈ E.

To check that (1.55) defines a norm, first we need to check that it makes sense
as a function ‖ · ‖V/E −→ [0,∞). This amounts to the statement that ‖v′‖ is the
same for all elements v′ = v + e ∈ v + E for a fixed v. This however follows from
the triangle inequality applied twice:

(1.56) ‖v′‖ ≤ ‖v‖+ ‖e‖ = ‖v‖ ≤ ‖v′‖+ ‖ − e‖ = ‖v′‖.

Now, I leave you the exercise of checking that ‖·‖V/E is a norm, see Problem 1. �

The second application is more serious, but in fact we will not use it for some
time so I usually do not do this in lectures at this stage.

Proposition 6. If W ⊂ V is a closed subspace of a normed space then

(1.57) ‖v +W‖V/W = inf
w∈W

‖v + w‖V

defines a norm on V/W ; if V is a Banach space then so is V/W.

For the proof see Problems 1 and 1.

6. Completion

A normed space not being complete, not being a Banach space, is considered
to be a defect which we might, indeed will, wish to rectify.

Let V be a normed space with norm ‖ · ‖V . A completion of V is a Banach
space B with the following properties:-

(1) There is an injective (i.e. 1-1) linear map I : V −→ B
(2) The norms satisfy

(1.58) ‖I(v)‖B = ‖v‖V ∀ v ∈ V.

(3) The range I(V ) ⊂ B is dense in B.

Notice that if V is itself a Banach space then we can take B = V with I the
identity map.

So, the main result is:

Theorem 1. Each normed space has a completion.
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There are several ways to prove this, we will come across a more sophisticated one
(using the Hahn-Banach Theorem) later. In the meantime I will give two proofs. In
the first the fact that any metric space has a completion in a similar sense is recalled
and then it is shown that the linear structure extends to the completion. A second,
‘hands-on’, proof is also outlined with the idea of motivating the construction of
the Lebesgue integral – which is in our near future.

Proof 1. One of the neater proofs that any metric space has a completion is
to use Lemma 2. Pick a point in the metric space of interest, p ∈ M, and then
define a map

(1.59) M 3 q 7−→ fq ∈ C∞(M), fq(x) = d(x, q)− d(x, p) ∀ x ∈M.

That fq ∈ C∞(M) is straightforward to check. It is bounded (because of the second
term) by the reverse triangle inequality

|fq(x)| = |d(x, q)− d(x, p)| ≤ d(p, q)

and is continuous, as the difference of two continuous functions. Moreover the
distance between two functions in the image is

(1.60) sup
x∈M
|fq(x)− fq′(x)| = sup

x∈M
|d(x, q)− d(x, q′)| = d(q, q′)

using the reverse triangle inequality (and evaluating at x = q). Thus the map (1.59)
is well-defined, injective and even distance-preserving. Since C0

∞(M) is complete,
the closure of the image of (1.59) is a complete metric space, X, in which M can
be identified as a dense subset.

Now, in case that M = V is a normed space this all goes through. The
disconcerting thing is that the map q −→ fq is not linear. Nevertheless, we can
give X a linear structure so that it becomes a Banach space in which V is a dense
linear subspace. Namely for any two elements fi ∈ X, i = 1, 2, define

(1.61) λ1f1 + λ2f2 = lim
n→∞

fλ1pn+λ2qn

where pn and qn are sequences in V such that fpn → f1 and fqn → f2. Such
sequences exist by the construction of X and the result does not depend on the
choice of sequence – since if p′n is another choice in place of pn then fp′n − fpn → 0
in X (and similarly for qn). So the element of the left in (1.61) is well-defined. All
of the properties of a linear space and normed space now follow by continuity from
V ⊂ X and it also follows that X is a Banach space (since a closed subset of a
complete space is complete). Unfortunately there are quite a few annoying details
to check! �

‘Proof 2’ (the last bit is left to you). Let V be a normed space. First
we introduce the rather large space

(1.62) Ṽ =

{
{uk}∞k=1;uk ∈ V and

∞∑
k=1

‖uk‖ <∞

}
the elements of which, if you recall, are said to be absolutely summable. Notice that

the elements of Ṽ are sequences, valued in V so two sequences are equal, are the
same, only when each entry in one is equal to the corresponding entry in the other
– no shifting around or anything is permitted as far as equality is concerned. We
think of these as series (remember this means nothing except changing the name, a
series is a sequence and a sequence is a series), the only difference is that we ‘think’
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of taking the limit of a sequence but we ‘think’ of summing the elements of a series,
whether we can do so or not being a different matter.

Now, each element of Ṽ is a Cauchy sequence – meaning the corresponding

sequence of partial sums vN =
N∑
k=1

uk is Cauchy if {uk} is absolutely summable. As

noted earlier, this is simply because if M ≥ N then

(1.63) ‖vM − vN‖ = ‖
M∑

j=N+1

uj‖ ≤
M∑

j=N+1

‖uj‖ ≤
∑

j≥N+1

‖uj‖

gets small with N by the assumption that
∑
j

‖uj‖ <∞.

Moreover, Ṽ is a linear space, where we add sequences, and multiply by con-
stants, by doing the operations on each component:-

(1.64) t1{uk}+ t2{u′k} = {t1uk + t2u
′
k}.

This always gives an absolutely summable series by the triangle inequality:

(1.65)
∑
k

‖t1uk + t2u
′
k‖ ≤ |t1|

∑
k

‖uk‖+ |t2|
∑
k

‖u′k‖.

Within Ṽ consider the linear subspace

(1.66) S =

{
{uk};

∑
k

‖uk‖ <∞,
∑
k

uk = 0

}
of those which sum to 0. As discussed in Section 5 above, we can form the quotient

(1.67) B = Ṽ /S

the elements of which are the ‘cosets’ of the form {uk} + S ⊂ Ṽ where {uk} ∈ Ṽ .
This is our completion, we proceed to check the following properties of this B.

(1) A norm on B (via a seminorm on Ṽ ) is defined by

(1.68) ‖b‖B = lim
n→∞

‖
n∑
k=1

uk‖, b = {uk}+ S ∈ B.

(2) The original space V is imbedded in B by

(1.69) V 3 v 7−→ I(v) = {uk}+ S, u1 = v, uk = 0 ∀ k > 1

and the norm satisfies (1.58).
(3) I(V ) ⊂ B is dense.
(4) B is a Banach space with the norm (1.68).

So, first that (1.68) is a norm. The limit on the right does exist since the limit
of the norm of a Cauchy sequence always exists – namely the sequence of norms
is itself Cauchy but now in R. Moreover, adding an element of S to {uk} does not
change the norm of the sequence of partial sums, since the additional term tends
to zero in norm. Thus ‖b‖B is well-defined for each element b ∈ B and ‖b‖B = 0
means exactly that the sequence {uk} used to define it tends to 0 in norm, hence is
in S hence b = 0 in B. The other two properties of norm are reasonably clear, since
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if b, b′ ∈ B are represented by {uk}, {u′k} in Ṽ then tb and b + b′ are represented
by {tuk} and {uk + u′k} and
(1.70)

lim
n→∞

‖
n∑
k=1

tuk‖ = |t| lim
n→∞

‖
n∑
k=1

uk‖,=⇒ ‖tb‖ = |t|‖b‖

lim
n→∞

‖
n∑
k=1

(uk + u′k)‖ = A =⇒

for ε > 0 ∃ N s.t. ∀ n ≥ N, A− ε ≤ ‖
n∑
k=1

(uk + u′k)‖ =⇒

A− ε ≤ ‖
n∑
k=1

uk‖+ ‖
n∑
k=1

u′k)‖ ∀ n ≥ N =⇒ A− ε ≤ ‖b‖B + ‖b′‖B ∀ ε > 0 =⇒

‖b+ b′‖B ≤ ‖b‖B + ‖b′‖B .

Now the norm of the element I(v) = v, 0, 0, · · · , is the limit of the norms of the
sequence of partial sums and hence is ‖v‖V so ‖I(v)‖B = ‖v‖V and I(v) = 0
therefore implies v = 0 and hence I is also injective.

We need to check that B is complete, and also that I(V ) is dense. Here is
an extended discussion of the difficulty – of course maybe you can see it directly
yourself (or have a better scheme). Note that I suggest that you to write out your
own version of it carefully in Problem 1.

Okay, what does it mean for B to be a Banach space, as discussed above it
means that every absolutely summable series in B is convergent. Such a series {bn}
is given by bn = {u(n)

k } + S where {u(n)
k } ∈ Ṽ and the summability condition is

that

(1.71) ∞ >
∑
n

‖bn‖B =
∑
n

lim
N→∞

‖
N∑
k=1

u
(n)
k ‖V .

So, we want to show that
∑
n
bn = b converges, and to do so we need to find the

limit b. It is supposed to be given by an absolutely summable series. The ‘problem’

is that this series should look like
∑
n

∑
k

u
(n)
k in some sense – because it is supposed

to represent the sum of the bn’s. Now, it would be very nice if we had the estimate

(1.72)
∑
n

∑
k

‖u(n)
k ‖V <∞

since this should allow us to break up the double sum in some nice way so as to get
an absolutely summable series out of the whole thing. The trouble is that (1.72)
need not hold. We know that each of the sums over k – for given n – converges,
but not the sum of the sums. All we know here is that the sum of the ‘limits of the
norms’ in (1.71) converges.

So, that is the problem! One way to see the solution is to note that we do not

have to choose the original {u(n)
k } to ‘represent’ bn – we can add to it any element

of S. One idea is to rearrange the u
(n)
k – I am thinking here of fixed n – so that

it ‘converges even faster.’ I will not go through this in full detail but rather do it
later when we need the argument for the completeness of the space of Lebesgue
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integrable functions. Given ε > 0 we can choose p1 so that for all p ≥ p1,

(1.73) |‖
∑
k≤p

u
(n)
k ‖V − ‖bn‖B | ≤ ε,

∑
k≥p

‖u(n)
k ‖V ≤ ε.

Then in fact we can choose successive pj > pj−1 (remember that little n is fixed
here) so that

(1.74) |‖
∑
k≤pj

u
(n)
k ‖V − ‖bn‖B | ≤ 2−jε,

∑
k≥pj

‖u(n)
k ‖V ≤ 2−jε ∀ j.

Now, ‘resum the series’ defining instead v
(n)
1 =

p1∑
k=1

u
(n)
k , v

(n)
j =

pj∑
k=pj−1+1

u
(n)
k and

do this setting ε = 2−n for the nth series. Check that now

(1.75)
∑
n

∑
k

‖v(n)
k ‖V <∞.

Of course, you should also check that bn = {v(n)
k }+S so that these new summable

series work just as well as the old ones.
After this fiddling you can now try to find a limit for the sequence as

(1.76) b = {wk}+ S, wk =
∑

l+p=k+1

v
(p)
l ∈ V.

So, you need to check that this {wk} is absolutely summable in V and that bn → b
as n→∞.

Finally then there is the question of showing that I(V ) is dense in B. You can
do this using the same idea as above – in fact it might be better to do it first. Given
an element b ∈ B we need to find elements in V, vk such that ‖I(vk)− b‖B → 0 as

k →∞. Take an absolutely summable series uk representing b and take vj =
Nj∑
k=1

uk

where the pj ’s are constructed as above and check that I(vj)→ b by computing

(1.77) ‖I(vj)− b‖B = lim
→∞
‖
∑
k>pj

uk‖V ≤
∑
k>pj

‖uk‖V .

�

7. More examples

Let me collect some examples of normed and Banach spaces. Those mentioned
above and in the problems include:

• c0 the space of convergent sequences in C with supremum norm, a Banach
space.

• lp one space for each real number 1 ≤ p < ∞; the space of p-summable
series with corresponding norm; all Banach spaces. The most important
of these for us is the case p = 2, which is (a) Hilbert space.

• l∞ the space of bounded sequences with supremum norm, a Banach space
with c0 ⊂ l∞ as a closed subspace with the same norm.

• C([a, b]) or more generally C(M) for any compact metric space M – the
Banach space of continuous functions with supremum norm.

• C∞(R), or more generally C∞(M) for any metric space M – the Banach
space of bounded continuous functions with supremum norm.
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• C0(R), or more generally C0(M) for any metric space M – the Banach
space of continuous functions which ‘vanish at infinity’ (see Problem 1)
with supremum norm. A closed subspace, with the same norm, in C0

∞(M).
• Ck([a, b]) the space of k times continuously differentiable (so k ∈ N) func-

tions on [a, b] with norm the sum of the supremum norms on the function
and its derivatives. Each is a Banach space – see Problem 1.

• The space C([0, 1]) with norm

(1.78) ‖u‖L1 =

∫ 1

0

|u|dx

given by the Riemann integral of the absolute value. A normed space, but
not a Banach space. We will construct the concrete completion, L1([0, 1])
of Lebesgue integrable ‘functions’.

• The space R([a, b]) of Riemann integrable functions on [a, b] with ‖u‖
defined by (1.78). This is only a seminorm, since there are Riemann
integrable functions (note that u Riemann integrable does imply that |u| is
Riemann integrable) with |u| having vanishing Riemann integral but which
are not identically zero. This cannot happen for continuous functions. So
the quotient is a normed space, but it is not complete.

• The same spaces – either of continuous or of Riemann integrable functions
but with the (semi- in the second case) norm

(1.79) ‖u‖Lp =

(∫ b

a

|u|p
) 1
p

.

Not complete in either case even after passing to the quotient to get a norm
for Riemann integrable functions. We can, and indeed will, define Lp(a, b)
as the completion of C([a, b]) with respect to the Lp norm. However we
will get a concrete realization of it soon.

• Suppose 0 < α < 1 and consider the subspace of C([a, b]) consisting of the
‘Hölder continuous functions’ with exponent α, that is those u : [a, b] −→
C which satisfy

(1.80) |u(x)− u(y)| ≤ C|x− y|α for some C ≥ 0.

Note that this already implies the continuity of u. As norm one can take
the sum of the supremum norm and the ‘best constant’ which is the same
as

(1.81) ‖u‖Cα = sup
x∈[a,b]|

|u(x)|+ sup
x 6=y∈[a,b]

|u(x)− u(y)|
|x− y|α

;

it is a Banach space usually denoted Cα([a, b]).
• Note the previous example works for α = 1 as well, then it is not de-

noted C1([a, b]), since that is the space of once continuously differentiable
functions; this is the space of Lipschitz functions – again it is a Banach
space.

• We will also talk about Sobolev spaces later. These are functions with
‘Lebesgue integrable derivatives’. It is perhaps not easy to see how to
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define these, but if one takes the norm on C1([a, b])

(1.82) ‖u‖H1 =

(
‖u‖2L2 + ‖du

dx
‖2L2

) 1
2

and completes it, one gets the Sobolev space H1([a, b]) – it is a Banach
space (and a Hilbert space). In fact it is a subspace of C([a, b]) = C0([a, b]).

Here is an example to see that the space of continuous functions on [0, 1] with
norm (1.78) is not complete; things are even worse than this example indicates! It
is a bit harder to show that the quotient of the Riemann integrable functions is not
complete, feel free to give it a try.

Take a simple non-negative continuous function on R for instance

(1.83) f(x) =

{
1− |x| if |x| ≤ 1

0 if |x| > 1.

Then
∫ 1

−1
f(x) = 1. Now scale it up and in by setting

(1.84) fN (x) = Nf(N3x) = 0 if |x| > N−3.

So it vanishes outside [−N−3, N−3] and has
∫ 1

−1
fN (x)dx = N−2. It follows that the

sequence {fN} is absolutely summable with respect to the integral norm in (1.78)
on [−1, 1]. The pointwise series

∑
N

fN (x) converges everywhere except at x = 0 –

since at each point x 6= 0, fN (x) = 0 if N3|x| > 1. The resulting function, even if we
ignore the problem at x = 0, is not Riemann integrable because it is not bounded.

You might respond that the sum of the series is ‘improperly Riemann inte-
grable’. This is true but does not help much.

It is at this point that I start doing Lebesgue integration in the lectures. The
following material is from later in the course but fits here quite reasonably.

8. Baire’s theorem

At least once I wrote a version of the following material on the blackboard
during the first mid-term test, in an an attempt to distract people. It did not work
very well – its seems that MIT students have already been toughened up by this
stage. Baire’s theorem will be used later (it is also known as ‘Baire category theory’
although it has nothing to do with categories in the modern sense).

This is a theorem about complete metric spaces – it could be included in the
earlier course ‘Real Analysis’ but the main applications are in Functional Analysis.

Theorem 2 (Baire). If M is a non-empty complete metric space and Cn ⊂M,
n ∈ N, are closed subsets such that

(1.85) M =
⋃
n

Cn

then at least one of the Cn’s has an interior point.

Proof. We can assume that the first set C1 6= ∅ since they cannot all be
empty and dropping any empty sets does no harm. Let’s assume the contrary of
the desired conclusion, namely that each of the Cn’s has empty interior, hoping to
arrive at a contradiction to (1.85) using the other properties. This means that an
open ball B(p, ε) around a point of M (so it isn’t empty) cannot be contained in
any one of the Cn.
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So, choose p ∈ C1. Now, there must be a point p1 ∈ B(p, 1/3) which is not
in C1. Since C1 is closed there exists ε1 > 0, and we can take ε1 < 1/3, such that
B(p1, ε1) ∩ C1 = ∅. Continue in this way, choose p2 ∈ B(p1, ε1/3) which is not in
C2 and ε2 > 0, ε2 < ε1/3 such that B(p2, ε2) ∩ C2 = ∅. Here we use both the fact
that C2 has empty interior and the fact that it is closed. So, inductively there is a
sequence pi, i = 1, . . . , k and positive numbers 0 < εk < εk−1/3 < εk−2/3

2 < · · · <
ε1/3

k−1 < 3−k such that pj ∈ B(pj−1, εj−1/3) and B(pj , εj)∩Cj = ∅. Then we can
add another pk+1 by using the properties of Ck – it has non-empty interior so there is
some point in B(pk, εk/3) which is not in Ck+1 and then B(pk+1, εk+1)∩Ck+1 = ∅
where εk+1 > 0 but εk+1 < εk/3. Thus, we have a sequence {pk} in M. Since
d(pk+1, pk) < εk/3 this is a Cauchy sequence, in fact

(1.86) d(pk, pk+l) < εk/3 + · · ·+ εk+l−1/3 < 3−k.

Since M is complete the sequence converges to a limit, q ∈M. Notice however that
pl ∈ B(pk, 2εk/3) for all k > l so d(pk, q) ≤ 2εk/3 which implies that q /∈ Ck for
any k. This is the desired contradiction to (1.85).

Thus, at least one of the Cn must have non-empty interior. �

In applications one might get a complete mentric space written as a countable
union of subsets

(1.87) M =
⋃
n

En, En ⊂M

where the En are not necessarily closed. We can still apply Baire’s theorem however,
just take Cn = En to be the closures – then of course (1.85) holds since En ⊂ Cn.
The conclusion is

(1.88) For at least one n the closure of En has non-empty interior.

9. Uniform boundedness

One application of Baire’s theorem is often called the uniform boundedness
principle or Banach-Steinhaus Theorem.

Theorem 3 (Uniform boundedness). Let B be a Banach space and suppose
that Tn is a sequence of bounded (i.e. continuous) linear operators Tn : B −→ V
where V is a normed space. Suppose that for each b ∈ B the set {Tn(b)} ⊂ V is
bounded (in norm of course) then supn ‖Tn‖ <∞.

Proof. This follows from a pretty direct application of Baire’s theorem to B.
Consider the sets

(1.89) Sp = {b ∈ B, ‖b‖ ≤ 1, ‖Tnb‖V ≤ p ∀ n}, p ∈ N.

Each Sp is closed because Tn is continuous, so if bk → b is a convergent sequence
in Sp then ‖b‖ ≤ 1 and ‖Tn(b)‖ ≤ p. The union of the Sp is the whole of the closed
ball of radius one around the origin in B :

(1.90) {b ∈ B; d(b, 0) ≤ 1} =
⋃
p

Sp

because of the assumption of ‘pointwise boundedness’ – each b with ‖b‖ ≤ 1 must
be in one of the Sp’s.
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So, by Baire’s theorem one of the sets Sp has non-empty interior, it therefore
contains a closed ball of positive radius around some point. Thus for some p, some
v ∈ Sp, and some δ > 0,

(1.91) w ∈ B, ‖w‖B ≤ δ =⇒ ‖Tn(v + w)‖V ≤ p ∀ n.
Since v ∈ Sp is fixed it follows that ‖Tnw‖ ≤ ‖Tnv‖+p ≤ 2p for all w with ‖w‖ ≤ δ.

Moving v to (1 − δ/2)v and halving δ as necessary it follows that this ball
B(v, δ) is contained in the open ball around the origin of radius 1. Thus, using the
triangle inequality, and the fact that ‖Tn(v)‖V ≤ p this implies

(1.92) w ∈ B, ‖w‖B ≤ δ =⇒ ‖Tn(w)‖V ≤ 2p =⇒ ‖Tn‖ ≤ 2p/δ.

The norm of the operator is sup{‖Tw‖V ; ‖w‖B = 1} = 1
δ sup{‖Tw‖V ; ‖w‖B = δ}

so the norms are uniformly bounded:

(1.93) ‖Tn‖ ≤ 2p/δ

as claimed. �

10. Open mapping theorem

The second major application of Baire’s theorem is to

Theorem 4 (Open Mapping). If T : B1 −→ B2 is a bounded and surjective
linear map between two Banach spaces then T is open:

(1.94) T (O) ⊂ B2 is open if O ⊂ B1 is open.

This is ‘wrong way continuity’ and as such can be used to prove the continuity
of inverse maps as we shall see. The proof uses Baire’s theorem pretty directly,
but then another similar sort of argument is needed to complete the proof. There
are more direct but more computational proofs, see Problem 1. I prefer this one
because I have a reasonable chance of remembering the steps.

Proof. What we will try to show is that the image under T of the unit open
ball around the origin, B(0, 1) ⊂ B1 contains an open ball around the origin in B2.
The first part, of the proof, using Baire’s theorem shows that the closure of the
image, so in B2, has 0 as an interior point – i.e. it contains an open ball around
the origin in B2 :

(1.95) T (B(0, 1) ⊃ B(0, δ), δ > 0.

To see this we apply Baire’s theorem to the sets

(1.96) Cp = clB2
T (B(0, p))

the closure of the image of the ball in B1 of radius p. We know that

(1.97) B2 =
⋃
p

T (B(0, p))

since that is what surjectivity means – every point is the image of something. Thus
one of the closed sets Cp has an interior point, v. Since T is surjective, v = Tu for
some u ∈ B1. The sets Cp increase with p so we can take a larger p and v is still
an interior point, from which it follows that 0 = v−Tu is an interior point as well.
Thus indeed

(1.98) Cp ⊃ B(0, δ)
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for some δ > 0. Rescaling by p, using the linearity of T, it follows that with δ
replaced by δ/p, we get (1.95).

Having applied Baire’s thereom, consider now what (1.95) means. It follows
that each v ∈ B2, with ‖v‖ = δ, is the limit of a sequence Tun where ‖un‖ ≤ 1.
What we want to find is such a sequence, un, which converges. To do so we need
to choose the sequence more carefully. Certainly we can stop somewhere along the
way and see that

(1.99) v ∈ B2, ‖v‖ = δ =⇒ ∃ u ∈ B1, ‖u‖ ≤ 1, ‖v − Tu‖ ≤ δ

2
=

1

2
‖v‖

where of course we could replace δ
2 by any positive constant but the point is the

last inequality is now relative to the norm of v. Scaling again, if we take any v 6= 0
in B2 and apply (1.99) to v/‖v‖ we conclude that (for C = p/δ a fixed constant)

(1.100) v ∈ B2 =⇒ ∃ u ∈ B1, ‖u‖ ≤ C‖v‖, ‖v − Tu‖ ≤
1

2
‖v‖

where the size of u only depends on the size of v; of course this is also true for v = 0
by taking u = 0.

Using this we construct the desired better approximating sequence. Given
w ∈ B1, choose u1 = u according to (1.100) for v = w = w1. Thus ‖u1‖ ≤ C,
and w2 = w1 − Tu1 satisfies ‖w2‖ ≤ 1

2‖w‖. Now proceed by induction, supposing

that we have constructed a sequence uj , j < n, in B1 with ‖uj‖ ≤ C2−j+1‖w‖
and ‖wj‖ ≤ 2−j+1‖w‖ for j ≤ n, where wj = wj−1 − Tuj−1 – which we have for
n = 1. Then we can choose un, using (1.100), so ‖un‖ ≤ C‖wn‖ ≤ C2−n+1‖w‖
and such that wn+1 = wn − Tun has ‖wn+1‖ ≤ 1

2‖wn‖ ≤ 2−n‖w‖ to extend the
induction. Thus we get a sequence un which is absolutely summable in B1, since∑
n
‖un‖ ≤ 2C‖w‖, and hence converges by the assumed completeness of B1 this

time. Moreover

(1.101) w − T (

n∑
j=1

uj) = w1 −
n∑
j=1

(wj − wj+1) = wn+1

so Tu = w and ‖u‖ ≤ 2C‖w‖.
Thus finally we have shown that each w ∈ B(0, 1) in B2 is the image of some

u ∈ B1 with ‖u‖ ≤ 2C. Thus T (B(0, 3C)) ⊃ B(0, 1). By scaling it follows that the
image of any open ball around the origin contains an open ball around the origin.

Now, the linearity of T shows that the image T (O) of any open set is open,
since if w ∈ T (O) then w = Tu for some u ∈ O and hence u+B(0, ε) ⊂ O for ε > 0
and then w +B(0, δ) ⊂ T (O) for δ > 0 sufficiently small. �

One important corollary of this is something that seems like it should be obvi-
ous, but definitely needs completeness to be true.

Corollary 2. If T : B1 −→ B2 is a bounded linear map between Banach
spaces which is 1-1 and onto, i.e. is a bijection, then it is a homeomorphism –
meaning its inverse, which is necessarily linear, is also bounded.

Proof. The only confusing thing is the notation. Note that T−1 is generally
used both for the inverse, when it exists, and also to denote the inverse map on sets
even when there is no true inverse. The inverse of T, let’s call it S : B2 −→ B1, is
certainly linear. If O ⊂ B1 is open then S−1(O) = T (O), since to say v ∈ S−1(O)
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means S(v) ∈ O which is just v ∈ T (O), is open by the Open Mapping theorem, so
S is continuous. �

11. Closed graph theorem

For the next application you should check, it is one of the problems, that the
product of two Banach spaces, B1×B2, – which is just the linear space of all pairs
(u, v), u ∈ B1 and v ∈ B2, is a Banach space with respect to the sum of the norms

(1.102) ‖(u, v)‖ = ‖u‖1 + ‖v‖2.

Theorem 5 (Closed Graph). If T : B1 −→ B2 is a linear map between Banach
spaces then it is bounded if and only if its graph

(1.103) Gr(T ) = {(u, v) ∈ B1 ×B2; v = Tu}
is a closed subset of the Banach space B1 ×B2.

Proof. Suppose first that T is bounded, i.e. continuous. A sequence (un, vn) ∈
B1 × B2 is in Gr(T ) if and only if vn = Tun. So, if it converges, then un → u and
vn = Tun → Tv by the continuity of T, so the limit is in Gr(T ) which is therefore
closed.

Conversely, suppose the graph is closed. This means that viewed as a normed
space in its own right it is complete. Given the graph we can reconstruct the map
it comes from (whether linear or not) in a little diagram. From B1 × B2 consider
the two projections, π1(u, v) = u and π2(u, v) = v. Both of them are continuous
since the norm of either u or v is less than the norm in (1.102). Restricting them
to Gr(T ) ⊂ B1 ×B2 gives

(1.104) Gr(T )

π1||
π2 ##

B1

S
<<

T // B2.

This little diagram commutes. Indeed there are two ways to map a point (u, v) ∈
Gr(T ) to B2, either directly, sending it to v or first sending it to u ∈ B1 and then
to Tu. Since v = Tu these are the same.

Now, as already noted, Gr(T ) ⊂ B1 × B2 is a closed subspace, so it too is a
Banach space and π1 and π2 remain continuous when restricted to it. The map π1

is 1-1 and onto, because each u occurs as the first element of precisely one pair,
namely (u, Tu) ∈ Gr(T ). Thus the Corollary above applies to π1 to show that its
inverse, S is continuous. But then T = π2 ◦ S, from the commutativity, is also
continuous proving the theorem. �

12. Hahn-Banach theorem

Now, there is always a little pressure to state and prove the Hahn-Banach
Theorem. This is about extension of functionals. Stately starkly, the basic question
is: Does a normed space have any non-trivial continuous linear functionals on it?
That is, is the dual space always non-trivial (of course there is always the zero linear
functional but that is not very amusing). We do not really encounter this problem
since for a Hilbert space, or even a pre-Hilbert space, there is always the space itself,
giving continuous linear functionals through the pairing – Riesz’ Theorem says that
in the case of a Hilbert space that is all there is. If you are following the course
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then at this point you should also see that the only continuous linear functionals
on a pre-Hilbert space correspond to points in the completion. I could have used
the Hahn-Banach Theorem to show that any normed space has a completion, but
I gave a more direct argument for this, which was in any case much more relevant
for the cases of L1(R) and L2(R) for which we wanted concrete completions.

Theorem 6 (Hahn-Banach). If M ⊂ V is a linear subspace of a normed space
and u : M −→ C is a linear map such that

(1.105) |u(t)| ≤ C‖t‖V ∀ t ∈M
then there exists a bounded linear functional U : V −→ C with ‖U‖ ≤ C and
U
∣∣
M

= u.

First, by computation, we show that we can extend any continuous linear func-
tional ‘a little bit’ without increasing the norm.

Lemma 5. Suppose M ⊂ V is a subspace of a normed linear space, x /∈ M
and u : M −→ C is a bounded linear functional as in (1.105) then there exists
u′ : M ′ −→ C, where M ′ = {t′ ∈ V ; t′ = t+ ax, a ∈ C}, such that

(1.106) u′
∣∣
M

= u, |u′(t+ ax)| ≤ C‖t+ ax‖V , ∀ t ∈M, a ∈ C.

Proof. Note that the decompositon t′ = t + ax of a point in M ′ is unique,
since t+ ax = t̃+ ãx implies (a− ã)x ∈M so a = ã, since x /∈M and hence t = t̃
as well. Thus

(1.107) u′(t+ ax) = u′(t) + au(x) = u(t) + λa, λ = u′(x)

and all we have at our disposal is the choice of λ. Any choice will give a linear
functional extending u, the problem of course is to arrange the continuity estimate
without increasing the constant C. In fact if C = 0 then u = 0 and we can take
the zero extension. So we might as well assume that C = 1 since dividing u by C
arranges this and if u′ extends u/C then Cu′ extends u and the norm estimate in
(1.106) follows. So we now assume that

(1.108) |u(t)| ≤ ‖t‖V ∀ t ∈M.

We want to choose λ so that

(1.109) |u(t) + aλ| ≤ ‖t+ ax‖V ∀ t ∈M, a ∈ C.
Certainly when a = 0 this represents no restriction on λ. For a 6= 0 we can divide
through by −a and (1.109) becomes

(1.110) |a||u(− t
a

)− λ| = |u(t) + aλ| ≤ ‖t+ ax‖V = |a|‖ − t

a
− x‖V

and since −t/a ∈M we only need to arrange that

(1.111) |u(t)− λ| ≤ ‖t− x‖V ∀ t ∈M
and the general case will follow by reversing the scaling.

We will show that it is possible to choose λ to be real. A complex linear
functional such as u can be recovered from its real part, as we see below, so set

(1.112) w(t) = Re(u(t)) ∀ t ∈M
and just try to extend w to a real functional – it is not linear over the complex
numbers of course, just over the reals – satisfying the analogue of (1.111):

(1.113) |w(t)− λ| ≤ ‖t− x‖V ∀ t ∈M
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which anyway does not involve linearity. What we know about w is the norm
estimate (1.108) which (using linearity) implies

(1.114) |w(t1)− w(t2)| ≤ |u(t1)− u(t2)| ≤ ‖t1 − t2‖ ≤ ‖t1 − x‖V + ‖t2 − x‖V .
Writing this out using the reality we find

(1.115)
w(t1)− w(t2) ≤ ‖t1 − x‖V + ‖t2 − x‖V =⇒

w(t1)− ‖t1 − x‖ ≤ w(t2) + ‖t2 − x‖V ∀ t1, t2 ∈M.

We can then take the supremum on the left and the infimum on the right and
choose λ in between – namely we have shown that there exists λ ∈ R with

(1.116) w(t)− ‖t− x‖V ≤ sup
t2∈M

(w(t1)− ‖t1 − x‖) ≤ λ

≤ inf
t2∈M

(w(t1) + ‖t1 − x‖) ≤ w(t) + ‖t− x‖V ∀ t ∈M.

This in turn implies that

(1.117) −‖t− x‖V ≤ −w(t) + λ ≤ ‖t− x‖V =⇒ |w(t)− λ| ≤ ‖t− x‖V ∀ t ∈M.

This is what we wanted – we have extended the real part of u to

(1.118) w′(t+ ax) = w(t)− (Re a)λ and |w′(t+ ax)| ≤ ‖t+ ax‖V .
Now, finally we get the extension of u itself by ‘complexifying’ – defining

(1.119) u′(t+ ax) = w′(t+ ax)− iw′(i(t+ ax)).

This is linear over the complex numbers since

(1.120) u′(z(t+ ax)) = w′(z(t+ ax))− iw′(iz(t+ ax)

= w′(Re z(t+ ax) + i Im z(t+ ax))− iw′(iRe z(t+ ax)) + iw′(Im z(t+ ax))

= (Re z + i Im z)w′(t+ ax)− i(Re z + i Im z)(w′(i(t+ ax)) = zu′(t+ ax).

It certainly extends u from M – since the same identity gives u in terms of its real
part w.

Finally then, to see the norm estimate note that (as we did long ago) there
exists a uniqe θ ∈ [0, 2π) such that

(1.121)
|u′(t+ ax)| = Re eiθu′(t+ ax) = Reu′(eiθt+ eiθax)

= w′(eiθu+ eiθax) ≤ ‖eiθ(t+ ax)‖V = ‖t+ ax‖V .
This completes the proof of the Lemma. �

Proof of Hahn-Banach. This is an application of Zorn’s Lemma. I am not
going to get into the derivation of Zorn’s Lemma from the Axiom of Choice, but if
you believe the latter – and you are advised to do so, at least before lunchtime –
you should believe the former.

Zorn’s Lemma is a statement about partially ordered sets. A partial order on
a set E is a subset of E×E, so a relation, where the condition that (e, f) be in the
relation is written e ≺ f and it must satisfy

(1.122) e ≺ e, e ≺ f and f ≺ e =⇒ e = f, e ≺ f and f ≺ g =⇒ e ≺ g.
So, the missing ingredient between this and an order is that two elements need not
be related at all, either way.

A subsets of a partially ordered set inherits the partial order and such a subset
is said to be a chain if each pair of its elements is related one way or the other.



12. HAHN-BANACH THEOREM 33

An upper bound on a subset D ⊂ E is an element e ∈ E such that d ≺ e for all
d ∈ D. A maximal element of E is one which is not majorized, that is e ≺ f, f ∈ E,
implies e = f.

Lemma 6 (Zorn). If every chain in a (non-empty) partially ordered set has an
upper bound then the set contains at least one maximal element.

Now, we are given a functional u : M −→ C defined on some linear subspace
M ⊂ V of a normed space where u is bounded with respect to the induced norm
on M. We will apply Zorn’s Lemma to the set E consisting of all extensions (v,N)
of u with the same norm. That is,

V ⊃ N ⊃M, v
∣∣
M

= u and ‖v‖N = ‖u‖M .

This is certainly non-empty since it contains (u,M) and has the natural partial
order that (v1, N1) ≺ (v2, N2) if N1 ⊂ N2 and v2

∣∣
N1

= v1. You should check that

this is a partial order.
Let C be a chain in this set of extensions. Thus for any two elements (vi, N1) ∈

C, either (v1, N1) ≺ (v2, N2) or the other way around. This means that

(1.123) Ñ =
⋃
{N ; (v,N) ∈ C for some v} ⊂ V

is a linear space. Note that this union need not be countable, or anything like that,
but any two elements of Ñ are each in one of the N ’s and one of these must be
contained in the other by the chain condition. Thus each pair of elements of Ñ is
actually in a common N and hence so is their linear span. Similarly we can define
an extension

(1.124) ṽ : Ñ −→ C, ṽ(x) = v(x) if x ∈ N, (v,N) ∈ C.

There may be many pairs (v,N) ∈ C satisfying x ∈ N for a given x but the chain
condition implies that v(x) is the same for all of them. Thus ṽ is well defined, and is
clearly also linear, extends u and satisfies the norm condition |ṽ(x)| ≤ ‖u‖M‖v‖V .
Thus (ṽ, Ñ) is an upper bound for the chain C.

So, the set of all extension E, with the norm condition, satisfies the hypothesis
of Zorn’s Lemma, so must – at least in the mornings – have a maximal element
(ũ, M̃). If M̃ = V then we are done. However, in the contary case there exists

x ∈ V \ M̃. This means we can apply our little lemma and construct an extension

(u′, M̃ ′) of (ũ, M̃) which is therefore also an element of E and satisfies (ũ, M̃) ≺
(u′, M̃ ′). This however contradicts the condition that (ũ, M̃) be maximal, so is
forbidden by Zorn. �

There are many applications of the Hahn-Banach Theorem. As remarked ear-
lier, one significant one is that the dual space of a non-trivial normed space is itself
non-trivial.

Proposition 7. For any normed space V and element 0 6= v ∈ V there is a
continuous linear functional f : V −→ C with f(v) = 1 and ‖f‖ = 1/‖v‖V .

Proof. Start with the one-dimensional space, M, spanned by v and define
u(zv) = z. This has norm 1/‖v‖V . Extend it using the Hahn-Banach Theorem and
you will get a continuous functional f as desired. �
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13. Double dual

Let me give another application of the Hahn-Banach theorem, although I have
never covered this in lectures. If V is a normed space, we know its dual space, V ′,
to be a Banach space. Let V ′′ = (V ′)′ be the dual of the dual.

Proposition 8. If v ∈ V then the linear map on V ′ :

(1.125) Tv : V ′ −→ C, Tv(v′) = v′(v)

is continuous and this defines an isometric linear injection V ↪→ V ′′, ‖Tv‖ = ‖v‖.

Proof. The definition of Tv is ‘tautologous’, meaning it is almost the definition
of V ′. First check Tv in (1.125) is linear. Indeed, if v′1, v

′
2 ∈ V ′ and λ1, λ2 ∈ C then

Tv(λ1v
′
1 + λ2v

′
2) = (λ1v

′
1 + λ2v

′
2)(v) = λ1v

′
1(v) + λ2v

′
2(v) = λ1Tv(v

′
1) + λ2Tv(v

′
2).

That Tv ∈ V ′′, i.e. is bounded, follows too since |Tv(v′)| = |v′(v)| ≤ ‖v′‖V ′‖v‖V ;
this also shows that ‖Tv‖V ′′ ≤ ‖v‖. On the other hand, by Proposition 7 above,
if ‖v‖ = 1 then there exists v′ ∈ V ′ such that v′(v) = 1 and ‖v′‖V ′ = 1. Then
Tv(v

′) = v′(v) = 1 shows that ‖Tv‖ = 1 so in general ‖Tv‖ = ‖v‖. It also needs
to be checked that V 3 v 7−→ Tv ∈ V ′′ is a linear map – this is clear from the
definition. It is necessarily 1-1 since ‖Tv‖ = ‖v‖. �

Now, it is definitely not the case in general that V ′′ = V in the sense that this
injection is also a surjection. Since V ′′ is always a Banach space, one necessary
condition is that V itself should be a Banach space. In fact the closure of the image
of V in V ′′ is a completion of V. If the map to V ′′ is a bijection then V is said
to be reflexive. It is pretty easy to find examples of non-reflexive Banach spaces,
the most familiar is c0 – the space of infinite sequences converging to 0. Its dual
can be identified with l1, the space of summable sequences. Its dual in turn, the
bidual of c0, is the space l∞ of bounded sequences, into which the embedding is the
obvious one, so c0 is not reflexive. In fact l1 is not reflexive either. There are useful
characterizations of reflexive Banach spaces. You may be interested enough to look
up James’ Theorem:- A Banach space is reflexive if and only if every continuous
linear functional on it attains its supremum on the unit ball.

14. Axioms of a vector space

In case you missed out on one of the basic linear algebra courses, or have a
poor memory, here are the axioms of a vector space over a field K (either R or C
for us).

A vector space structure on a set V is a pair of maps

(1.126) + : V × V −→ V, · : K× V −→ V

satisfying the conditions listed below. These maps are written +(v1, v2) = v1 + v2

and ·(λ, v) = λv, λ ∈ K, V, v1, v2 ∈ V.
additive commutativity v1 + v2 = v2 + v2 for all v1, v2 ∈ V.
additive associativity v1 + (v2 + v3) = (v1 + v2) + v3 for all v1, v2, v3 ∈ V.
existence of zero There is an element 0 ∈ V such that v + 0 = v for all v ∈ V.
additive invertibility For each v ∈ V there exists w ∈ V such that v + w = 0.
distributivity of scalar additivity (λ1 + λ2)v = λ1v + λ2v for all λ1, λ2 ∈ K and
v ∈ V.

multiplicativity λ1(λ2v) = (λ1λ2)v for all λ1, λ2 ∈ K and v ∈ V.
action of multiplicative identity 1v = v for all v ∈ V.
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distributivity of space additivity λ(v1 + v2) = λv1 + λv2 for all λ ∈ K v1, v2 ∈ V.





CHAPTER 2

The Lebesgue integral

This part of the course, on Lebesgue integration, has evolved the most. Initially
I followed the book of Debnaith and Mikusinski, completing the space of step
functions on the line under the L1 norm. Since the ‘Spring’ semester of 2011, I
have decided to circumvent the discussion of step functions, proceeding directly by
completing the Riemann integral. Some of the older material resurfaces in later
sections on step functions, which are there in part to give students an opportunity
to see something closer to a traditional development of measure and integration.

The treatment of the Lebesgue integral here is intentionally compressed. In
lectures everything is done for the real line but in such a way that the extension to
higher dimensions – carried out partly in the text but mostly in the problems – is
not much harder. Some further extensions are also discussed in the problems.

1. Integrable functions

Recall that the Riemann integral is defined for a certain class of bounded func-
tions u : [a, b] −→ C (namely the Riemann integrable functions) which includes
all continuous function. It depends on the compactness of the interval but can
be extended to an ‘improper integral’, for which some of the good properties fail,
on certain functions on the whole line. This is NOT what we will do. Rather we
consider the space of continuous functions ‘with compact support’:
(2.1)
Cc(R) = {u : R −→ C;u is continuous and ∃ R such that u(x) = 0 if |x| > R}.

Thus each element u ∈ Cc(R) vanishes outside an interval [−R,R] where the R
depends on the u. Note that the support of a continuous function is defined to be
the complement of the largest open set on which it vanishes (not the set of points at
which it is non-zero). Thus (2.1) says that the support, which is necessarily closed,
is contained in some interval [−R,R], which is equivalent to saying it is compact.

Lemma 7. The Riemann integral defines a continuous linear functional on
Cc(R) equipped with the L1 norm

(2.2)

∫
R
u = lim

R→∞

∫
[−R,R]

u(x)dx,

‖u‖L1 = lim
R→∞

∫
[−R,R]

|u(x)|dx,

|
∫
R
u| ≤ ‖u‖L1 .

The limits here are trivial in the sense that the functions involved are constant for
large R.

37
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Proof. These are basic properties of the Riemann integral see Rudin [3]. �

Note that Cc(R) is a normed space with respect to ‖u‖L1 as defined above.
With this preamble we can directly define the ‘space’ of Lebesgue integrable

functions on R.

Definition 5. A function f : R −→ C is Lebesgue integrable, written f ∈
L1(R), if there exists a series wn =

n∑
j=1

fj , fj ∈ Cc(R) which is absolutely summable,

(2.3)
∑
j

∫
|fj | <∞

and such that

(2.4)
∑
j

|fj(x)| <∞ =⇒ lim
n→∞

wn(x) =
∑
j

fj(x) = f(x).

This is a somewhat convoluted definition which you should think about a bit.
Its virtue is that it is all there. The problem is that it takes a bit of unravelling.
Before proceeding, let me give a simple example and check that this definition does
include continuous functions defined on an interval and extended to be zero outside
– so the theory we develop will include the usual Riemann integral.

Lemma 8. If u ∈ C([a, b]) then

(2.5) ũ(x) =

{
u(x) if x ∈ [a, b]

0 otherwise

is an integrable function.

Proof. Just ‘add legs’ to ũ by considering the sequence

(2.6) gn(x) =


0 if x < a− 1/n or x > b+ 1/n,

(1 + n(x− a))u(a) if a− 1/n ≤ x < a,

(1− n(x− b))u(b) if b < x ≤ b+ 1/n,

u(x) if x ∈ [a, b].

This is a continuous function on each of the open subintervals in the description
with common limits at the endpoints, so gn ∈ Cc(R). By construction, gn(x)→ ũ(x)
for each x ∈ R. Define the sequence which has partial sums the gn,

(2.7) f1 = g1, fn = gn − gn−1, n > 1 =⇒ gn(x) =

n∑
k=1

fk(x).

Then fn = 0 in [a, b] and it can be written in terms of the ‘legs’

ln =

{
0 if x < a− 1/n, x ≥ a
(1 + n(x− a)) if a− 1/n ≤ x < a,

rn =

{
0 if x ≤ b, x b+ 1/n

(1− n(x− b)) if b <≤ x ≤ b+ 1/n,

as

(2.8) |fn(x)| = (ln − ln−1)|u(a)|+ (rn − rn−1)|u(b)|, n > 1.
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It follows that ∫
|fn(x)| = (|u(a)|+ |u(b)|)

n(n− 1)

so {fn} is an absolutely summable series showing that ũ ∈ L1(R). �

Returning to the definition, notice that we only say ‘there exists’ an absolutely
summable sequence and that it is required to converge to the function only at
points at which the pointwise sequence is absolutely summable. At other points
anything is permitted. So it is not immediately clear that there are any functions
not satisfying this condition. Indeed if there was a sequence like fj above with∑
j

|fj(x)| = ∞ always, then (2.4) would represent no restriction at all. So the

point of the definition is that absolute summability – a condition on the integrals
in (2.3) – does imply something about (absolute) convergence of the pointwise
series. Let us enforce this idea with another definition:-

Definition 6. A set E ⊂ R is said to be of measure zero in the sense of
Lebesgue (which is pretty much always the meaning here) if there is a series wn =
n∑
j=1

hj , hj ∈ Cc(R) which is absolutely summable,
∑
j

∫
|hj | <∞, and such that

(2.9)
∑
j

|hj(x)| =∞ ∀ x ∈ E.

Notice that we do not require E to be precisely the set of points at which the
series in (2.9) diverges, only that it does so at all points of E, so E is just a subset
of the set on which some absolutely summable series of functions in Cc(R) does
not converge absolutely. So any subset of a set of measure zero is automatically of
measure zero. To introduce the little trickery we use to unwind the defintion above,
consider first the following (important) result.

Lemma 9. Any finite union of sets of measure zero is a set of measure zero.

Proof. Since we can proceed in steps, it suffices to show that the union of
two sets of measure zero has measure zero. So, let the two sets be E and F and
two corresponding absolutely summable sequences, as in Definition 6, be hj and gj .
Consider the alternating sequence

(2.10) uk =

{
hj if k = 2j − 1 is odd

gj if k = 2j is even.

Thus {uk} simply interlaces the two sequences. It follows that uk is absolutely
summable, since

(2.11)
∑
k

‖uk‖L1 =
∑
j

‖hj‖L1 +
∑
j

‖gj‖L1 .

Moreover, the pointwise series
∑
k

|uk(x)| diverges precisely where one or other of

the two series
∑
j

|uj(x)| or
∑
j

|gj(x)| diverges. In particular it must diverge on

E ∪ F which is therefore, by definition, a set of measure zero. �

The definition of f ∈ L1(R) above certainly requires that the equality on the
right in (2.4) should hold outside a set of measure zero, but in fact a specific one,
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the one on which the series on the left diverges. Using the same idea as in the
lemma above we can get rid of this restriction.

Proposition 9. If f : R −→ C and there exists a series wn =
n∑
j=1

gj with

gj ∈ Cc(R) which is absolutely summable, so
∑
j

∫
|gj | < ∞, and a set E ⊂ R of

measure zero such that

(2.12) x ∈ R \ E =⇒ f(x) =

∞∑
j=1

gj(x)

then f ∈ L1(R).

Recall that when one writes down an equality such as on the right in (2.12) one

is implicitly saying that
∞∑
j=1

gj(x) converges and the inequality holds for the limit.

We will call a sequence as the gj above an ‘approximating series’ for f ∈ L1(R).
This is indeed a refinement of the definition since all f ∈ L1(R) arise this way,
taking E to be the set where

∑
j

|fj(x)| =∞ for a series as in the defintion.

Proof. By definition of a set of measure zero there is some series hj as in
(2.9). Now, consider the series obtained by alternating the terms between gj , hj
and −hj . Explicitly, set

(2.13) fj =


gk if j = 3k − 2

hk if j = 3k − 1

−hk(x) if j = 3k.

This defines a series in Cc(R) which is absolutely summable, with

(2.14)
∑
j

∫
|fj(x)| =

∑
k

∫
|gk|+ 2

∑
k

∫
|hk|.

The same sort of identity is true for the pointwise series which shows that

(2.15)
∑
j

|fj(x)| <∞ iff
∑
k

|gk(x)| <∞ and
∑
k

|hk(x)| <∞.

So if the pointwise series on the left converges absolutely, then x /∈ E, by definition
and hence, by the assumption of the Proposition

(2.16) f(x) =
∑
k

gk(x)

(including of course the requirement that the series itself converges). So in fact we
find that

(2.17)
∑
j

|fj(x)| <∞ =⇒ f(x) =
∑
j

fj(x)

since the sequence of partial sums of the fj cycles through wn, wn(x) +hn(x), then
wn(x) and then to wn+1(x). Since

∑
k

|hk(x)| < ∞ the sequence |hn(x)| → 0 so

(2.17) follows from (2.12). �
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This is the trick at the heart of the definition of integrability above. Namely
we can manipulate the series involved in this sort of way to prove things about the
elements of L1(R). One point to note is that if gj is an absolutely summable series
in Cc(R) then

(2.18) F =


∑
j

|gj(x)| when this is finite

0 otherwise
=⇒ F ∈ L1(R).

The sort of property (2.12), where some condition holds on the complement
of a set of measure zero is so commonly encountered in integration theory that we
give it a simpler name.

Definition 7. A condition that holds on R \ E for some set of measure zero,
E, is sais to hold almost everywhere. In particular we write

(2.19) f = g a.e. if f(x) = g(x) ∀ x ∈ R \ E, E of measure zero.

Of course as yet we are living dangerously because we have done nothing to
show that sets of measure zero are ‘small’ let alone ‘ignorable’ as this definition
seems to imply. Beware of the trap of ‘proof by declaration’ !

Now Proposition 9 can be paraphrased as ‘A function f : R −→ C is Lebesgue
integrable if and only if it is the pointwise sum a.e. of an absolutely summable series
in Cc(R).’ Summable here remember means integrable.

2. Linearity of L1

The word ‘space’ is quoted in the definition of L1(R) above, because it is not
immediately obvious that L1(R) is a linear space, even more importantly it is far
from obvious that the integral of a function in L1(R) is well defined (which is the
point of the exercise after all). In fact we wish to define the integral to be

(2.20)

∫
R
f =

∑
n

∫
fn

where fn ∈ C(R) is any ‘approximating series’ meaning now as the gj in Propsition 9.
This is fine in so far as the series on the right (of complex numbers) does converge
– since we demanded that

∑
n

∫
|fn| < ∞ so this series converges absolutely – but

not fine in so far as the answer might well depend on which series we choose which
‘approximates f ’ in the sense of the definition or Proposition 9.

So, the immediate problem is to prove these two things. First we will do a
little more than prove the linearity of L1(R). Recall that a function is ‘positive’ if
it takes only non-negative values.

Proposition 10. The space L1(R) is linear (over C) and if f ∈ L1(R) the real
and imaginary parts, Re f, Im f are Lebesgue integrable as are their positive parts
and as is also the absolute value, |f |. For a real function there is an approximating
sequence as in Proposition 9 which is real and it can be chosen to be non-nagative
if f ≥ 0.

Proof. We first consider the real part of a function f ∈ L1(R). Suppose fn ∈
Cc(R) is an approximating sequence as in Proposition 9. Then consider gn = Re fn.
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This is absolutely summable, since
∫
|gn| ≤

∫
|fn| and

(2.21)
∑
n

fn(x) = f(x) =⇒
∑
n

gn(x) = Re f(x).

Since the left identity holds a.e., so does the right and hence Re f ∈ L1(R) by
Proposition 9. The same argument with the imaginary parts shows that Im f ∈
L1(R). This also shows that a real element has a real approximating sequence and
taking positive parts that a positive function has a positive approximating sequence.

The fact that the sum of two integrable functions is integrable really is a sim-
ple consequence of Proposition 9 and Lemma 9. Indeed, if f, g ∈ L1(R) have
approximating series fn and gn as in Proposition 9 then hn = fn + gn is absolutely
summable,

(2.22)
∑
n

∫
|hn| ≤

∑
n

∫
|fn|+

∑
n

∫
|gn|

and ∑
n

f(x) = f(x),
∑
n

gn(x) = g(x) =⇒
∑
n

hn(x) = f(x) + g(x).

The first two conditions hold outside (probably different) sets of measure zero, E
and F, so the conclusion holds outside E ∪ F which is of measure zero. Thus
f + g ∈ L1(R). The case of cf for c ∈ C is more obvious.

The proof that |f | ∈ L1(R) if f ∈ L1(R) is similar but perhaps a little trickier.
Again, let {fn} be a sequence as in the definition showing that f ∈ L1(R). To make
a series for |f | we can try the ‘obvious’ thing. Namely we know that

(2.23)

n∑
j=1

fj(x)→ f(x) if
∑
j

|fj(x)| <∞

so certainly it follows that

|
n∑
j=1

fj(x)| → |f(x)| if
∑
j

|fj(x)| <∞.

So, set

(2.24) g1(x) = |f1(x)|, gk(x) = |
k∑
j=1

fj(x)| − |
k−1∑
j=1

fj(x)| ∀ x ∈ R.

Then, for sure,

(2.25)

N∑
k=1

gk(x) = |
N∑
j=1

fj(x)| → |f(x)| if
∑
j

|fj(x)| <∞.

So equality holds off a set of measure zero and we only need to check that {gj} is
an absolutely summable series.

The triangle inequality in the ‘reverse’ form ||v|− |w|| ≤ |v−w| shows that, for
k > 1,

(2.26) |gk(x)| = ||
k∑
j=1

fj(x)| − |
k−1∑
j=1

fj(x)|| ≤ |fk(x)|.
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Thus

(2.27)
∑
k

∫
|gk| ≤

∑
k

∫
|fk| <∞

so the gk’s do indeed form an absolutely summable series and (2.25) holds almost
everywhere, so |f | ∈ L1(R). �

By combining these result we can see again that if f, g ∈ L1(R) are both real
valued then

(2.28) f+ = max(f, 0), max(f, g), min(f, g) ∈ L1(R).

Indeed, the positive part, f+ = 1
2 (|f | + f), max(f, g) = g + (f − g)+, min(f, g) =

−max(−f,−g).

3. The integral on L1

Next we want to show that the integral is well defined via (2.20) for any ap-
proximating series. From Propostion 10 it is enough to consider only real functions.
For this, recall a result concerning a case where uniform convergence of continu-
ous functions follows from pointwise convergence, namely when the convergence is
monotone, the limit is continuous, and the space is compact. It works on a general
compact metric space but we can concentrate on the case at hand.

Lemma 10. If un ∈ Cc(R) is a decreasing sequence of non-negative functions
such that limn→∞ un(x) = 0 for each x ∈ R then un → 0 uniformly on R and

(2.29) lim
n→∞

∫
un = 0.

Proof. Since all the un(x) ≥ 0 and they are decreasing (which means not
increasing of course) if u1(x) vanishes at x then all the other un(x) vanish there
too. Thus there is one R > 0 such that un(x) = 0 if |x| > R for all n, namely
one that works for u1. So we only need consider what happens on [−R,R] which is
compact. For any ε > 0 look at the sets

Sn = {x ∈ [−R,R];un(x) ≥ ε}.

This can also be written Sn = u−1
n ([ε,∞)) ∩ [−R,R] and since un is continuous it

follows that Sn is closed and hence compact. Moreover the fact that the un(x) are
decreasing means that Sn+1 ⊂ Sn for all n. Finally,⋂

n

Sn = ∅

since, by assumption, un(x)→ 0 for each x. Now the property of compact sets in a
metric space that we use is that if such a sequence of decreasing compact sets has
empty intersection then the sets themselves are empty from some n onwards. This
means that there exists N such that supx un(x) < ε for all n > N. Since ε > 0 was
arbitrary, un → 0 uniformly.

One of the basic properties of the Riemann integral is that the integral of the
limit of a uniformly convergent sequence (even of Riemann integrable functions but
here continuous) is the limit of the sequence of integrals, which is (2.29) in this
case. �
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We can easily extend this in a useful way – the direction of convergence is
reversed really just to mentally distinquish this from the preceding lemma.

Lemma 11. If vn ∈ Cc(R) is any increasing sequence such that limn→∞ vn(x) ≥
0 for each x ∈ R (where the possibility vn(x)→∞ is included) then

(2.30) lim
n→∞

∫
vndx ≥ 0 including possibly +∞.

Proof. This is really a corollary of the preceding lemma. Consider the se-
quence of functions

(2.31) wn(x) =

{
0 if vn(x) ≥ 0

−vn(x) if vn(x) < 0.

Since this is the maximum of two continuous functions, namely −vn and 0, it is
continuous and it vanishes for large x, so wn ∈ Cc(R). Since vn(x) is increasing, wn
is decreasing and it follows that limwn(x) = 0 for all x – either it gets there for
some finite n and then stays 0 or the limit of vn(x) is zero. Thus Lemma 10 applies
to wn so

lim
n→∞

∫
R
wn(x)dx = 0.

Now, vn(x) ≥ −wn(x) for all x, so for each n,
∫
vn ≥ −

∫
wn. From properties of

the Riemann integral, vn+1 ≥ vn implies that
∫
vndx is an increasing sequence and

it is bounded below by one that converges to 0, so (2.30) is the only possibility. �

From this result applied carefully we see that the integral behaves sensibly for
absolutely summable series.

Lemma 12. Suppose fn ∈ Cc(R) is an absolutely summable sequence of real-
valued functions, so

∑
n

∫
|fn|dx <∞, and also suppose that

(2.32)
∑
n

fn(x) = 0 a.e.

then

(2.33)
∑
n

∫
fndx = 0.

Proof. As already noted, the series (2.33) does converge, since the inequality
|
∫
fndx| ≤

∫
|fn|dx shows that it is absolutely convergent (hence Cauchy, hence

convergent).
If E is a set of measure zero such that (2.32) holds on the complement then

we can modify fn as in (2.13) by adding and subtracting a non-negative absolutely
summable sequence gk which diverges absolutely on E. For the new sequence fn
(2.32) is strengthened to

(2.34)
∑
n

|fn(x)| <∞ =⇒
∑
n

fn(x) = 0

and the conclusion (2.33) holds for the new sequence if and only if it holds for the
old one.
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Now, we need to get ourselves into a position to apply Lemma 11. To do
this, just choose some integer N (large but it doesn’t matter yet) and consider the
sequence of functions – it depends on N but I will suppress this dependence –

(2.35) F1(x) =

N+1∑
n=1

fn(x), Fj(x) = |fN+j(x)|, j ≥ 2.

This is a sequence in Cc(R) and it is absolutely summable – the convergence of∑
j

∫
|Fj |dx only depends on the ‘tail’ which is the same as for fn. For the same

reason,

(2.36)
∑
j

|Fj(x)| <∞⇐⇒
∑
n

|fn(x)| <∞.

Now the sequence of partial sums

(2.37) gp(x) =

p∑
j=1

Fj(x) =

N+1∑
n=1

fn(x) +

p∑
j=2

|fN+j |

is increasing with p – since we are adding non-negative functions. If the two equiv-
alent conditions in (2.36) hold then

(2.38)
∑
n

fn(x) = 0 =⇒
N+1∑
n=1

fn(x) +

∞∑
j=2

|fN+j(x)| ≥ 0 =⇒ lim
p→∞

gp(x) ≥ 0,

since we are only increasing each term. On the other hand if these conditions do
not hold then the tail, any tail, sums to infinity so

(2.39) lim
p→∞

gp(x) =∞.

Thus the conditions of Lemma 11 hold for gp and hence

(2.40)

N+1∑
n=1

∫
fn +

∑
j≥N+2

∫
|fj(x)|dx ≥ 0.

Using the same inequality as before this implies that

(2.41)
∞∑
n=1

∫
fn ≥ −2

∑
j≥N+2

∫
|fj(x)|dx.

This is true for any N and as N → ∞, limN→∞
∑

j≥N+2

∫
|fj(x)|dx = 0. So

the fixed number on the left in (2.41), which is what we are interested in, must be
non-negative. In fact the signs in the argument can be reversed, considering instead

(2.42) h1(x) = −
N+1∑
n=1

fn(x), hp(x) = |fN+p(x)|, p ≥ 2

and the final conclusion is the opposite inequality in (2.41). That is, we conclude
what we wanted to show, that

(2.43)

∞∑
n=1

∫
fn = 0.

�
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Finally then we are in a position to show that the integral of an element of
L1(R) is well-defined.

Proposition 11. If f ∈ L1(R) then

(2.44)

∫
f = lim

n→∞

∑
n

∫
fn

is independent of the approximating sequence, fn, used to define it. Moreover,

(2.45)

∫
|f | = lim

N→∞

∫
|
N∑
k=1

fk|,

|
∫
f | ≤

∫
|f | and

lim
n→∞

∫
|f −

n∑
j=1

fj | = 0.

So in some sense the definition of the Lebesgue integral ‘involves no cancellations’.
There are various extensions of the integral which do exploit cancellations – I invite
you to look into the definition of the Henstock integral (and its relatives).

Proof. The uniqueness of
∫
f follows from Lemma 12. Namely, if fn and f ′n

are two sequences approximating f as in Proposition 9 then the real and imaginary
parts of the difference f ′n−fn satisfy the hypothesis of Lemma 12 so it follows that∑

n

∫
fn =

∑
n

∫
f ′n.

Then the first part of (2.45) follows from this definition of the integral applied
to |f | and the approximating series for |f | devised in the proof of Proposition 10.
The inequality

(2.46) |
∑
n

∫
fn| ≤

∑
n

∫
|fn|,

which follows from the finite inequalities for the Riemann integrals

|
∑
n≤N

∫
fn| ≤

∑
n≤N

∫
|fn| ≤

∑
n

∫
|fn|

gives the second part.
The final part follows by applying the same arguments to the series {fk}k>n,

as an absolutely summable series approximating f −
n∑
j=1

fj and observing that the

integral is bounded by

(2.47)

∫
|f −

n∑
k=1

fk| ≤
∞∑

k=n+1

∫
|fk| → 0 as n→∞.

�
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4. Summable series in L1(R)

The next thing we want to know is when the ‘norm’, which is in fact only a
seminorm, on L1(R), vanishes. That is, when does

∫
|f | = 0? One way is fairly

easy. The full result we are after is:-

Proposition 12. For an integrable function f ∈ L1(R), the vanishing of
∫
|f |

implies that f is a null function in the sense that

(2.48) f(x) = 0 ∀ x ∈ R \ E where E is of measure zero.

Conversely, if (2.48) holds then f ∈ L1(R) and
∫
|f | = 0.

Proof. The main part of this is the first part, that the vanishing of
∫
|f |

implies that f is null. The converse is the easier direction in the sense that we have
already done it.

Namely, if f is null in the sense of (2.48) then |f | is the limit a.e. of the
absolutely summable series with all terms 0. It follows from the definition of the
integral above that |f | ∈ L1(R) and

∫
|f | = 0. �

For the forward argument we will use the following more technical result, which
is also closely related to the completeness of L1(R).

Proposition 13. If fn ∈ L1(R) is an absolutely summable series, meaning
that

∑
n

∫
|fn| <∞, then

(2.49) E = {x ∈ R;
∑
n

|fn(x)| =∞} has measure zero.

If f : R −→ C satisfies

(2.50) f(x) =
∑
n

fn(x) a.e.

then f ∈ L1(R),

(2.51)

∫
f =

∑
n

∫
fn,

|
∫
f | ≤

∫
|f | = lim

n→∞

∫
|
n∑
j=1

fj | ≤
∑
j

∫
|fj | and

lim
n→∞

∫
|f −

n∑
j=1

fj | = 0.

This basically says we can replace ‘continuous function of compact support’ by
‘Lebesgue integrable function’ in the definition and get the same result. Of course
this makes no sense without the original definition, so what we are showing is that
iterating it makes no difference – we do not get a bigger space.

Proof. The proof is very like the proof of completeness via absolutely sum-
mable series for a normed space outlined in the preceding chapter.

By assumption each fn ∈ L1(R), so there exists a sequence fn,j 3 Cc(R) with∑
j

∫
|fn,j | <∞ and

(2.52)
∑
j

|fn,j(x)| <∞ =⇒ fn(x) =
∑
j

fn,j(x).
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We can expect f(x) to be given by the sum of the fn,j(x) over both n and j, but
in general, this double series is not absolutely summable. However we can replace
it by one that is. For each n choose Nn so that

(2.53)
∑
j>Nn

∫
|fn,j | < 2−n.

This is possible by the assumed absolute summability – the tail of the series there-
fore being small. Having done this, we replace the series fn,j by

(2.54) f ′n,1 =
∑
j≤Nn

fn,j(x), f ′n,j(x) = fn,Nn+j−1(x) ∀ j ≥ 2,

summing the first Nn terms. This still converges to fn on the same set as in (2.52).
So in fact we can simply replace fn,j by f ′n,j and we have in addition the estimate

(2.55)
∑
j

∫
|f ′n,j | ≤

∫
|fn|+ 2−n+1 ∀ n.

This follows from the triangle inequality since, using (2.53),

(2.56)

∫
|f ′n,1 +

N∑
j=2

f ′n,j | ≥
∫
|f ′n,1| −

∑
j≥2

∫
|f ′n,j | ≥

∫
|f ′n,1| − 2−n

and the left side converges to
∫
|fn| by (2.45) as N →∞. Using (2.53) again gives

(2.55).
Dropping the primes from the notation and using the new series as fn,j we

can let gk be some enumeration of the fn,j – using the standard diagonalization
procedure. This gives a new series of continuous functions which is absolutely
summable since

(2.57)

N∑
k=1

∫
|gk| ≤

∑
n,j

∫
|fn,j | ≤

∑
n

(

∫
|fn|+ 2−n+1) <∞.

Using the freedom to rearrange absolutely convergent series we see that

(2.58)
∑
n,j

|fn,j(x)| <∞ =⇒ f(x) =
∑
k

gk(x) =
∑
n

∑
j

fn,j(x).

The set where (2.58) fails is a set of measure zero, by definition. Thus f ∈ L1(R)
and (2.49) also follows. To get the final result (2.51), rearrange the double series
for the integral (which is also absolutely convergent). �

For the moment we only need the weakest part, (2.49), of this. To paraphrase
this, for any absolutely summable series of integrable functions the absolute point-
wise series converges off a set of measure zero – it can only diverge on a set of
measure zero. It is rather shocking but this allows us to prove the rest of Propo-
sition 12! Namely, suppose f ∈ L1(R) and

∫
|f | = 0. Then Proposition 13 applies

to the series with each term being |f |. This is absolutely summable since all the
integrals are zero. So it must converge pointwise except on a set of measure zero.
Clearly it diverges whenever f(x) 6= 0,

(2.59)

∫
|f | = 0 =⇒ {x; f(x) 6= 0} has measure zero

which is what we wanted to show to finally complete the proof of Proposition 12.
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5. The space L1(R)

Finally this allows us to define the standard Lebesgue space

(2.60) L1(R) = L1(R)/N , N = {null functions}

and to check that it is a Banach space with the norm (arising from, to be pedantic)∫
|f |.

Theorem 7. The quotient space L1(R) defined by (2.60) is a Banach space in
which the continuous functions of compact support form a dense subspace.

The elements of L1(R) are equivalence classes of functions

(2.61) [f ] = f +N , f ∈ L1(R).

That is, we ‘identify’ two elements of L1(R) if (and only if) their difference is null,
which is to say they are equal off a set of measure zero. Note that the set which is
ignored here is not fixed, but can depend on the functions.

Proof. For an element of L1(R) the integral of the absolute value is well-
defined by Propositions 10 and 12

(2.62) ‖[f ]‖L1 =

∫
|f |, f ∈ [f ]

and gives a semi-norm on L1(R). It follows from Proposition 5 that on the quotient,
‖[f ]‖ is indeed a norm.

The completeness of L1(R) is a direct consequence of Proposition 13. Namely,
to show a normed space is complete it is enough to check that any absolutely
summable series converges. So if [fj ] is an absolutely summable series in L1(R)
then fj is absolutely summable in L1(R) and by Proposition 13 the sum of the
series exists so we can use (2.50) to define f off the set E and take it to be zero on
E. Then, f ∈ L1(R) and the last part of (2.51) means precisely that

(2.63) lim
n→∞

‖[f ]−
∑
j<n

[fj ]‖L1 = lim
n→∞

∫
|f −

∑
j<n

fj | = 0

showing the desired completeness. �

Note that despite the fact that it is technically incorrect, everyone says ‘L1(R)
is the space of Lebesgue integrable functions’ even though it is really the space
of equivalence classes of these functions modulo equality almost everywhere. Not
much harm can come from this mild abuse of language.

Another consequence of Proposition 13 and the proof above is an extension of
Lemma 9.

Proposition 14. Any countable union of sets of measure zero is a set of mea-
sure zero.

Proof. If E is a set of measure zero then any function f which is defined
on R and vanishes outside E is a null function – is in L1(R) and has

∫
|f | = 0.

Conversely if the characteristic function of E, the function equal to 1 on E and
zero in R \ E is integrable and has integral zero then E has measure zero. This
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is the characterization of null functions above. Now, if Ej is a sequence of sets of
measure zero and χk is the characteristic function of

(2.64)
⋃
j≤k

Ej

then
∫
|χk| = 0 so this is an absolutely summable series with sum, the characteristic

function of the union, integrable and of integral zero. �

6. The three integration theorems

Even though we now ‘know’ which functions are Lebesgue integrable, it is often
quite tricky to use the definitions to actually show that a particular function has
this property. There are three standard results on convergence of sequences of
integrable functions which are powerful enough to cover most situations that arise
in practice – a Monotonicity Lemma, Fatou’s Lemma and Lebesgue’s Dominated
Convergence theorem.

Lemma 13 (Montonicity). If fj ∈ L1(R) is a monotone sequence, either fj(x) ≥
fj+1(x) for all x ∈ R and all j or fj(x) ≤ fj+1(x) for all x ∈ R and all j, and

∫
fj

is bounded then

(2.65) {x ∈ R; lim
j→∞

fj(x) is finite} = R \ E

where E has measure zero and

(2.66)

f = lim
j→∞

fj(x) a.e. is an element of L1(R)

with

∫
f = lim

j→∞

∫
fj and lim

j→∞

∫
|f − fj | = 0.

In the usual approach through measure one has the concept of a measureable, non-
negative, function for which the integral ‘exists but is infinite’ – we do not have
this (but we could easily do it, or rather you could). Using this one can drop the
assumption about the finiteness of the integral but the result is not significantly
stronger.

Proof. Since we can change the sign of the fi it suffices to assume that the fi
are monotonically increasing. The sequence of integrals is therefore also montonic
increasing and, being bounded, converges. Turning the sequence into a series, by
setting g1 = f1 and gj = fj − fj−1 for j ≥ 1 the gj are non-negative for j ≥ 1 and

(2.67)
∑
j≥2

∫
|gj | =

∑
j≥2

∫
gj = lim

n→∞

∫
fn −

∫
f1

converges. So this is indeed an absolutely summable series. We therefore know
from Proposition 13 that it converges absolutely a.e., that the limit, f, is integrable
and that

(2.68)

∫
f =

∑
j

∫
gj = lim

n→∞

∫
fj .

The second part, corresponding to convergence for the equivalence classes in L1(R)
follows from the fact established earlier about |f | but here it also follows from the
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monotonicity since f(x) ≥ fj(x) a.e. so

(2.69)

∫
|f − fj | =

∫
f −

∫
fj → 0 as j →∞.

�

Now, to Fatou’s Lemma. This really just takes the monotonicity result and
applies it to a sequence of integrable functions with bounded integral. You should
recall that the max and min of two real-valued integrable functions is integrable
and that

(2.70)

∫
min(f, g) ≤ min(

∫
f,

∫
g).

This follows from the identities

(2.71) 2 max(f, g) = |f − g|+ f + g, 2 min(f, g) = −|f − g|+ f + g.

Lemma 14 (Fatou). Let fj ∈ L1(R) be a sequence of real-valued integrable and
non-negative functions such that

∫
fj is bounded above then

(2.72)

f(x) = lim inf
n→∞

fn(x) exists a.e., f ∈ L1(R) and∫
lim inf fn =

∫
f ≤ lim inf

∫
fn.

Proof. You should remind yourself of the properties of lim inf as necessary!
Fix k and consider

(2.73) Fk,n = min
k≤p≤k+n

fp(x) ∈ L1(R).

As discussed above this is integrable. Moreover, this is a decreasing sequence, as n
increases, because the minimum is over an increasing set of functions. Furthermore
the Fk,n are non-negative so Lemma 13 applies and shows that

(2.74) gk(x) = inf
p≥k

fp(x) ∈ L1(R),

∫
gk ≤

∫
fn ∀ n ≥ k.

Note that for a decreasing sequence of non-negative numbers the limit exists and
is indeed the infimum. Thus in fact,

(2.75)

∫
gk ≤ lim inf

∫
fn ∀ k.

Now, let k vary. Then, the infimum in (2.74) is over a set which decreases as k
increases. Thus the gk(x) are increasing. The integrals of this sequence are bounded
above in view of (2.75) since we assumed a bound on the

∫
fn’s. So, we can apply

the monotonicity result again to see that

(2.76)

f(x) = lim
k→∞

gk(x) exists a.e and f ∈ L1(R) has∫
f ≤ lim inf

∫
fn.

Since f(x) = lim inf fn(x), by definition of the latter, we have proved the Lemma.
�

Now, we apply Fatou’s Lemma to prove what we are really after:-
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Theorem 8 (Dominated convergence). Suppose fj ∈ L1(R) is a sequence of
integrable functions such that

(2.77)
∃ h ∈ L1(R) with |fj(x)| ≤ h(x) a.e. and

f(x) = lim
j→∞

fj(x) exists a.e.

then f ∈ L1(R) and [fj ] → [f ] in L1(R), so
∫
f = limn→∞

∫
fn (including the

assertion that this limit exists).

Proof. First, we can assume that the fj are real since the hypotheses hold for
the real and imaginary parts of the sequence and together give the desired result.
Moroever, we can change all the fj ’s to make them zero on the set on which the
initial estimate in (2.77) does not hold. Then this bound on the fj ’s becomes

(2.78) −h(x) ≤ fj(x) ≤ h(x) ∀ x ∈ R.

In particular this means that gj = h − fj is a non-negative sequence of integrable
functions and the sequence of integrals is also bounded, since (2.77) also implies
that

∫
|fj | ≤

∫
h, so

∫
gj ≤ 2

∫
h. Thus Fatou’s Lemma applies to the gj . Since we

have assumed that the sequence gj(x) converges a.e. to h− f we know that

(2.79)

h− f(x) = lim inf gj(x) a.e. and∫
h−

∫
f ≤ lim inf

∫
(h− fj) =

∫
h− lim sup

∫
fj .

Notice the change on the right from liminf to limsup because of the sign.
Now we can apply the same argument to g′j(x) = h(x) + fj(x) since this is also

non-negative and has integrals bounded above. This converges a.e. to h(x) + f(x)
so this time we conclude that

(2.80)

∫
h+

∫
f ≤ lim inf

∫
(h+ fj) =

∫
h+ lim inf

∫
fj .

In both inequalities (2.79) and (2.80) we can cancel an
∫
h and combining them we

find

(2.81) lim sup

∫
fj ≤

∫
f ≤ lim inf

∫
fj .

In particular the limsup on the left is smaller than, or equal to, the liminf on the
right, for the same real sequence. This however implies that they are equal and
that the sequence

∫
fj converges. Thus indeed

(2.82)

∫
f = lim

n→∞

∫
fn.

Convergence of fj to f in L1(R) follows by applying the results proved so far
to f − fj , converging almost everywhere to 0. �

Generally in applications it is Lebesgue’s dominated convergence which is used
to prove that some function is integrable. Of course, since we deduced it from
Fatou’s lemma, and the latter from the Monotonicity lemma, you might say that
Lebesgue’s theorem is the weakest of the three! However, it is very handy.
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7. Notions of convergence

We have been dealing with two basic notions of convergence, but really there
are more. Let us pause to clarify the relationships between these different concepts.

(1) Convergence of a sequence in L1(R) (or by slight abuse of language in
L1(R)) – f and fn ∈ L1(R) and

(2.83) ‖f − fn‖L1 → 0 as n→∞.

(2) Convergence almost every where:- For some sequence of functions fn and
function f,

(2.84) fn(x)→ f(x) as n→∞ for x ∈ R \ E

where E ⊂ R is of measure zero.
(3) Dominated convergence:- For fj ∈ L1(R) (or representatives in L1(R))

such that |fj | ≤ F (a.e.) for some F ∈ L1(R) and (2.84) holds.
(4) What we might call ‘absolutely summable convergence’. Thus fn ∈ L1(R)

are such that fn =
n∑
j=1

gj where gj ∈ L1(R) and
∑
j

∫
|gj | <∞. Then (2.84)

holds for some f.
(5) Monotone convergence. For fj ∈ L1(R), real valued and montonic, we

require that
∫
fj is bounded and it then follows that fj → f almost

everywhere, with f ∈ L1(R) and that the convergence is L1 and also that∫
f = limj

∫
fj .

So, one important point to know is that 1 does not imply 2. Nor conversely
does 2 imply 1 even if we assume that all the fj and f are in L1(R).

However, Montone convergence implies Dominated convergence. Namely if f
is the limit then |fj | ≤ |f |+ 2|f1| and fj → f almost everywhere. Also, Monotone
convergence implies convergence with absolute summability simply by taking the
sequence to have first term f1 and subsequence terms fj − fj−1 (assuming that
fj is monotonic increasing) one gets an absolutely summable series with sequence
of finite sums converging to f. Similarly absolutely summable convergence implies
dominated convergence for the sequence of partial sums; by montone convergence
the series

∑
n
|fn(x)| converges a.e. and in L1 to some function F which dominates

the partial sums which in turn converge pointwise.

8. Measurable functions

From our original definition of L1(R) we know that Cc(R) is dense in L1(R).
We also know that elements of Cc(R) can be approximated uniformly, and hence in
L1(R) by step functions – finite linear combinations of the characteristic functions
of intervals. It is usual in measure theory to consider the somewhat large class of
functions which contains the step functions:

Definition 8. A simple function on R is a finite linear combination (generally
with complex coefficients) of characteristic functions of subsets of finite measure:

(2.85) f =

N∑
j=1

cjχ(Bj), χ(Bj) ∈ L1(R).
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The real and imaginary parts of a simple function are simple and the positive
and negative parts of a real simple function are simple. Since step functions are
simple, we know that simple functions are dense in L1(R) and that if 0 ≤ F ∈ L1(R)
then there exists a sequence of simple functions (take them to be a summable
sequence of step functions) fn ≥ 0 such that fn → F almost everywhere and
fn ≤ G for some other G ∈ L1(R).

We elevate a special case of the second notion of convergence above to a defi-
nition.

Definition 9. A function f : R −→ C is (Lebesgue) measurable if it is the
pointwise limit almost everywhere of a sequence of simple functions.

The measurable functions form a linear space since if f and g are measurable
and fn, gn are sequences of simple functions as required by the definition then
c1fn(x) + c2f2(x)→ c1f(x) + c2g(x) on the intersection of the sets where fn(x)→
f(x) and gn(x)→ g(x) which is the complement of a set of measure zero.

Now, from the discussion above, we know that each element of L1(R) is mea-
surable. Conversely:

Lemma 15. A function f : R −→ C is an element of L1(R) if and only if it is
measurable and there exists F ∈ L1(R) such that |f | ≤ F almost everywhere.

Proof. If f is measurable there exists a sequence of simple functions fn such
that fn → f almost everywhere. The real part, Re f, is also measurable as the
limit almost everywhere of Re fn and from the hypothesis |Re f | ≤ F. We know
that there exists a sequence of simple functions gn, gn → F almost everywhere and
0 ≤ gn ≤ G for another element G ∈ L1(R). Then set

(2.86) un(x) =


gn(x) if Re fn(x) > gn(x)

Re fn(x) if − gn(x) ≤ Re fn(x) ≤ gn(x)

−gn(x) if Re fn(x) < −gn(x).

Thus un = max(vn,−gn) where vn = min(Re fn, gn) so un is simple and un → f
almost everywhere. Since |un| ≤ G it follows from Lebesgue Dominated Conver-
gence that Re f ∈ L1(R). The same argument shows Im f = −Re(if) ∈ L1(R) so
f ∈ L1(R) as claimed. �

9. The spaces Lp(R)

We use Lemma 15 as a model:

Definition 10. For 1 ≤ p <∞ we set

(2.87) Lp(R) = {f : R −→ C; f is measurable and |f |p ∈ L1(R)}.

Proposition 15. For each 1 ≤ p <∞,

(2.88) ‖u‖Lp =

(∫
|u|p

) 1
p

is a seminorm on the linear space Lp(R) vanishing only on the null functions and
making the quotient Lp(R) = Lp(R)

/
N into a Banach space.
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Proof. The real part of an element of Lp(R) is in Lp(R) since it is measurable
and |Re f |p ≤ |f |p so |Re f |p ∈ L1(R). Similarly, Lp(R) is linear; it is clear that
cf ∈ Lp(R) if f ∈ Lp(R) and c ∈ C and the sum of two elements, f, g, is measurable
and satisfies |f + g|p ≤ 2p(|f |p + |g|p) so |f + g|p ∈ L1(R).

We next strengthen (2.87) to the approximation condition that there exists a
sequence of simple functions vn such that

(2.89) vn → f a.e. and |vn|p ≤ F ∈ L1(R) a.e.

which certainly implies (2.87). As in the proof of Lemma 15, suppose f ∈ Lp(R) is
real and choose fn real-valued simple functions and converging to f almost every-
where. Since |f |p ∈ L1(R) there is a sequence of simple functions 0 ≤ hn such that

|hn| ≤ F for some F ∈ L1(R) and hn → |f |p almost everywhere. Then set gn = h
1
p
n

which is also a sequence of simple functions and define vn by (2.86). It follows that
(2.89) holds for the real part of f but combining sequences for real and imaginary
parts such a sequence exists in general.

The advantage of the approximation condition (2.89) is that it allows us to
conclude that the triangle inequality holds for ‖u‖Lp defined by (2.88) since we
know it for simple functions and from (2.89) it follows that |vn|p → |f |p in L1(R)
so ‖vn‖Lp → ‖f‖Lp . Then if wn is a similar sequence for g ∈ Lp(R)
(2.90)
‖f+g‖Lp ≤ lim sup

n
‖vn+wn‖Lp ≤ lim sup

n
‖vn‖Lp+lim sup

n
‖wn‖Lp = ‖f‖Lp+‖g‖Lp .

The other two conditions being clear it follows that ‖u‖Lp is a seminorm on Lp(R).
The vanishing of ‖u‖Lp implies that |u|p and hence u ∈ N and the converse

follows immediately. Thus Lp(R) = Lp(R)
/
N is a normed space and it only remains

to check completeness.
�

10. The space L2(R)

So far we have discussed the Banach space L1(R). The real aim is to get a
good hold on the (Hilbert) space L2(R). This can be approached in several ways.
We could start off as for L1(R) and define L2(R) as the completion of Cc(R) with
respect to the norm

(2.91) ‖f‖L2 =

(∫
|f |2

) 1
2

.

This would be rather repetitious; instead we adopt an approach based on Dominated
convergence. You might think, by the way, that it is enough just to ask that
|f |2 ∈ L1(R). This does not work, since even if real the sign of f could jump
around and make it non-integrable. This approach would not even work for L1(R).

Definition 11. A function f : R −→ C is said to be ‘Lebesgue square inte-
grable’, written f ∈ L2(R), if there exists a sequence un ∈ Cc(R) such that

(2.92) un(x)→ f(x) a.e. and |un(x)|2 ≤ F (x) for some F ∈ L1(R).

Proposition 16. The space L2(R) is linear, f ∈ L2(R) implies |f |2 ∈ L1(R)
and (2.91) defines a seminorm on L2(R) which vanishes precisely on the null func-
tions N ⊂ L2(R).
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After going through this result I normally move on to the next chapter on Hilbert
spaces with this as important motivation.

Proof. First to see the linearity of L2(R) note that f ∈ L2(R) and c ∈ C then
cf ∈ L2(R) where if un is a sequence as in the definition for f then cun is such a
sequence for cf.

Similarly if f, g ∈ L2(R) with sequences un and vn then wn = un + vn has the
first property – since we know that the union of two sets of measure zero is a set
of measure zero and the second follows from the estimate

(2.93) |wn(x)|2 = |un(x) + vn(x)|2 ≤ 2|un(x)|2 + 2|vn(x)|2 ≤ 2(F +G)(x)

where |un(x)|2 ≤ F (x) and |vn(x)|2 ≤ G(x) with F, G ∈ L1(R).
Moreover, if f ∈ L2(R) then the sequence |un(x)|2 converges pointwise almost

everywhere to |f(x)|2 so by Lebesgue’s Dominated Convergence, |f |2 ∈ L1(R). Thus
‖f‖L2 is well-defined. It vanishes if and only if |f |2 ∈ N but this is equivalent to
f ∈ N – conversely N ⊂ L2(R) since the zero sequence works in the definition
above.

So we only need to check the triangle inquality, absolutely homogeneity being
clear, to deduce that L2 = L2/N is at least a normed space. In fact we checked
this earlier on Cc(R) and the general case follows by continuity:-

(2.94) ‖un + vn‖L2 ≤ ‖un‖L2 + ‖vn‖L2 ∀ n =⇒
‖f + g‖L2 = lim

n→∞
‖un + vn‖L2 ≤ ‖u‖L2 + ‖v‖L2 .

�

We will get a direct proof of the triangle inequality as soon as we start talking
about (pre-Hilbert) spaces.

So it only remains to check the completeness of L2(R), which is really the whole
point of the discussion of Lebesgue integration.

Theorem 9. The space L2(R) is complete with respect to ‖ · ‖L2 and is a
completion of Cc(R) with respect to this norm.

Proof. That Cc(R) ⊂ L2(R) follows directly from the definition and in fact
this is a dense subset. Indeed, if f ∈ L2(R) a sequence un ∈ Cc(R) as in Definition 11
satisfies

(2.95) |un(x)− um(x)|2 ≤ 4F (x) ∀ n, m,

and converges almost everwhere to |f(x)−um(x)|2 as n→∞. Thus, by Dominated
Convergence, |f(x)− um(x)|2 ∈ L1(R). Moreover, as m→∞ |f(x)− um(x)|2 → 0
almost everywhere and |f(x)−um(x)|2 ≤ 4F (x) so again by dominated convergence

(2.96) ‖f − um‖L2 =
(
‖(|f − um|2)‖L1)

) 1
2 → 0.

This shows the density of Cc(R) in L2(R), the quotient by the null functions.
To prove completeness, we only need show that any absolutely L2-summable

sequence in Cc(R) converges in L2 and the general case follows by density. So,
suppose φn ∈ Cc(R) is such a sequence:∑

n

‖φn‖L2 <∞.
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Consider Fk(x) =

(∑
n≤k
|φk(x)|

)2

. This is an increasing sequence in Cc(R) and its

L1 norm is bounded:

(2.97) ‖Fk‖L1 = ‖
∑
n≤k

|φn|‖2L2 ≤

∑
n≤k

‖φn‖L2

2

≤ C2 <∞

using the triangle inequality and absolutely L2 summability. Thus, by Monotone
Convergence, Fk → F ∈ L1(R) and Fk(x) ≤ F (x) for all x.

Thus the sequence of partial sums uk(x) =
∑
n≤k

φn(x) satisfies |uk|2 ≤ Fk ≤ F.

Moreover, on any finite interval the Cauchy-Schwarz inequality gives

(2.98)
∑
n≤k

‖χRφn‖L1 ≤ (2R)
1
2

∑
n≤k

‖φn‖L2

so the sequence χRφn is absolutely summable in L1. It therefore converges almost
everywhere and hence (using the fact a countable union of sets of measure zero is
of measure zero)

(2.99)
∑
n

φ(x)→ f(x) exists a.e.

By the definition above the function f ∈ L2(R) and the preceding discussion shows
that

(2.100) ‖f −
∑
n≤k

φk‖L2 → 0.

Thus in fact L2(R) is complete. �

Now, at this point we will pass to the discussion of abstract Hilbert spaces, of
which L2(R) is our second important example (after l2).

Observe that if f, g ∈ L2(R) have approximating sequences un, vn as in Defi-
nition 11, so |un(x)|2 ≤ F (x) and |vn(x)|2 ≤ G(x) with F, G ∈ L1(R) then

(2.101) un(x)vn(x)→ f(x)g(x) a.e. and |un(x)vn(x)| ≤ F (x) +G(x)

shows that fg ∈ L1(R) by Dominated Convergence. This leads to the basic property
of the norm on a (pre)-Hilbert space – that it comes from an inner product. In this
case

(2.102) 〈f, g〉L2 =

∫
f(x)g(x), ‖f‖L2 = 〈f, f〉 12 .

11. The spaces Lp(R)

Local integrablility of a function is introduced above. Thus f : R −→ C is
locally integrable if

(2.103) F[−N,N ] =

{
f(x) x ∈ [−N,N ]

0 x if |x| > N
=⇒ F[−N,N ] ∈ L1(R) ∀ N.

For example any continuous function on R is locally integrable as is any element of
L1(R).

Lemma 16. The locally integrable functions form a linear space, L1
loc(R).
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Proof. Follows from the linearity of L1(R). �

Definition 12. The space Lp(R) for any 1 ≤ p <∞ consists of those functions
in L1

loc such that |f |p ∈ L1(R); for p =∞,

(2.104) L∞(R) = {f ∈ L1
loc(R); sup

R\E
|f(x)| <∞ for some E of measure zero.

It is important to note that |f |p ∈ L1(R) is not, on its own, enough to show
that f ∈ Lp(R) – it does not in general imply the local integrability of f.

What are some examples of elements of Lp(R)? One class, which we use below,
comes from cutting off elements of L1

loc(R). Namely, we can cut off outside [−R,R]
and for a real function we can cut off ‘at height R’ (it doesn’t have to be the same
R but I am saving letters)

(2.105) f (R)(x) =


0 if |x| > R

R if |x| ≤ R, |f(x)| > R

f(x) if |x| ≤ R, |f(x)| ≤ R
−R if |x| ≤ R, f(x) < −R.

For a complex function apply this separately to the real and imaginary parts. Now,
f (R) ∈ L1(R) since cutting off outside [−R,R] gives an integrable function and
then we are taking min and max successively with ±Rχ[−R,R]. If we go back to

the definition of L1(R) but use the insight we have gained from there, we know
that there is an absolutely summable sequence of continuous functions of compact
support, fj , with sum converging a.e. to f (R). The absolute summability means
that |fj | is also an absolutely summable series, and hence its sum a.e., denoted g,
is an integrable function by the Monotonicity Lemma above – it is increasing with
bounded integral. Thus if we let Fn be the partial sum of the series

(2.106) Fn → f (R) a.e., |Fn| ≤ g

and we are in the setting of Dominated convergence – except of course we already
know that the limit is in L1(R). However, we can replace Fn by the sequence of

cut-off continuous functions F
(R)
n without changing the convergence a.e. or the

bound. Now,

(2.107) |F (R)
n |p → |f (R)|p a.e., |F (R)

n |p ≤ Rpχ[−R,R]

and we see that |f (R)| ∈ Lp(R) by Lebesgue Dominated convergence.
We can encapsulate this in a lemma:-

Lemma 17. If f ∈ L1
loc(R) then with the definition from (2.105), f (R) ∈ Lp(R),

1 ≤ p < ∞ and there exists a sequence sn of continuous functions of compact
support converging a.e. to f (R) with |sn| ≤ Rχ[−R,R].

Theorem 10. The spaces Lp(R) are linear, the function

(2.108) ‖f‖Lp =

(∫
|f |p

)1/p

is a seminorm on it with null space N , the space of null functions on R, and
Lp(R) = Lp(R)/N is a Banach space in which the continuous functions of compact
support and step functions include as dense subspaces.
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Proof. First we need to check the linearity of Lp(R). Clearly λf ∈ Lp(R) if
f ∈ Lp(R) and λ ∈ C so we only need consider the sum. Then however, we can use
Lemma 17. Thus, if f and g are in Lp(R) then f (R) and g(R) are in Lp(R) for any
R > 0. Now, the approximation by continuous functions in the Lemma shows that
f (R) + g(R) ∈ Lp(R) since it is in L1(R) and |f (R) + g(R)|p ∈ L1(R) by dominated
convergence (the model functions being bounded). Now, letting R → ∞ we see
that

(2.109)
f (R)(x) + g(R)(x)→ f(x) + g(x) ∀ x ∈ R

|f (R) + g(R)|p ≤ ||f (R)|+ |g(R)||p ≤ 2p(|f |p + |g|p)

so by Dominated Convergence, f + g ∈ Lp(R).
That ‖f‖Lp is a seminorm on Lp(R) is an integral form of Minkowski’s inequal-

ity. In fact we can deduce if from the finite form. Namely, for two step functions
f and g we can always find a finite collection of intervals on which they are both
constant and outside which they both vanish, so the same is true of the sum. Thus

(2.110)

‖f‖Lp =

 n∑
j=1

|ci|p(bi − ai)

 1
p

, ‖g‖Lp =

 n∑
j=1

|di|p(bi − ai)

 1
p

,

‖f + g‖Lp =

 n∑
j=1

|ci + di|p(bi − ai)

 1
p

.

Absorbing the lengths into the constants, by setting c′i = ci(bi − ai)
1
p and d′i =

di(bi − ai)
1
p , Minkowski’s inequality now gives

(2.111) ‖f + g‖Lp =

(∑
i

|c′i + d′i|p
) 1
p

≤ ‖f‖Lp + ‖g‖Lp

which is the integral form for step functions. Thus indeed, ‖f‖Lp is a norm on the
step functions.

For general elements f, g ∈ Lp(R) we can use the approximation by step
functions in Lemma 17. Thus for any R, there exist sequences of step functions
sn → f (R), tn → g(R) a.e. and bounded by R on [−R,R] so by Dominated Conver-
gence,

∫
|f (R)|p = lim

∫
|sn|p,

∫
|g(R)|p and

∫
|f (R) + g(R)|p = lim

∫
|sn+ tn|p. Thus

the triangle inequality holds for f (R) and g(R). Then again applying dominated
convergence as R→∞ gives the general case. The other conditions for a seminorm
are clear.

Then the space of functions with
∫
|f |p = 0 is again just N , independent of p,

is clear since f ∈ N ⇐⇒ |f |p ∈ N . The fact that Lp(R) = Lp(R)/N is a normed
space follows from the earlier general discussion, or as in the proof above for L1(R).

So, only the comleteness of Lp(R) remains to be checked and we know this
is equivalent to the convergence of any absolutely summable series. So, we can
suppose fn ∈ Lp(R) have

(2.112)
∑
n

(∫
|fn|p

) 1
p

<∞.
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Consider the sequence gn = fnχ[−R,R] for some fixed R > 0. This is in L1(R) and

(2.113) ‖gn‖L1 ≤ (2R)
1
q ‖fn‖Lp

by the integral form of Hölder’s inequality
(2.114)

f ∈ Lp(R), g ∈ Lq(R),
1

p
+

1

q
= 1 =⇒ fg ∈ L1(R) and |

∫
fg| ≤ ‖f‖Lp |‖g‖Lq

which can be proved by the same approximation argument as above, see Problem 4.
Thus the series gn is absolutely summable in L1 and so converges absolutely almost
everywhere. It follows that the series

∑
n
fn(x) converges absolutely almost every-

where – since it is just
∑
n
gn(x) on [−R,R]. The limit, f, of this series is therefore

in L1
loc(R).
So, we only need show that f ∈ Lp(R) and that

∫
|f − Fn|p → 0 as n → ∞

where Fn =
n∑
k=1

fk. By Minkowski’s inequality we know that hn = (
n∑
k=1

|fk|)p has

bounded L1 norm, since

(2.115) ‖|hn|‖
1
p

L1 = ‖
n∑
k=1

|fk|‖Lp . ≤
∑
k

‖fk‖Lp .

Thus, hn is an increasing sequence of functions in L1(R) with bounded integral,
so by the Monotonicity Lemma it converges a.e. to a function h ∈ L1(R). Since
|Fn|p ≤ h and |Fn|p → |f |p a.e. it follows by Dominated convergence that

(2.116) |f |p ∈ L1(R), ‖|f |p‖
1
p

L1 ≤
∑
n

‖fn‖Lp

and hence f ∈ Lp(R). Applying the same reasoning to f − Fn which is the sum of
the series starting at term n+ 1 gives the norm convergence:

(2.117) ‖f − Fn‖Lp ≤
∑
k>n

‖fk‖Lp → 0 as n→∞.

�

12. Lebesgue measure

In case anyone is interested in how to define Lebesgue measure from where we
are now we can just use the integral.

Definition 13. A set A ⊂ R is measurable if its characteristic function χA is
locally integrable. A measurable set A has finite measure if χA ∈ L1(R) and then

(2.118) µ(A) =

∫
χA

is the Lebesgue measure of A. If A is measurable but not of finite measure then
µ(A) =∞ by definition.

Functions which are the finite sums of constant multiples of the characteristic
functions of measurable sets of finite measure are called ‘simple functions’ and
behave rather like our step functions. One of the standard approaches to Lebesgue
integration, but starting from some knowledge of a measure, is to ‘complete’ the
space of simple functions with respect to the integral.
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We know immediately that any interval (a, b) is measurable (indeed whether
open, semi-open or closed) and has finite measure if and only if it is bounded –
then the measure is b− a. Some things to check:-

Proposition 17. The complement of a measurable set is measurable and any
countable union or countable intersection of measurable sets is measurable.

Proof. The first part follows from the fact that the constant function 1 is
locally integrable and hence χR\A = 1−χA is locally integrable if and only if χA is
locally integrable.

Notice the relationship between a characteristic function and the set it defines:-

(2.119) χA∪B = max(χA, χB), χA∩B = min(χA, χB).

If we have a sequence of sets An then Bn =
⋃
k≤nAk is clearly an increasing

sequence of sets and

(2.120) χBn → χB , B =
∑
n

An

is an increasing sequence which converges pointwise (at each point it jumps to 1
somewhere and then stays or else stays at 0.) Now, if we multiply by χ[−N,N ] then

(2.121) fn = χ[−N,N ]χBn → χB∩[−N,N ]

is an increasing sequence of integrable functions – assuming that is that the Ak’s are
measurable – with integral bounded above, by 2N. Thus by the monotonicity lemma
the limit is integrable so χB is locally integrable and hence

⋃
nAn is measurable.

For countable intersections the argument is similar, with the sequence of char-
acteristic functions decreasing. �

Corollary 3. The (Lebesgue) measurable subsets of R form a collection, M,
of the power set of R, including ∅ and R which is closed under complements, count-
able unions and countable intersections.

Such a collection of subsets of a set X is called a ‘σ-algebra’ – so a σ-algebra
Σ in a set X is a collection of subsets of X containing X, ∅, the complement of
any element and countable unions and intersections of any element. A (positive)
measure is usually defined as a map µ : Σ −→ [0,∞] with µ(∅) = 0 and such that

(2.122) µ(
⋃
n

En) =
∑
n

µ(En)

for any sequence {Em} of sets in Σ which are disjoint (in pairs).
As for Lebesgue measure a set A ∈ Σ is ‘measurable’ and if µ(A) is not of finite

measure it is said to have infinite measure – for instance R is of infinite measure
in this sense. Since the measure of a set is always non-negative (or undefined if it
isn’t measurable) this does not cause any problems and in fact Lebesgue measure
is countably additive provided as in (2.122) provided we allow ∞ as a value of the
measure. It is a good exercise to prove this!

13. Density of step functions

You can skip this section, since it is inserted here to connect the approach
via continuous functions and the Riemann integral, in Section 1, to the more usual
approach via step functions starting in Section ?? (which does not use the Riemann
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integral). We prove the ‘density’ of step functions in L1(R) and this leads below to
the proof that Definition 5 is equivalent to Definition ?? so that one can use either.

A step function h : R −→ C is by definition a function which is the sum
of multiples of characteristic functions of (finite) intervals. Mainly for reasons of
consistency we use half-open intervals here, we define χ(a,b] = 1 when x ∈ (a, b]
(which if you like is empty when a ≥ b) and vanishes otherwise. So a step function
is a finite sum

(2.123) h =

M∑
i=1

ciχ(ai,bi]

where it doesn’t matter if the intervals overlap since we can cut them up. Anyway,
that is the definition.

Proposition 18. The linear space of step functions is a subspace of L1(R),
on which

∫
|h| is a norm, and for any element f ∈ L1(R) there is an absolutely

summable series of step functions {hi},
∑
i

∫
|hi| <∞ such that

(2.124) f(x) =
∑
i

hi(x) a.e.

Proof. First we show that the characteristic function χ(a,b] ∈ L1(R). To see
this, take a decreasing sequence of continuous functions such as

(2.125) un(x) =



0 if x < a− 1/n

n(x− a+ 1/n) if a− 1/n ≤ x ≤ a
1 if a < x ≤ b
1− n(x− b) if b < x ≤ b+ 1/n

0 if x > b+ 1/n.

This is continuous because each piece is continuous and the limits from the two
sides at the switching points are the same. This is clearly a decreasing sequence of
continuous functions which converges pointwise to χ(a,b] (not uniformly of course).
It follows that detelescoping, setting f1 = u1 and fj = uj − uj−1 for j ≥ 2,
gives a series of continuous functions which converges pointwise and to χ(a,b]. It
follows from the fact that uj is decreasing that series is absolutely summable, so
χ(a,b] ∈ L1(R).

Now, conversely, each element f ∈ C(R) is the uniform limit of step functions –
this follows directly from the uniform continuity of continuous functions on compact
sets. It suffices to suppose that f is real and then combine the real and imaginary
parts. Suppose f = 0 outside [−R,R]. Take the subdivision of (−R,R] into 2n
equal intervals of length R/n and let hn be the step function which is sup f for the
closure of that interval. Choosing n large enough, sup f − inf f < ε on each such
interval, by uniform continuity, and so sup |f − hn| < ε. Again this is a decreasing
sequence of step functions with integral bounded below so in fact it is the sequence
of partial sums of the absolutely summable series obtained by detelescoping.

Certainly then for each element f ∈ Cc(R) there is a sequence of step functions
with

∫
|f − hn| → 0. The same is therefore true of any element g ∈ L1(R) since

then there is a sequence fn ∈ Cc(R) such that ‖f − fn‖L1 → 0. So just choosing a
step function hn with ‖fn − hn‖ < 1/n ensures that ‖f − hn‖L1 → 0.
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To get an absolutely summable series of step function {gn} with ‖f−
N∑
n=1

gn‖ →

0 we just have to drop elements of the approximating sequence to speed up the
convergence and then detelescope the sequence. For the moment I do not say that

(2.126) f(x) =
∑
n

gn(x) a.e.

although it is true! It follows from the fact that the right side does define an
element of L1(R) and by the triangle inequality the difference of the two sides
has vanishing L1 norm, i.e. is a null function. So we just need to check that null
functions vanish outside a set of measure zero. This is Proposition 12 below, which
uses Proposition 13. Taking a little out of the proof of that proposition proves
(2.126) directly. �

14. Measures on the line

Going back to starting point for Lebesgue measure and the Lebesgue integral,
the discussion can be generalized, even in the one-dimensional case, by replacing
the measure of an interval by a more general function. As for the Stieltjes integral
this can be given by an increasing (meaning of course non-decreasing) function
m : R −→ R. For the discussion in this chapter to go through with only minor
changes we need to require that

(2.127)
m : R −→ R is non-decreasing and continuous from below

limx ↑ ym(x) = m(y) ∀ y ∈ R.

Then we can define

(2.128) µ([a, b)) = m(b)−m(a).

For open and closed intervals we will expect that

(2.129) µ((a, b)) = lim
x↓a

m(x)−m(b), µ([a, b]) = m(a)− lim
x↓b

m(x).

To pursue this, the first thing to check is that the analogue of Proposition ?? holds
in this case – namely if [a, b) is decomposed into a finite number of such semi-open
intervals by choice of interior points then

(2.130) µ([a, b)) =
∑
i

µ([ai, bi)).

Of course this follows from (2.128). Similarly, µ([a, b)) ≥ µ([A,B)) if A ≤ a and
b ≤ B, i.e. if [a, b) ⊂ [A,B). From this it follows that the analogue of Lemma ??
also holds with µ in place of Lebesgue length.

Then we can define the µ-integral,
∫
fdµ, of a step function, we do not get

Proposition ?? since we might have intervals of µ length zero. Still,
∫
|f |dµ is

a seminorm. The definition of a µ-Lebesgue-integrable function (just called µ-
integrable usually), in terms of absolutely summable series with respect to this
seminorm, can be carried over as in Definition ??.

So far we have not used the continuity condition in (2.129), but now consider
the covering result Proposition ??. The first part has the same proof. For the
second part, the proof proceeds by making the intervals a little longer at the closed
end – to make them open. The continuity condition (2.129) ensures that this can be
done in such a way as to make the difference µ(bi)−m(ai − εi) < µ([ai, bi)) + δ2−i
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for any δ > 0 by choosing εi > 0 small enough. This covers [a, b− ε] for ε > 0 and
this allows the finite cover result to be applied to see that

(2.131) µ(b− ε)− µ(a) ≤
∑
i

µ([ai, bi)) + 2δ

for any δ > 0 and ε > 0. Then taking the limits as ε ↓ 0 and δ ↓ 0 gives the ‘outer’
intequality. So Proposition ?? carries over.

From this point the discussion of the µ integral proceeds in the same way with
a few minor exceptions – Corollary ?? doesn’t work again because there may be
intervals of length zero. Otherwise things proceed pretty smoothly right through.
The construction of Lebesgue measure, as in § 12, leasds to a σ-algebra Σµ, of
subsets of R which contains all the intervals, whether open, closed or mixed and all
the compact sets. You can check that the resulting countably additive measure is
a ‘Radon measure’ in that

(2.132)
µ(B) = inf{

∑
i

µ((aibi)); B ⊂
⋃
i

(ai, bi)}, ∀ B ∈ Σµ,

µ((a, b)) = sup{µ(K);K ⊂ (a, b), K compact}.

Conversely, every such positive Radon measure arises this way. Continuous func-
tions are locally µ-integrable and if µ(R) <∞ (which corresponds to a choice of m
which is bounded) then

∫
fdµ < ∞ for every bounded continuous function which

vanishes at infinity.

Theorem 11. [Riesz’ other representation theorem] For any f ∈ (C0(R)) there
are four uniquely determined (positive) Radon measures, µi, i = 1, . . . , 4 such that
µi(R) <∞ and

(2.133) f(u) =

∫
fdµ1 −

∫
fdµ2 + i

∫
fdµ3 − i

∫
fdµ4.

How hard is this to prove? Well, a proof is outlined in the problems.

15. Higher dimensions

I do not actually plan to cover this in lectures, but put it in here in case someone
is interested (which you should be) or if I have time at the end of the course to
cover a problem in two or more dimensions (I have the Dirichlet problem in mind).

So, we want – with the advantage of a little more experience – to go back to
the beginning and define L1(Rn), L1(Rn), L2(Rn) and L2(Rn). In fact relatively
little changes but there are some things that one needs to check a little carefully.

The first hurdle is that I am not assuming that you have covered the Riemann
integral in higher dimensions. Fortunately we do not reall need that since we can
just iterated the one-dimensional Riemann integral for continuous functions. So,
define

(2.134) Cc(Rn) = {u : Rn −→ C; continuous and such that u(x) = 0 for |x| > R}

where of course the R can depend on the element. Now, if we hold say the last
n−1 variables fixed, we get a continuous function of 1 variable which vanishes when
|x| > R :

(2.135) u(·, x2, . . . , xn) ∈ Cc(R) for each (x2, . . . , xn) ∈ Rn−1.
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So we can integrate it and get a function

(2.136) I1(x2, . . . , xn) =

∫
R
u(x, x1, . . . , xn), I1 : Rn−1 −→ C.

Lemma 18. For each u ∈ Cc(Rn), I1 ∈ Cc(Rn−1).

Proof. Certainly if |(x2, . . . , xn)| > R then u(·, x2, . . . , xn) ≡ 0 as a function of
the first variable and hence I1 = 0 in |(x2, . . . , xn)| > R. The continuity follows from
the uniform continuity of a function on the compact set |x| ≤ R, |(x2, . . . , xn) ≤ R
of Rn. Thus given ε > 0 there exists δ > 0 such that

(2.137) |x− x′| < δ, |y − y′|Rn−1 < δ =⇒ |u(x, y)− u(x′, y′)| < ε.

From the standard estimate for the Riemann integral,

(2.138) |I1(y)− I1(y′)| ≤
∫ R

−R
|u(x, y)− u(x, y′)|dx ≤ 2Rε

if |y − y′| < δ. This implies the (uniform) continuity of I1. Thus I1 ∈ Cc(Rn−2) �

The upshot of this lemma is that we can integrate again, and hence a total of
n times and so define the (iterated) Riemann integral as

(2.139)

∫
Rn
u(z)dz =

∫ R

−R

∫ R

−R
. . .

∫ R

−R
u(x1, x2, x3, . . . , xn)dx1dx2 . . . dxn ∈ C.

Lemma 19. The interated Riemann integral is a well-defined linear map

(2.140) Cc(Rn) −→ C

which satisfies

(2.141) |
∫
u| ≤

∫
|u| ≤ (2R)n sup |u| if u ∈ Cc(Rn) and u(z) = 0 in |z| > R.

Proof. This follows from the standard estimate in one dimension. �

Now, one annoying thing is to check that the integral is independent of the
order of integration (although be careful with the signs here!) Fortunately we can
do this later and not have to worry.

Lemma 20. The iterated integral

(2.142) ‖u‖L1 =

∫
Rn
|u|

is a norm on Cc(Rn).

Proof. Straightforward. �

Definition 14. The space L1(Rn) (resp. L2(Rn)) is defined to consist of those
functions f : Rn −→ C such that there exists a sequence {fn} which is absolutely
summable with respect to the L1 norm (resp. the L2 norm) such that

(2.143)
∑
n

|fn(x)| <∞ =⇒
∑
n

fn(x) = f(x).
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Proposition 19. If f ∈ L1(Rn) then |f | ∈ L1(Rn), Re f ∈ L1(Rn) and the
space L1(Rn) is lienar. Moreover if {fj} is an absolutely summable sequence in
Cc(Rn) with respect to L1 such that

(2.144)
∑
n

|fn(x)| <∞ =⇒
∑
n

fn(x) = 0

then
∫
fn → 0 and in consequence the limit

(2.145)

∫
Rn
f =

∑
n→∞

∫
fn

is well-defined on L1(Rn).

Proof. Remarkably enough, nothing new is involved here. For the first part
this is pretty clear, but also holds for the second part. There is a lot to work
through, but it is all pretty much as in the one-dimensional case. �

Removed material

Here is a narrative for a later reading:- If you can go through this item by item,
reconstruct the definitions and results as you go and see how thing fit together then
you are doing well!

• Intervals and length.
• Covering lemma.
• Step functions and the integral.
• Monotonicity lemma.
• L1(R) and absolutely summable approximation.
• L1(R) is a linear space.
•
∫

: L1(R) −→ C is well defined.
• If f ∈ L1(R) then |f | ∈ L1(R) and

(2.146)

∫
|f | = lim

n→∞

∫
|
n∑
j=1

fj |, lim
n→∞

∫
|f −

n∑
j=1

fj | = 0

for any absolutely summable approximation.
• Sets of measure zero.
• Convergence a.e.
• If {gj} in L1(R) is absolutely summable then

(2.147)

g =
∑
j

gj a.e. =⇒ g ∈ L1(R),

{x ∈ R;
∑
j

|gj(x)| =∞} is of measure zero

∫
g =

∑
j

∫
gj ,

∫
|g| = lim

n→∞

∫
|
n∑
j=1

gj |, lim
n→∞

∫
|g −

n∑
j=1

gj | = 0.

• The space of null functions N = {f ∈ L1(R);
∫
|f | = 0} consists precisely

of the functions vanishing almost everywhere, N = {f : R −→ C; f =
0 a.e.}.
• L1(R) = L1(R)/N is a Banach space with L1 norm.
• Montonicity for Lebesgue functions.
• Fatou’s Lemma.
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• Dominated convergence.
• The Banach spaces Lp(R) = Lp(R)/N , 1 ≤ p <∞.
• Measurable sets.





CHAPTER 3

Hilbert spaces

There are really three ‘types’ of Hilbert spaces (over C). The finite dimensional
ones, essentially just Cn, with which you are pretty familiar and two infinite dimen-
sional cases corresponding to being separable (having a countable dense subset) or
not. As we shall see, there is really only one separable infinite-dimensional Hilbert
space and that is what we are mostly interested in. Nevertheless some proofs (usu-
ally the nicest ones) work in the non-separable case too.

I will first discuss the definition of pre-Hilbert and Hilbert spaces and prove
Cauchy’s inequality and the parallelogram law. This can be found in all the lecture
notes listed earlier and many other places so the discussion here will be kept suc-
cinct. Another nice source is the book of G.F. Simmons, “Introduction to topology
and modern analysis”. I like it – but I think it is out of print.

1. pre-Hilbert spaces

A pre-Hilbert space, H, is a vector space (usually over the complex numbers
but there is a real version as well) with a Hermitian inner product

(3.1)

(, ) : H ×H −→ C,
(λ1v1 + λ2v2, w) = λ1(v1, w) + λ2(v2, w),

(w, v) = (v, w)

for any v1, v2, v and w ∈ H and λ1, λ2 ∈ C which is positive-definite

(3.2) (v, v) ≥ 0, (v, v) = 0 =⇒ v = 0.

Note that the reality of (v, v) follows from the second condition in (3.1), the posi-
tivity is an additional assumption as is the positive-definiteness.

The combination of the two conditions in (3.1) implies ‘anti-linearity’ in the
second variable

(3.3) (v, λ1w1 + λ2w2) = λ1(v, w1) + λ2(v, w2)

which is used without comment below.
The notion of ‘definiteness’ for such an Hermitian inner product exists without

the need for positivity – it just means

(3.4) (u, v) = 0 ∀ v ∈ H =⇒ u = 0.

Lemma 21. If H is a pre-Hilbert space with Hermitian inner product (, ) then

(3.5) ‖u‖ = (u, u)
1
2

is a norm on H.

69
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Proof. The first condition on a norm follows from (3.2). Absolute homogene-
ity follows from (3.1) since

(3.6) ‖λu‖2 = (λu, λu) = |λ|2‖u‖2.
So, it is only the triangle inequality we need. This follows from the next lemma,
which is the Cauchy-Schwarz inequality in this setting – (3.8). Indeed, using the
‘sesqui-linearity’ to expand out the norm

(3.7) ‖u+ v‖2 = (u+ v, u+ v)

= ‖u‖2 + (u, v) + (v, u) + ‖v‖2 ≤ ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2

= (‖u‖+ ‖v‖)2.

�

Lemma 22. The Cauchy-Schwarz inequality,

(3.8) |(u, v)| ≤ ‖u‖‖v‖ ∀ u, v ∈ H
holds in any pre-Hilbert space.

Proof. For any non-zero u, v ∈ H and s ∈ R positivity of the norm shows
that

(3.9) 0 ≤ ‖u+ sv‖2 = ‖u‖2 + 2sRe(u, v) + s2‖v‖2.
This quadratic polynomial is non-zero for s large so can have only a single minimum
at which point the derivative vanishes, i.e. it is where

(3.10) 2s‖v‖2 + 2 Re(u, v) = 0.

Substituting this into (3.9) gives

(3.11) ‖u‖2 − (Re(u, v))2/‖v‖2 ≥ 0 =⇒ |Re(u, v)| ≤ ‖u‖‖v‖
which is what we want except that it is only the real part. However, we know that,
for some z ∈ C with |z| = 1, Re(zu, v) = Re z(u, v) = |(u, v)| and applying (3.11)
with u replaced by zu gives (3.8). �

2. Hilbert spaces

Definition 15. A Hilbert space H is a pre-Hilbert space which is complete
with respect to the norm induced by the inner product.

As examples we know that Cn with the usual inner product

(3.12) (z, z′) =

n∑
j=1

zjz′j

is a Hilbert space – since any finite dimensional normed space is complete. The
example we had from the beginning of the course is l2 with the extension of (3.12)

(3.13) (a, b) =

∞∑
j=1

ajbj , a, b ∈ l2.

Completeness was shown earlier.
The whole outing into Lebesgue integration was so that we could have the

‘standard example’ at our disposal, namely

(3.14) L2(R) = {u ∈ L1
loc(R); |u|2 ∈ L1(R)}/N
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where N is the space of null functions. and the inner product is

(3.15) (u, v) =

∫
uv.

Note that we showed that if u, v ∈ L2(R) then uv ∈ L1(R).

3. Orthonormal sets

Two elements of a pre-Hilbert space H are said to be orthogonal if

(3.16) (u, v) = 0⇐⇒ u ⊥ v.

A sequence of elements ei ∈ H, (finite or infinite) is said to be orthonormal if
‖ei‖ = 1 for all i and (ei, ej) = 0 for all i 6= j.

Proposition 20 (Bessel’s inequality). If ei, i ∈ N, is an orthonormal sequence
in a pre-Hilbert space H, then

(3.17)
∑
i

|(u, ei)|2 ≤ ‖u‖2 ∀ u ∈ H.

Proof. Start with the finite case, i = 1, . . . , N. Then, for any u ∈ H set

(3.18) v =

N∑
i=1

(u, ei)ei.

This is supposed to be ‘the projection of u onto the span of the ei’. Anyway,
computing away we see that

(3.19) (v, ej) =

N∑
i=1

(u, ei)(ei, ej) = (u, ej)

using orthonormality. Thus, u− v ⊥ ej for all j so u− v ⊥ v and hence

(3.20) 0 = (u− v, v) = (u, v)− ‖v‖2.

Thus ‖v‖2 = |(u, v)| and applying the Cauchy-Schwarz inequality we conclude that
‖v‖2 ≤ ‖v‖‖u‖ so either v = 0 or ‖v‖ ≤ ‖u‖. Expanding out the norm (and
observing that all cross-terms vanish)

‖v‖2 =

N∑
i=1

|(u, ei)|2 ≤ ‖u‖2

which is (3.17).
In case the sequence is infinite this argument applies to any finite subsequence,

ei, i = 1, . . . , N since it just uses orthonormality, so (3.17) follows by taking the
supremum over N. �

4. Gram-Schmidt procedure

Definition 16. An orthonormal sequence, {ei}, (finite or infinite) in a pre-
Hilbert space is said to be maximal if

(3.21) u ∈ H, (u, ei) = 0 ∀ i =⇒ u = 0.

Theorem 12. Every separable pre-Hilbert space contains a maximal orthonor-
mal set.
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Proof. Take a countable dense subset – which can be arranged as a sequence
{vj} and the existence of which is the definition of separability – and orthonormalize
it. Thus if v1 6= 0 set ei = v1/‖v1‖. Proceeding by induction we can suppose to
have found for a given integer n elements ei, i = 1, . . . ,m, where m ≤ n, which are
orthonormal and such that the linear span

(3.22) sp(e1, . . . , em) = sp(v1, . . . , vn).

To show the inductive step observe that if vn+1 is in the span(s) in (3.22) then the
same ei’s work for n+ 1. So we may as well assume that the next element, vn+1 is
not in the span in (3.22). It follows that

(3.23) w = vn+1 −
n∑
j=1

(vn+1, ej)ej 6= 0 so em+1 =
w

‖w‖

makes sense. By construction it is orthogonal to all the earlier ei’s so adding em+1

gives the equality of the spans for n+ 1.
Thus we may continue indefinitely, since in fact the only way the dense set

could be finite is if we were dealing with the space with one element, 0, in the first
place. There are only two possibilities, either we get a finite set of ei’s or an infinite
sequence. In either case this must be a maximal orthonormal sequence. That is,
we claim

(3.24) H 3 u ⊥ ej ∀ j =⇒ u = 0.

This uses the density of the vn’s. There must exist a sequence wj where each wj is
a vn, such that wj → u in H, assumed to satisfy (3.24). Now, each vn, and hence
each wj , is a finite linear combination of ek’s so, by Bessel’s inequality

(3.25) ‖wj‖2 =
∑
k

|(wj , ek)|2 =
∑
k

|(u− wj , ek)|2 ≤ ‖u− wj‖2

where (u, ej) = 0 for all j has been used. Thus ‖wj‖ → 0 and u = 0. �

Now, although a non-complete but separable pre-Hilbert space has maximal
orthonormal sets, these are not much use without completeness.

5. Complete orthonormal bases

Definition 17. A maximal orthonormal sequence in a separable Hilbert space
is called a complete orthonormal basis.

This notion of basis is not quite the same as in the finite dimensional case
(although it is a legitimate extension of it).

Theorem 13. If {ei} is a complete orthonormal basis in a Hilbert space then
for any element u ∈ H the ‘Fourier-Bessel series’ converges to u :

(3.26) u =

∞∑
i=1

(u, ei)ei.

Proof. The sequence of partial sums of the Fourier-Bessel series

(3.27) uN =

N∑
i=1

(u, ei)ei
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is Cauchy. Indeed, if m < m′ then

(3.28) ‖um′ − um‖2 =

m′∑
i=m+1

|(u, ei)|2 ≤
∑
i>m

|(u, ei)|2

which is small for large m by Bessel’s inequality. Since we are now assuming
completeness, um → w in H. However, (um, ei) = (u, ei) as soon as m > i and
|(w − un, ei)| ≤ ‖w − un‖ so in fact

(3.29) (w, ei) = lim
m→∞

(um, ei) = (u, ei)

for each i. Thus in fact u − w is orthogonal to all the ei so by the assumed com-
pleteness of the orthonormal basis must vanish. Thus indeed (3.26) holds. �

6. Isomorphism to l2

A finite dimensional Hilbert space is isomorphic to Cn with its standard inner
product. Similarly from the result above

Proposition 21. Any infinite-dimensional separable Hilbert space (over the
complex numbers) is isomorphic to l2, that is there exists a linear map

(3.30) T : H −→ l2

which is 1-1, onto and satisfies (Tu, Tv)l2 = (u, v)H and ‖Tu‖l2 = ‖u‖H for all u,
v ∈ H.

Proof. Choose an orthonormal basis – which exists by the discussion above
and set

(3.31) Tu = {(u, ej)}∞j=1.

This maps H into l2 by Bessel’s inequality. Moreover, it is linear since the entries
in the sequence are linear in u. It is 1-1 since Tu = 0 implies (u, ej) = 0 for all j
implies u = 0 by the assumed completeness of the orthonormal basis. It is surjective
since if {cj}∞j=1 ∈ l2 then

(3.32) u =

∞∑
j=1

cjej

converges in H. This is the same argument as above – the sequence of partial sums
is Cauchy since if n > m,

(3.33) ‖
n∑

j=m+1

cjej‖2H =

n∑
j=m+1

|c2| .

Again by continuity of the inner product, Tu = {cj} so T is surjective.
The equality of the norms follows from equality of the inner products and the

latter follows by computation for finite linear combinations of the ej and then in
general by continuity. �
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7. Parallelogram law

What exactly is the difference between a general Banach space and a Hilbert
space? It is of course the existence of the inner product defining the norm. In fact
it is possible to formulate this condition intrinsically in terms of the norm itself.

Proposition 22. In any pre-Hilbert space the parallelogram law holds –

(3.34) ‖v + w‖2 + ‖v − w‖2 = 2‖v‖2 + 2‖w‖2, ∀ v, w ∈ H.

Proof. Just expand out using the inner product

(3.35) ‖v + w‖2 = ‖v‖2 + (v, w) + (w, v) + ‖w‖2

and the same for ‖v − w‖2 and see the cancellation. �

Proposition 23. Any normed space where the norm satisfies the parallelogram
law, (3.34), is a pre-Hilbert space in the sense that

(3.36) (v, w) =
1

4

(
‖v + w‖2 − ‖v − w‖2 + i‖v + iw‖2 − i‖v − iw‖2

)
is a positive-definite Hermitian inner product which reproduces the norm.

Proof. A problem below. �

So, when we use the parallelogram law and completeness we are using the
essence of the Hilbert space.

8. Convex sets and length minimizer

The following result does not need the hypothesis of separability of the Hilbert
space and allows us to prove the subsequent results – especially Riesz’ theorem –
in full generality.

Proposition 24. If C ⊂ H is a subset of a Hilbert space which is

(1) Non-empty
(2) Closed
(3) Convex, in the sense that v1, v1 ∈ C implies 1

2 (v1 + v2) ∈ C
then there exists a unique element v ∈ C closest to the origin, i.e. such that

(3.37) ‖v‖H = inf
u∈C
‖u‖H .

Proof. By definition of inf there must exist a sequence {vn} in C such that
‖vn‖ → d = infu∈C ‖u‖H . We show that vn converges and that the limit is the
point we want. The parallelogram law can be written

(3.38) ‖vn − vm‖2 = 2‖vn‖2 + 2‖vm‖2 − 4‖(vn + vm)/2‖2.

Since ‖vn‖ → d, given ε > 0 if N is large enough then n > N implies 2‖vn‖2 <
2d2 + ε2/2. By convexity, (vn + vm)/2 ∈ C so ‖(vn + vm)/2‖2 ≥ d2. Combining
these estimates gives

(3.39) n,m > N =⇒ ‖vn − vm‖2 ≤ 4d2 + ε2 − 4d2 = ε2

so {vn} is Cauchy. Since H is complete, vn → v ∈ C, since C is closed. Moreover,
the distance is continuous so ‖v‖H = limn→∞ ‖vn‖ = d.
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Thus v exists and uniqueness follows again from the parallelogram law. If v
and v′ are two points in C with ‖v‖ = ‖v′‖ = d then (v + v′)/2 ∈ C so

(3.40) ‖v − v′‖2 = 2‖v‖2 + 2‖v′‖2 − 4‖(v + v′)/2‖2 ≤ 0 =⇒ v = v′.

�

9. Orthocomplements and projections

Proposition 25. If W ⊂ H is a linear subspace of a Hilbert space then

(3.41) W⊥ = {u ∈ H; (u,w) = 0 ∀ w ∈W}

is a closed linear subspace and W ∩W⊥ = {0}. If W is also closed then

(3.42) H = W ⊕W⊥

meaning that any u ∈ H has a unique decomposition u = w + w⊥ where w ∈ W
and w⊥ ∈W⊥.

Proof. That W⊥ defined by (3.41) is a linear subspace follows from the lin-
earity of the condition defining it. If u ∈ W⊥ and u ∈ W then u ⊥ u by the
definition so (u, u) = ‖u‖2 = 0 and u = 0. Since the map H 3 u −→ (u,w) ∈ C is
continuous for each w ∈ H its null space, the inverse image of 0, is closed. Thus

(3.43) W⊥ =
⋂
w∈W
{(u,w) = 0}

is closed.
Now, suppose W is closed. If W = H then W⊥ = {0} and there is nothing to

show. So consider u ∈ H, u /∈W and set

(3.44) C = u+W = {u′ ∈ H;u′ = u+ w, w ∈W}.

Then C is closed, since a sequence in it is of the form u′n = u + wn where wn is a
sequence in W and u′n converges if and only if wn converges. Also, C is non-empty,
since u ∈ C and it is convex since u′ = u + w′ and u′′ = u + w′′ in C implies
(u′ + u′′)/2 = u+ (w′ + w′′)/2 ∈ C.

Thus the length minimization result above applies and there exists a unique
v ∈ C such that ‖v‖ = infu′∈C ‖u′‖. The claim is that this v is perpendicular to
W – draw a picture in two real dimensions! To see this consider an aritrary point
w ∈W and λ ∈ C then v + λw ∈ C and

(3.45) ‖v + λw‖2 = ‖v‖2 + 2 Re(λ(v, w)) + |λ|2‖w‖2.

Choose λ = teiθ where t is real and the phase is chosen so that eiθ(v, w) = |(v, w)| ≥
0. Then the fact that ‖v‖ is minimal means that

(3.46)
‖v‖2 + 2t|(v, w))|+ t2‖w‖2 ≥ ‖v‖2 =⇒

t(2|(v, w)|+ t‖w‖2) ≥ 0 ∀ t ∈ R =⇒ |(v, w)| = 0

which is what we wanted to show.
Thus indeed, given u ∈ H \W we have constructed v ∈ W⊥ such that u =

v + w, w ∈ W. This is (3.42) with the uniqueness of the decomposition already
shown since it reduces to 0 having only the decomposition 0 + 0 and this in turn is
W ∩W⊥ = {0}. �
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Since the construction in the preceding proof associates a unique element in W,
a closed linear subspace, to each u ∈ H, it defines a map

(3.47) ΠW : H −→W.

This map is linear, by the uniqueness since if ui = vi +wi, wi ∈W, (vi, wi) = 0 are
the decompositions of two elements then

(3.48) λ1u1 + λ2u2 = (λ1v1 + λ2v2) + (λ1w1 + λ2w2)

must be the corresponding decomposition. Moreover ΠWw = w for any w ∈ W
and ‖u‖2 = ‖v‖2 + ‖w‖2, Pythagoras’ Theorem, shows that

(3.49) Π2
W = ΠW , ‖ΠWu‖ ≤ ‖u‖ =⇒ ‖ΠW ‖ ≤ 1.

Thus, projection onto W is an operator of norm 1 (unless W = {0}) equal to its
own square. Such an operator is called a projection or sometimes an idempotent
(which sounds fancier).

Lemma 23. If {ej} is any finite or countable orthonormal set in a Hilbert space
then the orthogonal projection onto the closure of the span of these elements is

(3.50) Pu =
∑

(u, ek)ek.

Proof. We know that the series in (3.50) converges and defines a bounded
linear operator of norm at most one by Bessel’s inequality. Clearly P 2 = P by the
same argument. If W is the closure of the span then (u−Pu) ⊥W since (u−Pu) ⊥
ek for each k and the inner product is continuous. Thus u = (u− Pu) + Pu is the
orthogonal decomposition with respect to W. �

10. Riesz’ theorem

The most important application of these results is to prove Riesz’ representation
theorem (for Hilbert space, there is another one to do with measures).

Theorem 14. If H is a Hilbert space then for any continuous linear functional
T : H −→ C there exists a unique element φ ∈ H such that

(3.51) T (u) = (u, φ) ∀ u ∈ H.

Proof. If T is the zero functional then φ = 0 gives (3.51). Otherwise there
exists some u′ ∈ H such that T (u′) 6= 0 and then there is some u ∈ H, namely
u = u′/T (u′) will work, such that T (u) = 1. Thus

(3.52) C = {u ∈ H;T (u) = 1} = T−1({1}) 6= ∅.
The continuity of T and the second form shows that C is closed, as the inverse
image of a closed set under a continuous map. Moreover C is convex since

(3.53) T ((u+ u′)/2) = (T (u) + T (u′))/2.

Thus, by Proposition 24, there exists an element v ∈ C of minimal length.
Notice that C = {v + w;w ∈ N} where N = T−1({0}) is the null space of T.

Thus, as in Proposition 25 above, v is orthogonal to N. In this case it is the unique
element orthogonal to N with T (v) = 1.

Now, for any u ∈ H,
(3.54)
u−T (u)v satisfies T (u−T (u)v) = T (u)−T (u)T (v) = 0 =⇒ u = w+T (u)v, w ∈ N.
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Then, (u, v) = T (u)‖v‖2 since (w, v) = 0. Thus if φ = v/‖v‖2 then

(3.55) u = w + (u, φ)v =⇒ T (u) = (u, φ)T (v) = (u, φ).

�

11. Adjoints of bounded operators

As an application of Riesz’ we can see that to any bounded linear operator on
a Hilbert space

(3.56) A : H −→ H, ‖Au‖H ≤ C‖u‖H ∀ u ∈ H
there corresponds a unique adjoint operator.

Proposition 26. For any bounded linear operator A : H −→ H on a Hilbert
space there is a unique bounded linear operator A∗ : H −→ H such that

(3.57) (Au, v)H = (u,A∗v)H ∀ u, v ∈ H and ‖A‖ = ‖A∗‖.

Proof. To see the existence of A∗v we need to work out what A∗v ∈ H should
be for each fixed v ∈ H. So, fix v in the desired identity (3.57), which is to say
consider

(3.58) H 3 u −→ (Au, v) ∈ C.
This is a linear map and it is clearly bounded, since

(3.59) |(Au, v)| ≤ ‖Au‖H‖v‖H ≤ (‖A‖‖v‖H)‖u‖H .
Thus it is a continuous linear functional on H which depends on v. In fact it is just
the composite of two continuous linear maps

(3.60) H
u7−→Au−→ H

w 7−→(w,v)−→ C.
By Riesz’ theorem there is a unique element in H, which we can denote A∗v (since
it only depends on v) such that

(3.61) (Au, v) = (u,A∗v) ∀ u ∈ H.
Now this defines the map A∗ : H −→ H but we need to check that it is linear and
continuous. Linearity follows from the uniqueness part of Riesz’ theorem. Thus if
v1, v2 ∈ H and c1, c2 ∈ C then

(3.62) (Au, c1v1 + c2v2) = c1(Au, v1) + c2(Au, v2)

= c1(u,A∗v1) + c2(u,A∗v2) = (u, c1A
∗v2 + c2A

∗v2)

where we have used the definitions of A∗v1 and A∗v2 – by uniqueness we must have
A∗(c1v1 + c2v2) = c1A

∗v1 + c2A
∗v2.

Since we know the optimality of Cauchy’s inequality

(3.63) ‖v‖H = sup
‖u‖=1

|(u, v)|

it follows that

(3.64) ‖A∗v‖ = sup
‖u‖=1

|(u,A∗v)| = sup
‖u‖=1

|(Au, v)| ≤ ‖A‖‖v‖.

So in fact

(3.65) ‖A∗‖ ≤ ‖A‖
which shows that A∗ is bounded.
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The defining identity (3.57) also shows that (A∗)∗ = A so the reverse equality
in (3.65) also holds and so

(3.66) ‖A∗‖ = ‖A‖.

�

12. Compactness and equi-small tails

A compact subset in a general metric space is one with the property that any
sequence in it has a convergent subsequence, with its limit in the set. You will recall,
with pleasure no doubt, the equivalence of this condition to the (more general since
it makes good sense in an arbitrary topological space) covering condition, that any
open cover of the set has a finite subcover. So, in a separable Hilbert space the
notion of a compact set is already fixed. We want to characterize it, actually in
several ways.

A general result in a metric space is that any compact set is both closed and
bounded, so this must be true in a Hilbert space. The Heine-Borel theorem gives a
converse to this, for Rn or Cn (and hence in any finite dimensional normed space)
in which any closed and bounded set is compact. Also recall that the convergence
of a sequence in Cn is equivalent to the convergence of the n sequences given by its
components and this is what is used to pass first from R to C and then to Cn. All
of this fails in infinite dimensions and we need some condition in addition to being
bounded and closed for a set to be compact.

To see where this might come from, observe that

Lemma 24. In any metric space a set, S, consisting of the points of a convergent
sequence, s : N −→M, together with its limit, s, is compact.

Proof. The set here is the image of the sequence, thought of as a map from
the integers into the metric space, together with the limit (which might or might
not already be in the image of the sequence). Certainly this set is bounded, since
the distance from the intial point is bounded. Moreover it is closed. Indeed, the
complement M \ S is open – if p ∈ M \ S then it is not the limit of the sequence,
so for some ε > 0, and some N, if n > N then s(n) /∈ B(p, ε). Shrinking ε further if
necessary, we can make sure that all the s(k) for k ≤ N are not in the ball either
– since they are each at a positive distance from p. Thus B(p, ε) ⊂M \ S.

Finally, S is compact since any sequence in S has a convergent subsequence.
To see this, observe that a sequence {tj} in S either has a subsequence converging
to the limit s of the original sequence or it does not. So we only need consider the
latter case, but this means that, for some ε > 0, d(tj , s) > ε; but then tj takes values
in a finite set, since S \ B(s, ε) is finite – hence some value is repeated infinitely
often and there is a convergent subsequence. �

Lemma 25. The image of a convergent sequence in a Hilbert space is a set with
equi-small tails with respect to any orthonormal sequence, i.e. if ek is an othonormal
sequence and un → u is a convergent sequence then given ε > 0 there exists N such
that

(3.67)
∑
k>N

|(un, ek)|2 < ε2 ∀ n.
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Proof. Bessel’s inequality shows that for any u ∈ H,

(3.68)
∑
k

|(u, ek)|2 ≤ ‖u‖2.

The convergence of this series means that (3.67) can be arranged for any single
element un or the limit u by choosing N large enough, thus given ε > 0 we can
choose N ′ so that

(3.69)
∑
k>N ′

|(u, ek)|2 < ε2/2.

Consider the closure of the subspace spanned by the ek with k > N. The
orthogonal projection onto this space (see Lemma 23) is

(3.70) PNu =
∑
k>N

(u, ek)ek.

Then the convergence un → u implies the convergence in norm ‖PNun‖ → ‖PNu‖,
so

(3.71) ‖PNun‖2 =
∑
k>N

|(un, ek)|2 < ε2, n > n′.

So, we have arranged (3.67) for n > n′ for some N. This estimate remains valid if
N is increased – since the tails get smaller – and we may arrange it for n ≤ n′ by
chossing N large enough. Thus indeed (3.67) holds for all n if N is chosen large
enough. �

This suggests one useful characterization of compact sets in a separable Hilbert
space.

Proposition 27. A set K ⊂ H in a separable Hilbert space is compact if and
only if it is bounded, closed and the Fourier-Bessel sequence with respect to any
(one) complete orthonormal basis converges uniformly on it.

Proof. We already know that a compact set in a metric space is closed and
bounded. Suppose the equi-smallness of tails condition fails with respect to some
orthonormal basis ek. This means that for some ε > 0 and all p there is an element
up ∈ K, such that

(3.72)
∑
k>p

|(up, ek)|2 ≥ ε2.

Consider the subsequence {up} generated this way. No subsequence of it can have
equi-small tails (recalling that the tail decreases with p). Thus, by Lemma 25,
it cannot have a convergent subsequence, so K cannot be compact if the equi-
smallness condition fails.

Thus we have proved the equi-smallness of tails condition to be necessary for
the compactness of a closed, bounded set. It remains to show that it is sufficient.

So, suppose K is closed, bounded and satisfies the equi-small tails condition
with respect to an orthonormal basis ek and {un} is a sequence in K. We only
need show that {un} has a Cauchy subsequence, since this will converge (H being
complete) and the limit will be in K (since it is closed). Consider each of the
sequences of coefficients (un, ek) in C. Here k is fixed. This sequence is bounded:

(3.73) |(un, ek)| ≤ ‖un‖ ≤ C
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by the boundedness of K. So, by the Heine-Borel theorem, there is a subsequence
unl such that (unl , ek) converges as l→∞.

We can apply this argument for each k = 1, 2, . . . . First extract a subsequence
{un,1} of {un} so that the sequence (un,1, e1) converges. Then extract a subsequence
un,2 of un,1 so that (un,2, e2) also converges. Then continue inductively. Now pass
to the ‘diagonal’ subsequence vn of {un} which has kth entry the kth term, uk,k in
the kth subsequence. It is ‘eventually’ a subsequence of each of the subsequences
previously constructed – meaning it coincides with a subsequence from some point
onward (namely the kth term onward for the kth subsquence). Thus, for this
subsequence each of the (vn, ek) converges.

Consider the identity (the orthonormal set ek is complete by assumption) for
the difference

(3.74)

‖vn − vn+l‖2 =
∑
k≤N

|(vn − vn+l, ek)|2 +
∑
k>N

|(vn − vn+l, ek)|2

≤
∑
k≤N

|(vn − vn+l, ek)|2 + 2
∑
k>N

|(vn, ek)|2 + 2
∑
k>N

|(vn+l, ek)|2

where the parallelogram law on C has been used. To make this sum less than ε2

we may choose N so large that the last two terms are less than ε2/2 and this may
be done for all n and l by the equi-smallness of the tails. Now, choose n so large
that each of the terms in the first sum is less than ε2/2N, for all l > 0 using the
Cauchy condition on each of the finite number of sequence (vn, ek). Thus, {vn} is
a Cauchy subsequence of {un} and hence as already noted convergent in K. Thus
K is indeed compact. �

13. Finite rank operators

Now, we need to starting thinking a little more seriously about operators on
a Hilbert space, remember that an operator is just a continuous linear map T :
H −→ H and the space of them (a Banach space) is denoted B(H) (rather than the
more cumbersome B(H,H) which is needed when the domain and target spaces are
different).

Definition 18. An operator T ∈ B(H) is of finite rank if its range has fi-
nite dimension (and that dimension is called the rank of T ); the set of finite rank
operators will be denoted R(H).

Why not F(H)? Because we want to use this for the Fredholm operators.
Clearly the sum of two operators of finite rank has finite rank, since the range

is contained in the sum of the ranges (but is often smaller):

(3.75) (T1 + T2)u ∈ Ran(T1) + Ran(T2) ∀ u ∈ H.
Since the range of a constant multiple of T is contained in the range of T it follows
that the finite rank operators form a linear subspace of B(H).

What does a finite rank operator look like? It really looks like a matrix.

Lemma 26. If T : H −→ H has finite rank then there is a finite orthonormal
set {ek}Lk=1 in H such that

(3.76) Tu =

L∑
i,j=1

cij(u, ej)ei.
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Proof. By definition, the range of T, R = T (H) is a finite dimensional sub-
space. So, it has a basis which we can diagonalize in H to get an orthonormal basis,
ei, i = 1, . . . , p. Now, since this is a basis of the range, Tu can be expanded relative
to it for any u ∈ H :

(3.77) Tu =

p∑
i=1

(Tu, ei)ei.

On the other hand, the map u −→ (Tu, ei) is a continuous linear functional on H,
so (Tu, ei) = (u, vi) for some vi ∈ H; notice in fact that vi = T ∗ei. This means the
formula (3.77) becomes

(3.78) Tu =

p∑
i=1

(u, vi)ei.

Now, the Gram-Schmidt procedure can be applied to orthonormalize the sequence
e1, . . . , ep, v1 . . . , vp resulting in e1, . . . , eL. This means that each vi is a linear
combination which we can write as

(3.79) vi =

L∑
j=1

cijej .

Inserting this into (3.78) gives (3.76) (where the constants for i > p are zero). �

It is clear that

(3.80) B ∈ B(H) and T ∈ R(H) then BT ∈ R(H).

Indeed, the range of BT is the range of B restricted to the range of T and this is
certainly finite dimensional since it is spanned by the image of a basis of Ran(T ).
Similalry TB ∈ R(H) since the range of TB is contained in the range of T. Thus
we have in fact proved most of

Proposition 28. The finite rank operators form a ∗-closed two-sided ideal in
B(H), which is to say a linear subspace such that

(3.81) B1, B2 ∈ B(H), T ∈ R(H) =⇒ B1TB2, T
∗ ∈ R(H).

Proof. It is only left to show that T ∗ is of finite rank if T is, but this is an
immediate consequence of Lemma 26 since if T is given by (3.76) then

(3.82) T ∗u =

N∑
i,j=1

cij(u, ei)ej

is also of finite rank. �

Lemma 27 (Row rank=Colum rank). For any finite rank operator on a Hilbert
space, the dimension of the range of T is equal to the dimension of the range of T ∗.

Proof. From the formula (3.78) for a finite rank operator, it follows that the
vi, i = 1, . . . , p must be linearly independent – since the ei form a basis for the
range and a linear relation between the vi would show the range had dimension less
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than p. Thus in fact the null space of T is precisely the orthocomplement of the
span of the vi – the space of vectors orthogonal to each vi. Since

(3.83)

(Tu,w) =

p∑
i=1

(u, vi)(ei, w) =⇒

(w, Tu) =

p∑
i=1

(vi, u)(w, ei) =⇒

T ∗w =

p∑
i=1

(w, ei)vi

the range of T ∗ is the span of the vi, so is also of dimension p. �

14. Compact operators

Definition 19. An element K ∈ B(H), the bounded operators on a separable
Hilbert space, is said to be compact (the old terminology was ‘totally bounded’
or ‘completely continuous’) if the image of the unit ball is precompact, i.e. has
compact closure – that is if the closure of K{u ∈ H; ‖u‖H ≤ 1} is compact in H.

Notice that in a metric space, to say that a set has compact closure is the same
as saying it is contained in a compact set.

Proposition 29. An operator K ∈ B(H), bounded on a separable Hilbert space,
is compact if and only if it is the limit of a norm-convergent sequence of finite rank
operators.

Proof. So, we need to show that a compact operator is the limit of a conver-
gent sequence of finite rank operators. To do this we use the characterizations of
compact subsets of a separable Hilbert space discussed earlier. Namely, if {ei} is
an orthonormal basis of H then a subset I ⊂ H is compact if and only if it is closed
and bounded and has equi-small tails with respect to {ei}, meaning given ε > 0
there exits N such that

(3.84)
∑
i>N

|(v, ei)|2 < ε2 ∀ v ∈ I.

Now we shall apply this to the set K(B(0, 1)) where we assume that K is
compact (as an operator, don’t be confused by the double usage, in the end it turns
out to be constructive) – so this set is contained in a compact set. Hence (3.84)
applies to it. Namely this means that for any ε > 0 there exists n such that

(3.85)
∑
i>n

|(Ku, ei)|2 < ε2 ∀ u ∈ H, ‖u‖H ≤ 1.

For each n consider the first part of these sequences and define

(3.86) Knu =
∑
k≤n

(Ku, ei)ei.

This is clearly a linear operator and has finite rank – since its range is contained in
the span of the first n elements of {ei}. Since this is an orthonormal basis,

(3.87) ‖Ku−Knu‖2H =
∑
i>n

|(Ku, ei)|2
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Thus (3.85) shows that ‖Ku−Knu‖H ≤ ε. Now, increasing n makes ‖Ku−Knu‖
smaller, so given ε > 0 there exists n such that for all N ≥ n,

(3.88) ‖K −KN‖B = sup
‖u‖≤1

‖Ku−Knu‖H ≤ ε.

Thus indeed, Kn → K in norm and we have shown that the compact operators are
contained in the norm closure of the finite rank operators.

For the converse we assume that Tn → K is a norm convergent sequence in
B(H) where each of the Tn is of finite rank – of course we know nothing about the
rank except that it is finite. We want to conclude that K is compact, so we need to
show that K(B(0, 1)) is precompact. It is certainly bounded, by the norm of K. By
a result above on compactness of sets in a separable Hilbert space we know that it
suffices to prove that the closure of the image of the unit ball has uniformly small
tails. Let ΠN be the orthogonal projection off the first N elements of a complete
orthonormal basis {ek} – so

(3.89) u =
∑
k≤N

(u, ek)ek + ΠNu.

Then we know that ‖ΠN‖ = 1 (assuming the Hilbert space is infinite dimensional)
and ‖ΠNu‖ is the ‘tail’. So what we need to show is that given ε > 0 there exists
n such that

(3.90) ‖u‖ ≤ 1 =⇒ ‖ΠNKu‖ < ε.

Now,

(3.91) ‖ΠNKu‖ ≤ ‖ΠN (K − Tn)u‖+ ‖ΠNTnu‖

so choosing n large enough that ‖K − Tn‖ < ε/2 and then using the compactness
of Tn (which is finite rank) to choose N so large that

(3.92) ‖u‖ ≤ 1 =⇒ ‖ΠNTnu‖ ≤ ε/2

shows that (3.90) holds and hence K is compact. �

Proposition 30. For any separable Hilbert space, the compact operators form
a closed and ∗-closed two-sided ideal in B(H).

Proof. In any metric space (applied to B(H)) the closure of a set is closed,
so the compact operators are closed being the closure of the finite rank operators.
Similarly the fact that it is closed under passage to adjoints follows from the same
fact for finite rank operators. The ideal properties also follow from the correspond-
ing properties for the finite rank operators, or we can prove them directly anyway.
Namely if B is bounded and T is compact then for some c > 0 (namely 1/‖B‖
unless it is zero) cB maps B(0, 1) into itself. Thus cTB = TcB is compact since
the image of the unit ball under it is contained in the image of the unit ball under
T ; hence TB is also compact. Similarly BT is compact since B is continuous and
then

(3.93) BT (B(0, 1)) ⊂ B(T (B(0, 1))) is compact

since it is the image under a continuous map of a compact set. �
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15. Weak convergence

It is convenient to formalize the idea that a sequence be bounded and that each
of the (un, ek), the sequence of coefficients of some particular Fourier-Bessel series,
should converge.

Definition 20. A sequence, {un}, in a Hilbert space, H, is said to converge
weakly to an element u ∈ H if it is bounded in norm and (uj , v)→ (u, v) converges
in C for each v ∈ H. This relationship is written

(3.94) un ⇀ u.

In fact as we shall see below, the assumption that ‖un‖ is bounded and that u
exists are both unnecessary. That is, a sequence converges weakly if and only if
(un, v) converges in C for each v ∈ H. Conversely, there is no harm in assuming
it is bounded and that the ‘weak limit’ u ∈ H exists. Note that the weak limit is
unique since if u and u′ both have this property then (u−u′, v) = limn→∞(un, v)−
limn→∞(un, v) = 0 for all v ∈ H and setting v = u− u′ it follows that u = u′.

Lemma 28. A (strongly) convergent sequence is weakly convergent with the
same limit.

Proof. This is the continuity of the inner product. If un → u then

(3.95) |(un, v)− (u, v)| ≤ ‖un − u‖‖v‖ → 0

for each v ∈ H shows weak convergence. �

Lemma 29. For a bounded sequence in a separable Hilbert space, weak con-
vergence is equivalent to component convergence with respect to an orthonormal
basis.

Proof. Let ek be an orthonormal basis. Then if un is weakly convergent
it follows immediately that (un, ek) → (u, ek) converges for each k. Conversely,
suppose this is true for a bounded sequence, just that (un, ek) → ck in C for each
k. The norm boundedness and Bessel’s inequality show that

(3.96)
∑
k≤p

|ck|2 = lim
n→∞

∑
k≤p

|(un, ek)|2 ≤ C2 sup
n
‖un‖2

for all p. Thus in fact {ck} ∈ l2 and hence

(3.97) u =
∑
k

ckek ∈ H

by the completeness of H. Clearly (un, ek)→ (u, ek) for each k. It remains to show
that (un, v) → (u, v) for all v ∈ H. This is certainly true for any finite linear
combination of the ek and for a general v we can write

(3.98) (un, v)− (u, v) = (un, vp)− (u, vp) + (un, v − vp)− (u, v − vp) =⇒
|(un, v)− (u, v)| ≤ |(un, vp)− (u, vp)|+ 2C‖v − vp‖

where vp =
∑
k≤p

(v, ek)ek is a finite part of the Fourier-Bessel series for v and C is a

bound for ‖un‖. Now the convergence vp → v implies that the last term in (3.98)
can be made small by choosing p large, independent of n. Then the second last term
can be made small by choosing n large since vp is a finite linear combination of the
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ek. Thus indeed, (un, v) → (u, v) for all v ∈ H and it follows that un converges
weakly to u. �

Proposition 31. Any bounded sequence {un} in a separable Hilbert space has
a weakly convergent subsequence.

This can be thought of as an analogue in infinite dimensions of the Heine-Borel
theorem if you say ‘a bounded closed subset of a separable Hilbert space is weakly
compact’.

Proof. Choose an orthonormal basis {ek} and apply the procedure in the
proof of Proposition 27 to extract a subsequence of the given bounded sequence
such that (unp , ek) converges for each k. Now apply the preceeding Lemma to
conclude that this subsequence converges weakly. �

Lemma 30. For a weakly convergent sequence un ⇀ u

(3.99) ‖u‖ ≤ lim inf ‖un‖.

Proof. Choose an orthonormal basis ek and observe that

(3.100)
∑
k≤p

|(u, ek)|2 = lim
n→∞

∑
k≤p

|(un, ek)|2.

The sum on the right is bounded by ‖un‖2 independently of p so

(3.101)
∑
k≤p

‖u, ek‖2 ≤ lim inf
n
‖un‖2

by the definition of lim inf . Then let p→∞ to conclude that

(3.102) ‖u‖2 ≤ lim inf
n
‖un‖2

from which (3.99) follows. �

Lemma 31. An operator K ∈ B(H) is compact if and only if the image Kun
of any weakly convergent sequence {un} in H is strongly, i.e. norm, convergent.

This is the origin of the old name ‘completely continuous’ for compact operators,
since they turn even weakly convergent into strongly convergent sequences.

Proof. First suppose that un ⇀ u is a weakly convergent sequence in H and
that K is compact. We know that ‖un‖ < C is bounded so the sequence Kun
is contained in CK(B(0, 1)) and hence in a compact set (clearly if D is compact
then so is cD for any constant c.) Thus, any subsequence of Kun has a convergent
subseqeunce and the limit is necessarily Ku since Kun ⇀ Ku (true for any bounded
operator by computing

(3.103) (Kun, v) = (un,K
∗v)→ (u,K∗v) = (Ku, v).)

But the condition on a sequence in a metric space that every subsequence of it has
a subsequence which converges to a fixed limit implies convergence. (If you don’t
remember this, reconstruct the proof: To say a sequence vn does not converge to
v is to say that for some ε > 0 there is a subsequence along which d(vnk , v) ≥ ε.
This is impossible given the subsequence of subsequence condition (converging to
the fixed limit v.))

Conversely, suppose that K has this property of turning weakly convergent
into strongly convergent sequences. We want to show that K(B(0, 1)) has compact
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closure. This just means that any sequence in K(B(0, 1)) has a (strongly) con-
vergent subsequence – where we do not have to worry about whether the limit is
in the set or not. Such a sequence is of the form Kun where un is a sequence in
B(0, 1). However we know that the ball is weakly compact, that is we can pass to
a subsequence which converges weakly, unj ⇀ u. Then, by the assumption of the
Lemma, Kunj → Ku converges strongly. Thus un does indeed have a convergent
subsequence and hence K(B(0, 1)) must have compact closure. �

As noted above, it is not really necessary to assume that a sequence in a Hilbert
space is bounded, provided one has the Uniform Boundedness Principle, Theorem 3,
at the ready.

Proposition 32. If un ∈ H is a sequence in a Hilbert space and for all v ∈ H

(3.104) (un, v)→ F (v) converges in C

then ‖un‖H is bounded and there exists w ∈ H such that un ⇀ w (converges
weakly).

Proof. Apply the Uniform Boundedness Theorem to the continuous function-
als

(3.105) Tn(u) = (u, un), Tn : H −→ C

where we reverse the order to make them linear rather than anti-linear. Thus, each
set |Tn(u)| is bounded in C since it is convergent. It follows from the Uniform
Boundedness Principle that there is a bound

(3.106) ‖Tn‖ ≤ C.

However, this norm as a functional is just ‖Tn‖ = ‖un‖H so the original sequence
must be bounded in H. Define T : H −→ C as the limit for each u :

(3.107) T (u) = lim
n→∞

Tn(u) = lim
n→∞

(u, un).

This exists for each u by hypothesis. It is a linear map and from (3.106) it is
bounded, ‖T‖ ≤ C. Thus by the Riesz Representation theorem, there exists w ∈ H
such that

(3.108) T (u) = (u,w) ∀ u ∈ H.

Thus (un, u)→ (w, u) for all u ∈ H so un ⇀ w as claimed. �

16. The algebra B(H)

Recall the basic properties of the Banach space, and algebra, of bounded oper-
ators B(H) on a separable Hilbert space H. In particular that it is a Banach space
with respect to the norm

(3.109) ‖A‖ = sup
‖u‖H=1

‖Au‖H

and that the norm satisfies

(3.110) ‖AB‖ ≤ ‖A‖‖B‖

as follows from the fact that

‖ABu‖ ≤ ‖A‖‖Bu‖ ≤ ‖A‖‖B‖‖u‖.
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Consider the set of invertible elements:

(3.111) GL(H) = {A ∈ B(H);∃ B ∈ B(H), BA = AB = Id}.

Note that this is equivalent to saying A is 1-1 and onto in view of the Open Mapping
Theorem, Theorem 4.

This set is open, to see this consider a neighbourhood of the identity.

Lemma 32. If A ∈ B(H) and ‖A‖ < 1 then

(3.112) Id−A ∈ GL(H).

Proof. This follows from the convergence of the Neumann series. If ‖A‖ < 1
then ‖Aj‖ ≤ ‖A‖j , from (3.110), and it follows that

(3.113) B =

∞∑
j=0

Aj

(where A0 = Id by definition) is absolutely summable in B(H) since
∞∑
j=0

‖Aj‖ con-

verges. Since B(H) is a Banach space, the sum converges. Moreover by the conti-
nuity of the product with respect to the norm

(3.114) AB = A lim
n→∞

n∑
j=0

Aj = lim
n→∞

n+1∑
j=1

Aj = B − Id

and similarly BA = B − Id . Thus (Id−A)B = B(Id−A) = Id shows that B is a
(and hence the) 2-sided inverse of Id−A. �

Proposition 33. The invertible elements form an open subset GL(H) ⊂ B(H).

Proof. Suppose G ∈ GL(H), meaning it has a two-sided (and unique) inverse
G−1 ∈ B(H) :

(3.115) G−1G = GG−1 = Id .

Then we wish to show that B(G; ε) ⊂ GL(H) for some ε > 0. In fact we shall see
that we can take ε = ‖G−1‖−1. To show that G+B is invertible set

(3.116) E = −G−1B =⇒ G+B = G(Id +G−1B) = G(Id−E)

From Lemma 32 we know that

(3.117) ‖B‖ < 1/‖G−1‖ =⇒ ‖G−1B‖ < 1 =⇒ Id−E is invertible.

Then (Id−E)−1G−1 satisfies

(3.118) (Id−E)−1G−1(G+B) = (Id−E)−1(Id−E) = Id .

Moreover E′ = −BG−1 also satisfies ‖E′‖ ≤ ‖B‖‖G−1‖ < 1 and

(3.119) (G+B)G−1(Id−E′)−1 = (Id−E′)(Id−E′)−1 = Id .

Thus G+B has both a ‘left’ and a ‘right’ inverse. The associtivity of the operator
product (that A(BC) = (AB)C) then shows that

(3.120) G−1(Id−E′)−1 = (Id−E)−1G−1(G+B)G−1(Id−E′)−1 = (Id−E)−1G−1

so the left and right inverses are equal and hence G+B is invertible. �
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Thus GL(H) ⊂ B(H), the set of invertible elements, is open. It is also a group
– since the inverse of G1G2 if G1, G2 ∈ GL(H) is G−1

2 G−1
1 .

This group of invertible elements has a smaller subgroup, U(H), the unitary
group, defined by

(3.121) U(H) = {U ∈ GL(H);U−1 = U∗}.

The unitary group consists of the linear isometric isomorphisms of H onto itself –
thus

(3.122) (Uu,Uv) = (u, v), ‖Uu‖ = ‖u‖ ∀ u, v ∈ H, U ∈ U(H).

This is an important object and we will use it a little bit later on.
The groups GL(H) and U(H) for a separable Hilbert space may seem very

similar to the familiar groups of invertible and unitary n× n matrices, GL(n) and
U(n), but this is somewhat deceptive. For one thing they are much bigger. In fact
there are other important qualitative differences – you can find some of this in the
problems. One important fact that you should know, even though we will not try
prove it here, is that both GL(H) and U(H) are contractible as a metric spaces –
they have no significant topology. This is to be constrasted with the GL(n) and
U(n) which have a lot of topology, and are not at all simple spaces – especially for
large n. One upshot of this is that U(H) does not look much like the limit of the
U(n) as n → ∞. Another important fact that we will show is that GL(H) is not
dense in B(H), in contrast to the finite dimensional case.

17. Spectrum of an operator

Another direct application of Lemma 32, the convergence of the Neumann se-
ries, is that if A ∈ B(H) and λ ∈ C has |λ| > ‖A‖ then ‖λ−1A‖ < 1 so (Id−λ−1A)−1

exists and satisfies

(3.123) (λ Id−A)λ−1(Id−λ−1A)−1 = Id = λ−1(Id−λ−1A)−1(λ−A).

Thus, λ−A ∈ GL(H) has inverse (λ−A)−1 = λ−1(Id−λ−1A)−1. The set of λ for
which this operator is invertible,

(3.124) {λ ∈ C; (λ Id−A) ∈ GL(H)} ⊂ C

is an open, and non-empty, set called the resolvent set (usually (A− λ)−1 is called
the resolvent). The complement of the resolvent set is called the spectrum of A

(3.125) Spec(A) = {λ ∈ C;λ Id−A /∈ GL(H)}.

As follows from the discussion above it is a compact set – it cannot be empty. You
should resist the temptation to think that this is the set of eigenvalues of A, that
is not really true.

For a bounded self-adjoint operator we can say more quite a bit more.

Proposition 34. If A : H −→ H is a bounded operator on a Hilbert space and
A∗ = A then A− λ Id is invertible for all λ ∈ C \R and at least one of A− ‖A‖ Id
and A+ ‖A‖ Id is not invertible.

The proof of the last part depends on a different characterization of the norm
in the self-adjoint case.
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Lemma 33. If A∗ = A then

(3.126) ‖A‖ = sup
‖u‖=1

|〈Au, u〉|.

Proof. Certainly, |〈Au, u〉| ≤ ‖A‖‖u‖2 so the right side can only be smaller
than or equal to the left. Suppose that

sup
‖u‖=1

|〈Au, u〉| = a.

Then for any u, v ∈ H, |〈Au, v〉| = 〈Aeiθu, v〉 for some θ ∈ [0, 2π), so we can arrange
that 〈Au, v〉 = |〈Au′, v〉| is non-negative and ‖u′‖ = 1 = ‖u‖ = ‖v‖. Dropping the
primes and computing using the polarization identity (really just the parallelogram
law)
(3.127)
4〈Au, v〉 = 〈A(u+v), u+v〉−〈A(u−v), u−v〉+i〈A(u+iv), u+iv〉−i〈A(u−iv), u−iv〉.

By the reality of the left side we can drop the last two terms and use the bound to
see that

(3.128) 4〈Au, v〉 ≤ a(‖u+ v‖2 + ‖u− v‖2) = 2a(‖u‖2 + ‖v‖2) = 4a

Thus, ‖A‖ = sup‖u‖=‖v‖=1 |〈Au, v〉| ≤ a and hence ‖A‖ = a. �

Proof of Proposition 34. If λ = s+it where t 6= 0 then A−λ = (A−s)−it
and A − s is bounded and selfadjoint, so it is enough to consider the special case
that λ = it. Then for any u ∈ H,

(3.129) Im〈(A− it)u, u〉 = −t‖u‖2.

So, certainly A − it is injective, since (A − it)u = 0 implies u = 0 if t 6= 0. The
adjoint of A − it is A + it so the adjoint is injective too. It follows that the range
of A − it is dense in H. Indeed, if v ∈ H and v ⊥ (A − it)u for all u ∈ H, so v is
orthogonal to the range, then

(3.130) 0 = Im〈(A− it)v, v〉 = −t‖v‖2.

By this density of the range, if w ∈ H there exists a sequence un in H with
(A− it)un → w. But this implies that ‖un‖ is bounded, since t‖un‖2 = − Im〈(A−
it)un, un〉 and hence we can pass to a weakly convergent subsequence, un ⇀ u.
Then (A − it)un ⇀ (A − it)u = w so A − it is 1-1 and onto. From the Open
Mapping Theorem, (A− it) is invertible.

Finally then we need to show that one of A ± ‖A‖ Id is NOT invertible. This
follows from (3.126). Indeed, by the definition of sup there is a sequence un ∈ H
with ‖un‖ = 1 such that either 〈Aun, un〉 → ‖A‖ or 〈Aun, un〉 → −‖A‖. We may
pass to a weakly convergent subsequence and so assume un ⇀ u. Assume we are in
the first case, so this means 〈(A− ‖A‖)un, un〉 → 0. Then

(3.131)
‖(A− ‖A‖)un‖2 = ‖Aun‖2 − 2‖A‖〉Aun, un〉+ ‖A‖2‖un‖2

‖Aun‖2 − 2‖A‖〉(A− ‖A‖)un, un〉 − ‖A‖2‖un‖2.

The second two terms here have limit −‖A‖2 by assumption and the first term
is less than or equal to ‖A‖2. Since the sequence is positive it follows that ‖(A −
‖A‖)2un‖ → 0. This means that A − ‖A‖ Id is not invertible, since if it had a
bounded inverse B then 1 = ‖un‖ ≤ ‖B‖‖(A − ‖A‖)2un‖ which is impossible.
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The other case is similar (or you can replace A by −A) so one of A ± ‖A‖ is not
invertible. �

18. Spectral theorem for compact self-adjoint operators

One of the important differences between a general bounded self-adjoint op-
erator and a compact self-adjoint operator is that the latter has eigenvalues and
eigenvectors – lots of them.

Theorem 15. If A ∈ K(H) is a self-adjoint, compact operator on a separable
Hilbert space, so A∗ = A, then H has an orthonormal basis consisting of eigenvec-
tors of A, uj such that

(3.132) Auj = λjuj , λj ∈ R \ {0},
consisting of an orthonormal basis for the possibly infinite-dimensional (closed)
null space and eigenvectors with non-zero eigenvalues which can be arranged into a
sequence such that |λj | is a non-increasing and λj → 0 as j →∞ (in case Nul(A)⊥

is finite dimensional, this sequence is finite).

The operator A maps Nul(A)⊥ into itself so it may be clearer to first split off the null
space and then look at the operator acting on Nul(A)⊥ which has an orthonormal
basis of eigenvectors with non-vanishing eigenvalues.

Before going to the proof, let’s notice some useful conclusions. One is that we
have ‘Fredholm’s alternative’ in this case.

Corollary 4. If A ∈ K(H) is a compact self-adjoint operator on a separable
Hilbert space then the equation

(3.133) u−Au = f

either has a unique solution for each f ∈ H or else there is a non-trivial finite
dimensional space of solutions to

(3.134) u−Au = 0

and then (3.133) has a solution if and only if f is orthogonal to all these solutions.

Proof. This is just saying that the null space of Id−A is a complement to
the range – which is closed. So, either Id−A is invertible or if not then the range
is precisely the orthocomplement of Nul(Id−A). You might say there is not much
alternative from this point of view, since it just says the range is always the ortho-
complement of the null space. �

Let me separate off the heart of the argument from the bookkeeping.

Lemma 34. If A ∈ K(H) is a self-adjoint compact operator on a separable
(possibly finite-dimensional) Hilbert space then

(3.135) F (u) = (Au, u), F : {u ∈ H; ‖u‖ = 1} −→ R
is a continuous function on the unit sphere which attains its supremum and infimum
where

(3.136) sup
‖u‖=1

|F (u)| = ‖A‖.

Furthermore, if the maximum or minimum of F (u) is non-zero it is attained at an
eivenvector of A with this extremal value as eigenvalue.
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Proof. Since |F (u)| is the function considered in (3.126), (3.136) is a direct
consequence of Lemma 33. Moreover, continuity of F follows from continuity of A
and of the inner product so

(3.137) |F (u)−F (u′)| ≤ |(Au, u)−(Au, u′)|+ |(Au, u′)−(Au′, u′)| ≤ 2‖A‖‖u−u′‖
since both u and u′ have norm one.

If we were in finite dimensions this almost finishes the proof, since the sphere
is then compact and a continuous function on a compact set attains its sup and inf.
In the general case we need to use the compactness of A. Certainly F is bounded,

(3.138) |F (u)| ≤ sup
‖u‖=1

|(Au, u)| ≤ ‖A‖.

Thus, there is a sequence u+
n such that F (u+

n ) → supF and another u−n such that
F (u−n )→ inf F. The weak compactness of the unit sphere means that we can pass
to a weakly convergent subsequence in each case, and so assume that u±n ⇀ u±

converges weakly. Then, by the compactness of A, Au±n → Au± converges strongly,
i.e. in norm. But then we can write

(3.139) |F (u±n )− F (u±)| ≤ |(A(u±n − u±), u±n )|+ |(Au±, u±n − u±)|
= |(A(u±n − u±), u±n )|+ |(u±, A(u±n − u±))| ≤ 2‖Au±n −Au±‖

to deduce that F (u±) = limF (u±n ) are respectively the sup and inf of F. Thus
indeed, as in the finite dimensional case, the sup and inf are attained, and hence
are the max and min. Note that this is NOT typically true if A is not compact as
well as self-adjoint.

Now, suppose that Λ+ = supF > 0. Then for any v ∈ H with v ⊥ u+ and
‖v‖ = 1, the curve

(3.140) Lv : (−π, π) 3 θ 7−→ cos θu+ + sin θv

lies in the unit sphere. Expanding out

(3.141) F (Lv(θ)) =

(ALv(θ), Lv(θ)) = cos2 θF (u+) + 2 sin(2θ) Re(Au+, v) + sin2(θ)F (v)

we know that this function must take its maximum at θ = 0. The derivative there
(it is certainly continuously differentiable on (−π, π)) is Re(Au+, v) which must
therefore vanish. The same is true for iv in place of v so in fact

(3.142) (Au+, v) = 0 ∀ v ⊥ u+, ‖v‖ = 1.

Taking the span of these v’s it follows that (Au+, v) = 0 for all v ⊥ u+ so A+u
must be a multiple of u+ itself. Inserting this into the definition of F it follows
that Au+ = Λ+u+ is an eigenvector with eigenvalue Λ+ = supF.

The same argument applies to inf F if it is negative, for instance by replacing
A by −A. This completes the proof of the Lemma. �

Proof of Theorem 15. First consider the Hilbert space H0 = Nul(A)⊥ ⊂
H. Then, as noted above, A maps H0 into itself, since

(3.143) (Au, v) = (u,Av) = 0 ∀ u ∈ H0, v ∈ Nul(A) =⇒ Au ∈ H0.

Moreover, A0, which is A restricted to H0, is again a compact self-adjoint operator
– where the compactness follows from the fact that A(B(0, 1)) for B(0, 1) ⊂ H0 is
smaller than (actually of course equal to) the whole image of the unit ball.
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Thus we can apply the Lemma above to A0, with quadratic form F0, and find
an eigenvector. Let’s agree to take the one associated to supF0 unless supF0 <
− inf F0 in which case we take one associated to the inf . Now, what can go wrong
here? Nothing except if F0 ≡ 0. However in that case we know from Lemma 33
that ‖A‖ = 0 so A = 0.

So, we now know that we can find an eigenvector with non-zero eigenvalue
unless A ≡ 0 which would implies Nul(A) = H. Now we proceed by induction.
Suppose we have found N mutually orthogonal eigenvectors ej for A all with norm
1 and eigenvectors λj – an orthonormal set of eigenvectors and all in H0. Then we
consider

(3.144) HN = {u ∈ H0 = Nul(A)⊥; (u, ej) = 0, j = 1, . . . , N}.

From the argument above, A maps HN into itself, since

(3.145) (Au, ej) = (u,Aej) = λj(u, ej) = 0 if u ∈ HN =⇒ Au ∈ HN .

Moreover this restricted operator is self-adjoint and compact on HN as before so
we can again find an eigenvector, with eigenvalue either the max of min of the new
F for HN . This process will not stop uness F ≡ 0 at some stage, but then A ≡ 0
on HN and since HN ⊥ Nul(A) which implies HN = {0} so H0 must have been
finite dimensional.

Thus, eitherH0 is finite dimensional or we can grind out an infinite orthonormal
sequence ei of eigenvectors of A in H0 with the corresponding sequence of eigen-
values such that |λi| is non-increasing – since the successive FN ’s are restrictions
of the previous ones the max and min are getting closer to (or at least no further
from) 0.

So we need to rule out the possibility that there is an infinite orthonormal
sequence of eigenfunctions ej with corresponding eigenvalues λj where infj |λj | =
a > 0. Such a sequence cannot exist since ej ⇀ 0 so by the compactness of A,
Aej → 0 (in norm) but |Aej | ≥ a which is a contradiction. Thus if null(A)⊥ is
not finite dimensional then the sequence of eigenvalues constructed above must
converge to 0.

Finally then, we need to check that this orthonormal sequence of eigenvectors
constitutes an orthonormal basis of H0. If not, then we can form the closure of the
span of the ei we have constructed, H′, and its orthocomplement in H0 – which
would have to be non-trivial. However, as before F restricts to this space to be
F ′ for the restriction of A′ to it, which is again a compact self-adjoint operator.
So, if F ′ is not identically zero we can again construct an eigenfunction, with non-
zero eigenvalue, which contracdicts the fact the we are always choosing a largest
eigenvalue, in absolute value at least. Thus in fact F ′ ≡ 0 so A′ ≡ 0 and the
eigenvectors form and orthonormal basis of Nul(A)⊥. This completes the proof of
the theorem. �

19. Functional Calculus

So the non-zero eigenvalues of a compact self-adjoint operator form the image of
a sequence in [−‖A‖, ‖A‖] either converging to zero or finite. If f ∈ C0([−‖A‖, ‖A‖)
then one can define an operator

(3.146) f(A) ∈ B(H), f(A)u =
∑
i

f(λu)(u, ei)ei
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where {ei} is a complete orthonormal basis of eigenfunctions. Provided f(0) = 0
this is compact and if f is real it is self-adjoint. This formula actually defines a
linear map

(3.147) C0([−‖A‖, ‖A‖]) −→ B(H) with f(A)g(A) = (fg)(A).

Such a map exists for any bounded self-adjoint operator. Even though it may
not have eigenfunctions – or not a complete orthonormal basis of them anyway, it
is still possible to define f(A) for a continous function defined on [−‖A‖, ‖A‖] (in
fact it only has to be defined on Spec(A) ⊂ [−‖A‖, ‖A‖] which might be quite a lot
smaller). This is an effective replacement for the spectral theorem in the compact
case.

How does one define f(A)? Well, it is easy enough in case f is a polynomial,
since then we can factorize it and set
(3.148)
f(z) = c(z − z1)(z − z2) . . . (z − zN ) =⇒ f(A) = c(A− z1)(A− z2) . . . (A− zN ).

Notice that the result does not depend on the order of the factors or anything like
that. To pass to the case of a general continuous function on [−‖A‖, ‖A‖] one can
use the norm estimate in the polynomial case, that

(3.149) ‖f(A)‖ ≤ sup
z∈[−‖A‖,‖A‖

|f(z)|.

This allows one to pass f in the uniform closure of the polynomials, which by the
Stone-Weierstrass theorem is the whole of C0([−‖A‖, ‖A‖]). The proof of (3.149) is
outlined in Problem 5.33 below.

20. Compact perturbations of the identity

I have generally not had a chance to discuss most of the material in this section,
or the next, in the lectures.

Compact operators are, as we know, ‘small’ in the sense that the are norm
limits of finite rank operators. If you accept this, then you will want to say that an
operator such as

(3.150) Id−K, K ∈ K(H)

is ‘big’. We are quite interested in this operator because of spectral theory. To say
that λ ∈ C is an eigenvalue of K is to say that there is a non-trivial solution of

(3.151) Ku− λu = 0

where non-trivial means other than than the solution u = 0 which always exists. If
λ is an eigenvalue of K then certainly λ ∈ Spec(K), since λ−K cannot be invertible.
For general operators the converse is not correct, but for compact operators it is.

Lemma 35. If K ∈ B(H) is a compact operator then λ ∈ C\{0} is an eigenvalue
of K if and only if λ ∈ Spec(K).

Proof. Since we can divide by λ we may replace K by λ−1K and consider the
special case λ = 1. Now, if K is actually finite rank the result is straightforward.
By Lemma 26 we can choose a basis so that (3.76) holds. Let the span of the ei
be W – since it is finite dimensional it is closed. Then Id−K acts rather simply –
decomposing H = W ⊕W⊥, u = w + w′

(3.152) (Id−K)(w + w′) = w + (IdW −K ′)w′, K ′ : W −→W



94 3. HILBERT SPACES

being a matrix with respect to the basis. Now, 1 is an eigenvalue of K if and only
if 1 is an eigenvalue of K ′ as an operator on the finite-dimensional space W. Now,
a matrix, such as IdW −K ′, is invertible if and only if it is injective, or equivalently
surjective. So, the same is true for Id−K.

In the general case we use the approximability of K by finite rank operators.
Thus, we can choose a finite rank operator F such that ‖K − F‖ < 1/2. Thus,
(Id−K + F )−1 = Id−B is invertible. Then we can write

(3.153) Id−K = Id−(K − F )− F = (Id−(K − F ))(Id−L), L = (Id−B)F.

Thus, Id−K is invertible if and only if Id−L is invertible. Thus, if Id−K is not
invertible then Id−L is not invertible and hence has null space and from (3.153) it
follows that Id−K has non-trivial null space, i.e. K has 1 as an eigenvalue. �

A little more generally:-

Proposition 35. If K ∈ K(H) is a compact operator on a separable Hilbert
space then

(3.154)

null(Id−K) = {u ∈ H; (IdK)u = 0} is finite dimensional

Ran(Id−K) = {v ∈ H;∃u ∈ H, v = (Id−K)u} is closed and

Ran(Id−K)⊥ = {w ∈ H; (w,Ku) = 0 ∀ u ∈ H} is finite dimensional

and moreover

(3.155) dim (null(Id−K)) = dim
(
Ran(Id−K)⊥

)
.

Proof of Proposition 35. First let’s check this in the case of a finite rank
operator K = T. Then

(3.156) Nul(Id−T ) = {u ∈ H;u = Tu} ⊂ Ran(T ).

A subspace of a finite dimensional space is certainly finite dimensional, so this
proves the first condition in the finite rank case.

Similarly, still assuming that T is finite rank consider the range

(3.157) Ran(Id−T ) = {v ∈ H; v = (Id−T )u for some u ∈ H}.
Consider the subspace {u ∈ H;Tu = 0}. We know that this this is closed, since T
is certainly continuous. On the other hand from (3.157),

(3.158) Ran(Id−T ) ⊃ Nul(T ).

Remember that a finite rank operator can be written out as a finite sum

(3.159) Tu =

N∑
i=1

(u, ei)fi

where we can take the fi to be a basis of the range of T. We also know in this
case that the ei must be linearly independent – if they weren’t then we could write
one of them, say the last since we can renumber, out as a sum, eN =

∑
j<N

ciej , of

multiples of the others and then find

(3.160) Tu =

N−1∑
i=1

(u, ei)(fi + cjfN )

showing that the range of T has dimension at most N − 1, contradicting the fact
that the fi span it.
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So, going back to (3.159) we know that Nul(T ) has finite codimension – every
element of H is of the form

(3.161) u = u′ +

N∑
i=1

diei, u
′ ∈ Nul(T ).

So, going back to (3.158), if Ran(Id−T ) 6= Nul(T ), and it need not be equal, we
can choose – using the fact that Nul(T ) is closed – an element g ∈ Ran(Id−T ) \
Nul(T ) which is orthogonal to Nul(T ). To do this, start with any a vector g′ in
Ran(Id−T ) which is not in Nul(T ). It can be split as g′ = u′′ + g where g ⊥
Nul(T ) (being a closed subspace) and u′′ ∈ Nul(T ), then g 6= 0 is in Ran(Id−T )
and orthongonal to Nul(T ). Now, the new space Nul(T ) ⊕ Cg is again closed and
contained in Ran(Id−T ). But we can continue this process replacing Nul(T ) by
this larger closed subspace. After a a finite number of steps we conclude that
Ran(Id−T ) itself is closed.

What we have just proved is:

Lemma 36. If V ⊂ H is a subspace of a Hilbert space which contains a closed
subspace of finite codimension in H – meaning V ⊃W where W is closed and there
are finitely many elements ei ∈ H, i = 1, . . . , N such that every element u ∈ H is
of the form

(3.162) u = u′ +

N∑
i=1

ciei, ci ∈ C,

then V itself is closed.

So, this takes care of the case that K = T has finite rank! What about the
general case where K is compact? Here we just use a consequence of the approxi-
mation of compact operators by finite rank operators proved last time. Namely, if
K is compact then there exists B ∈ B(H) and T of finite rank such that

(3.163) K = B + T, ‖B‖ < 1

2
.

Now, consider the null space of Id−K and use (3.163) to write

(3.164) Id−K = (Id−B)− T = (Id−B)(Id−T ′), T ′ = (Id−B)−1T.

Here we have used the convergence of the Neumann series, so (Id−B)−1 does exist.
Now, T ′ is of finite rank, by the ideal property, so

(3.165) Nul(Id−K) = Nul(Id−T ′) is finite dimensional.

Here of course we use the fact that (Id−K)u = 0 is equivalent to (Id−T ′)u = 0
since Id−B is invertible. So, this is the first condition in (3.154).

Similarly, to examine the second we do the same thing but the other way around
and write

(3.166) Id−K = (Id−B)− T = (Id−T ′′)(Id−B), T ′′ = T (Id−B)−1.

Now, T ′′ is again of finite rank and

(3.167) Ran(Id−K) = Ran(Id−T ′′) is closed

again using the fact that Id−B is invertible – so every element of the form (Id−K)u
is of the form (Id−T ′′)u′ where u′ = (Id−B)u and conversely.
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So, now we have proved all of (3.154) – the third part following from the first
as discussed before.

What about (3.155)? This time let’s first check that it is enough to consider
the finite rank case. For a compact operator we have written

(3.168) (Id−K) = G(Id−T )

where G = Id−B with ‖B‖ < 1
2 is invertible and T is of finite rank. So what we

want to see is that

(3.169) dim Nul(Id−K) = dim Nul(Id−T ) = dim Nul(Id−K∗).
However, Id−K∗ = (Id−T ∗)G∗ and G∗ is also invertible, so

(3.170) dim Nul(Id−K∗) = dim Nul(Id−T ∗)
and hence it is enough to check that dim Nul(Id−T ) = dim Nul(Id−T ∗) – which is
to say the same thing for finite rank operators.

Now, for a finite rank operator, written out as (3.159), we can look at the
vector space W spanned by all the fi’s and all the ei’s together – note that there is
nothing to stop there being dependence relations among the combination although
separately they are independent. Now, T : W −→W as is immediately clear and

(3.171) T ∗v =

N∑
i=1

(v, fi)ei

so T : W −→ W too. In fact Tw′ = 0 and T ∗w′ = 0 if w′ ∈ W⊥ since then
(w′, ei) = 0 and (w′, fi) = 0 for all i. It follows that if we write R : W ←→ W for
the linear map on this finite dimensional space which is equal to Id−T acting on
it, then R∗ is given by Id−T ∗ acting on W and we use the Hilbert space structure
on W induced as a subspace of H. So, what we have just shown is that
(3.172)
(Id−T )u = 0⇐⇒ u ∈W and Ru = 0, (Id−T ∗)u = 0⇐⇒ u ∈W and R∗u = 0.

Thus we really are reduced to the finite-dimensional theorem

(3.173) dim Nul(R) = dim Nul(R∗) on W.

You no doubt know this result. It follows by observing that in this case, every-
thing now on W, Ran(W ) = Nul(R∗)⊥ and finite dimensions

(3.174) dim Nul(R) + dim Ran(R) = dimW = dim Ran(W ) + dim Nul(R∗).

�

21. Fredholm operators

Definition 21. A bounded operator F ∈ B(H) on a Hilbert space is said to
be Fredholm, written F ∈ F(H), if it has the three properties in (3.154) – its null
space is finite dimensional, its range is closed and the orthocomplement of its range
is finite dimensional.

For general Fredholm operators the row-rank=colum-rank result (3.155) does not
hold. Indeed the difference of these two integers, called the index of the operator,

(3.175) ind(F ) = dim (null(Id−K))− dim
(
Ran(Id−K)⊥

)
is a very important number with lots of interesting properties and uses.
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Notice that the last two conditions in (3.154) are really independent since the
orthocomplement of a subspace is the same as the orthocomplement of its closure.
There is for instance a bounded operator on a separable Hilbert space with trivial
null space and dense range which is not closed. How could this be? Think for
instance of the operator on L2(0, 1) which is multiplication by the function x.
This is assuredly bounded and an element of the null space would have to satisfy
xu(x) = 0 almost everywhere, and hence vanish almost everywhere. Moreover the
density of the L2 functions vanishing in x < ε for some (non-fixed) ε > 0 shows
that the range is dense. However it is clearly not invertible.

Before proving this result let’s check that, in the case of operators of the form
Id−K, with K compact the third conclusion in (3.154) really follows from the first.
This is a general fact which I mentioned, at least, earlier but let me pause to prove
it.

Proposition 36. If B ∈ B(H) is a bounded operator on a Hilbert space and
B∗ is its adjoint then

(3.176) Ran(B)⊥ = (Ran(B))⊥ = {v ∈ H; (v, w) = 0 ∀ w ∈ Ran(B)} = Nul(B∗).

Proof. The definition of the orthocomplement of Ran(B) shows immediately
that

(3.177) v ∈ (Ran(B))⊥ ⇐⇒ (v, w) = 0 ∀ w ∈ Ran(B)←→ (v,Bu) = 0 ∀ u ∈ H
⇐⇒ (B∗v, u) = 0 ∀ u ∈ H ⇐⇒ B∗v = 0⇐⇒ v ∈ Nul(B∗).

On the other hand we have already observed that V ⊥ = (V )⊥ for any subspace –
since the right side is certainly contained in the left and (u, v) = 0 for all v ∈ V
implies that (u,w) = 0 for all w ∈ V by using the continuity of the inner product
to pass to the limit of a sequence vn → w. �

Thus as a corrollary we see that if Nul(Id−K) is always finite dimensional for
K compact (i. e. we check it for all compact operators) then Nul(Id−K∗) is finite
dimensional and hence so is Ran(Id−K)⊥.

There is a more ‘analytic’ way of characterizing Fredholm operators, rather
than Definition 21.

Lemma 37. An operator F ∈ B(H) is Fredholm, F ∈ F(H), if and only if it
has a generalized inverse P satisfying

(3.178)
PF = Id−Π(F )

FP = Id−Π(F )⊥

with the two projections of finite rank.

Proof. If (3.178) holds then F must be Fredholm, since its null space is finite
dimensional, from the second identity the range of F must contain the range of
Id−Pi(F )⊥ and hence it must be closed and of finite codimension (and in fact be
equal to this closed subspace.

Conversely, suppose that F ∈ F(H). We can divide H into two pieces in two
ways as H = (F ) ⊕ (F )⊥ and H = Ran(F )⊥ ⊕ Ran(F ) where in each case the
first summand is finite-dimensional. Then F defines four maps, from each of the
two first summands to each of the two second ones but all but one of these is zero
and so F corresponds to a bounded linear map F̃ : (F )⊥ −→ Ran(F ). These are
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two Hilbert spaces with bounded linear bijection between them, so the inverse map,
P̃ : Ran(F ) −→ (F )⊥ is bounded by the Open Mapping Theorem and we can define

(3.179) P = P̃ ◦Π(F )⊥v).

Then (3.178) follows directly. �

What we want to show is that the Fredholm operators form an open set in
B(H) and that the index is locally constant. To do this we show that a weaker
version of (3.178) also implies that F is Fredholm.

Lemma 38. An operator F ∈ F(H) is Fredholm if and only if it has a para-
metrix Q ∈ B(H) in the sense that

(3.180)
QF = Id−ER
FQ = Id−EL

with ER and EL of finite rank. Moreover any two such parametrices differ by a
finite rank operator.

Proof. If F is Fredholm then Q = P certainly is a parameterix in this
sense. Conversely suppose that Q as in (3.180) exists. Then (Id−ER) is fi-
nite dimensional – from (3.154) for instance. However, from the first identity
(F ) ⊂ (QF ) = (Id−ER) so (F ) is finite dimensional too. Similarly, the second
identity shows that Ran(F ) ⊃ Ran(FQ) = Ran(Id−EL) and the last space is
closed and of finite codimension, hence so is the first.

Now if Q and Q′ both satisfy (3.180) with finite ranke error terms E′R and E′L
for Q′ then

(3.181) (Q′ −Q)F = ER − E′R
is of finite rank. Applying the generalized inverse, P of F on the right shows that
the difference

(3.182) (Q′ −Q) = (ER − E′R)P + (Q′ −Q)Π(F )

is indeed of finite rank. �

Now recall (in 2014 from Problems7) that finite-rank operators are of trace
class, that the trace is well-defined and that the trace of a commutator where one
factor is bounded and the other trace class vanishes. Using this we show

Lemma 39. If Q and F satisfy (3.180) then

(3.183) ind(F ) = Tr(EL)− Tr(ER).

Proof. We certainly know that (3.183) holds in the special case that Q = P
is the generalized inverse of F, since then EL = Π(F ) and ER = ΠRan(F )⊥ and the
traces are the dimensions of these spaces.

Now, if Q is a parameterix as in (3.180) consider the straight line of operators
Qt = (1− t)P + tQ. Using the two sets of identities for the generalized inverse and
paramaterix

(3.184)
QtF = (1− t)PF + tQF = Id−(1− t)Π(F ) − tEL,

FQt = (1− t)FP + tFQ = Id−(1− t)ΠRan(F )⊥ − tER.
Thus Qt is a curve of parameterices and what we need to show is that

(3.185) J(t) = Tr((1− t)Π(F ) + tEL)− Tr((1− t)ΠRan(F )⊥ + tER)
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is constant. This is a linear function of t as is Qt. We can differentiate (3.184) with
respect to t and see that

(3.186)
d

dt
((1− t)Π(F ) + tEL)− d

dt
((1− t)ΠRan(F )⊥ + tER) = [Q− P, F ]

=⇒ J ′(t) = 0

since it is the trace of the commutator of a bounded and a finite rank operator
(using the last part of Lemma 38. �

Proposition 37. The Fredholm operators form an open set in B(H) on which
the index is locally constant.

Proof. We need to show that if F is Fredholm then there exists ε > 0 such
that F +B is Fredholm if ‖B‖ < ε. Set B′ = ΠRan(F )BΠ(F )⊥ then ‖B′‖ ≤ ‖B‖ and

B − B′ is finite rank. If F̃ is the operator constructed in the proof of Lemma 37
then F̃ +B′ is invertible as an operator from (F )⊥ to Ran(F ) if ε > 0 is small. The
inverse, P ′B , extended as 0 to (F ) as P is defined in that proof, satisfies

(3.187)
P ′B(F +B) = Id−Π(F ) + P ′B(B −B′),

(F +B)P ′B = Id−Π)Ran(F )⊥ + (B −B])P ′B

and so is a parametrix for F +B. Thus the set of Fredholm operators is open.
The index of F +B is given by the difference of the trace of the finite rank error

terms in the second and first lines here. It depends continuously on B in ‖B‖ < ε
so, being integer valued, is constant. �

This shows in particular that there is an open subset of B(H) which contains
no invertible operators, in strong contrast to the finite dimensional case. Still even
the Fredholm operators do no form a dense subset of B(H). One such open subset
consists of the sem-Fredholm operators, those with closed range and with either
null space of complement of range finite-dimensional.

22. Kuiper’s theorem

For finite dimensional spaces, such as CN , the group of invertible operators,
denoted typically GL(N), is a particularly important example of a Lie group. One
reason it is important is that it carries a good deal of ‘topological’ structure. In
particular – I’m assuming you have done a little topology – its fundamental group
is not trivial, in fact it is isomorphic to Z. This corresponds to the fact that a
continuous closed curve c : S −→ GL(N) is contractible if and only if its winding
number is zero – the effective number of times that the determinant goes around
the origin in C. There is a lot more topology than this and it is actually quite
complicated.

Perhaps surprisingly, the corresponding group of the bounded operators on a
separable (complex) infinite-dimensional Hilbert space which have bounded inverses
(or equivalently those which are bijections in view of the open mapping theorem)
is contractible. This is Kuiper’s theorem, and means that this group, GL(H), has
no ‘topology’ at all, no holes in any dimension and for topological purposes it is
like a big open ball. The proof is not really hard, but it is not exactly obvious
either. It depends on an earlier idea, ‘Eilenberg’s swindle’, which shows how the
infinite-dimensionality is exploited. As you can guess, this is sort of amusing (if
you have the right attitude . . . ).
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Let’s denote by GL(H) this group, as remarked above in view of the open
mapping theorem we know that

(3.188) GL(H) = {A ∈ B(H);A is injective and surjective.}.
Contractibility is the topological notion of ‘topologically trivial’. It means precisely
that there is a continuous map

(3.189)
γ : [0, 1]×GL(H) −→ GL(H) s.t.

γ(0, A) = A, γ(1, A) = Id, ∀ A ∈ GL(H).

Continuity here means for the metric space [0, 1]×GL(H) where the metric comes
from the norms on R and B(H).

As a warm-up exercise, let us show that the group GL(H) is contractible to
the unitary subgroup

(3.190) U(H) = {U ∈ GL(H);U−1 = U∗}.
These are the isometric isomorphisms.

Proposition 38. There is a continuous map
(3.191)

Γ : [0, 1]×GL(H) −→ GL(H) s.t. Γ(0, A) = A, Γ(1, A) ∈ U(H) ∀ A ∈ GL(H).

Proof. This is a consequence of the functional calculus, giving the ‘polar
decomposition’ of invertible (and more generally bounded) operators. Namely, if
AGL(H) then AA∗ ∈ GL(H) is self-adjoint. Its spectrum is then contained in an
interval [a, b], where 0 < a ≤ b = ‖A‖2. It follows from what we showed earlier

that R = (AA∗)
1
2 is a well-defined bounded self-adjoint operator and R2 = AA∗.

Moreover, R is invertible and the operator UA = R−1A ∈ U(H). Certainly it is
bounded and U∗A = A∗R−1 so U∗AUA = A∗R−2A = Id since R−2 = (AA∗)−1 =
(A∗)−1A−1. Thus U∗A is a right inverse of UA, and (since UA is a bijection) is the
unique inverse so UA ∈ U(H). So we have shown A = RUA (this is the polar
decomposition) and then

(3.192) Γ(s,A) = (s Id +(1− s)R)UA, s ∈ [0, 1]

satisfies (3.191). �

Initially we will consider only the notion of ‘weak contractibility’. This has
nothing to do with weak convergence, rather just means that we only look for an
homotopy over compact sets. So, for any compact subset X ⊂ GL(H) we seek a
continuous map

(3.193)
γ : [0, 1]×X −→ GL(H) s.t.

γ(0, A) = A, γ(1, A) = Id, ∀ A ∈ X,
note that this is not contractibility of X, but of X in GL(H).

In fact, to carry out the construction without having to worry about too many
things at one, just consider (path) connectedness of GL(H) meaning that there is
a continuous map as in (3.193) where X = {A} just consists of one point – so the
map is just γ : [0, 1] −→ GL(H) such that γ(0) = A, γ(1) = Id .

The construction of γ is in three stages

(1) Creating a gap
(2) Rotating to a trivial factor
(3) Eilenberg’s swindle.
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This approach follows ideas of B. Mityagin, [2].

Lemma 40 (Creating a gap). If A ∈ B(H) and ε > 0 is given there is a
decomposition H = HK ⊕HL ⊕HO into three closed mutually orthogonal infinite-
dimensional subspaces such that if QI is the orthogonal projections onto HI for
I = K, L, O then

(3.194) ‖QLBQK‖ < ε.

Proof. Choose an orthonormal basis ej , j ∈ N, of H. The subspaces Hi will
be determined by a corresponding decomposition

(3.195) N = K ∪ L ∪O, K ∩ L = K ∩O = L ∩O = ∅.

Thus HI has orthonormal basis ek, k ∈ I, I = K, L, O. To ensure (3.194) we choose
the decomposition (3.195) so that all three sets are infinite and so that

(3.196) |(el, Bek)| < 2−l−1ε ∀ l ∈ L, k ∈ K.

Once we have this, then for u ∈ H, QKu ∈ HK can be expanded to
∑
k∈K

(Qku, ek)ek

and expanding in HL similalry,

(3.197)

QLBQKu =
∑
l∈L

(BQKu, el)el =
∑
k∈L

∑
k∈K

(Bek, el)(QKu, ek)el

=⇒ ‖QLBQKu‖2 ≤
∑
k∈K

(
|(Qku, ek)|2

∑
l∈L

|(Bek, el)|2
)

≤ 1

2
ε2
∑
k∈K

|(Qku, ek)|2 ≤ 1

2
ε2‖u‖2

giving (3.194). The absolute convergence of the series following from (3.196).
Thus, it remains to find a decomposition (3.195) for which (3.196) holds. This

follows from Bessel’s inequality. First choose 1 ∈ K then (Be1, el) → 0 as l → ∞
so |(Be1, el1)| < ε/4 for l1 large enough and we will take l1 > 2k1. Then we use
induction on N, choosing K(N), L(N) and O(N) with

K(N) = {k1 = 1 < k2 < . . . , kN},
L(N) = {l1 < l2 < · · · < lN}, lr > 2kr, kr > lr−1 for 1 < r ≤ N and

O(N) = {1, . . . , lN} \ (K(N) ∪ L(N)).

Now, choose kN+1 > lN by such that |(el, BekN+1
)| < 2−l−N ε, for all l ∈ L(N), and

then lN+1 > 2kN+1 such that |(elN+1
, Bk)| < e−N−1−kε for k ∈ K(N+1) = K(N)∪

{kN+1} and the inductive hypothesis follows with L(N + 1) = N(N)∪{lN+1}. �

Given a fixed operator A ∈ GL(H) Lemma 40 can be applied with ε = ‖A−1‖−1.
It then follows, from the convergence of the Neumann series, that the curve

(3.198) A(s) = A− sQLAQK , s ∈ [0, 1]

lies in GL(H) and has endpoint satisfying

(3.199) QLBQK = 0, B = A(1), QLQK = 0 = QKQL, QK = Q2
K , QL = Q2

L

where all three projections, QL, QK and Id−QK −QL have infinite rank.
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These three projections given an identification of H = H ⊕ H ⊕ H and so
replace the bounded operators by 3 × 3 matrices with entries which are bounded
operators on H. The condition (3.199) means that

(3.200) B =

B11 B12 B13

0 B22 B23

B31 B32 B33

 , QK =

1 0 0
0 0 0
0 0 0

 , QL =

0 0 0
0 1 0
0 0 0

 .

So, now we have a ‘little hole’. Under the conditions (3.199) consider

(3.201) P = BQKB
−1(Id−QL).

The condition QLBQK = 0 and the definition show that QLP = 0 = PQL. More-
over,

P 2 = BQKB
−1(Id−QL)BQKB

−1(Id−QL) = BQKB
−1BQKB

−1(Id−QL) = P.

So, P is a projection which acts on the range of Id−QL; from its definition, the
range of P is contained in the range of BQK . Since

PBQK = BQKB
−1(Id−QL)BQK = BQK

it follows that P is a projection onto the range of BQK .
The next part of the proof can be thought of as a result on 3 × 3 matrices

but applied to a decomposition of Hilbert space. First, observe a little result on
rotations.

Lemma 41. If P and Q are projections on a Hilbert space with PQ = QP = 0
and M = MP = QM restricts to an isomorphism from the range of P to the range
of Q with ‘inverse’ M ′ = M ′Q = PM ′ (so M ′M = P and MM ′ = Q)
(3.202)

[−π/2, π/2] 3 θ 7−→ R(θ) = cos θP + sin θM − sin θM ′ + cos θQ+ (Id−P −Q)

is a path in the space of invertible operators such that

(3.203) R(0)P = P, R(π/2)P = M ′P.

Proof. Computing directly, R(θ)R(−θ) = Id from which the invertibility fol-
lows as does (3.203). �

We have shown above that the projection P has range equal to the range of
BQK ; apply Lemma 41 with M = S(BQK)−1P where S is a fixed isomorphism of
the range of QK to the range of QL. Then

(3.204) L1(θ) = R(θ)B has L1(0) = B, L(π/2) = B′ with B′QK = QLSQK

an isomorphism onto the range of Q.
Next apply Lemma 41 again but for the projections QK and QL with the

isomorphism S, giving

(3.205) R′(θ) = cos θQK + sin θS − sin θS′ + cos θQL +QO.

Then the curve of invertibles

L2(θ) = R′(θ − θ′)B′ has L(0) = B′, L(π/2) = B′′, B′′QK = QK .

So, we have succeed by succesive homotopies through invertible elements in
arriving at an operator

(3.206) B′′ =

(
Id E
0 F

)



22. KUIPER’S THEOREM 103

where we are looking at the decomposition of H = H ⊕H according to the projec-
tions QK and Id−QK . The invertibility of this is equivalent to the invertibility of
F and the homotopy

(3.207) B′′(s) =

(
Id (1− s)E
0 F

)
connects it to

(3.208) L =

(
Id 0
0 F

)
, (B′′(s))−1 =

(
Id −(1− s)EF−1

0 F−1

)
through invertibles.

The final step is ‘Eilenberg’s swindle’. Start from the form of L in (3.208),
choose an isomorphism Ran(QK) = l2(H)⊕ l2(H) and then consider the successive
rotations in terms of this 2× 2 decomposition

(3.209) L(θ) =

(
cos θ sin θF−1

− sin θF cos θ

)
, θ ∈ [0, π/2],

L(θ) =

(
cos θF−1 sin θF−1

− sin θF cos θF

)
, θ ∈ [π/2, π]

extended to be the constant isomorphism F on the extra factor. Then take the
isomorphism

(3.210) l2(H)⊕ l2(H)⊕H −→ L2(H)⊕ l2(H), ({ui}, {wi}, v) 7−→ ({ui}, {v, wi})
in which the last element of H is place at the beginning of the second sequence.
Now the rotations in (3.209) act on this space and L(π − θ) gives a homotopy

connecting B̃ to the identity.

Theorem 16. [Kuiper] For any compact subset X ⊂ GL(H) there is a retrac-
tion γ as in (3.193).

Proof. It is only necessary to go through the construction above, for the
family parameterized by X to check continuity in the variable B ∈ X. Compactness
of X is used in the proof of the extension of Lemma 40; to arrange (3.196) uniformly
for the whole family we need to use the compactness of the images of various finite
sets under the action of all the elements of X – namely that the Fourier-Bessel
series converges uniformly for such sets. After that it is only necessary to check
that the choices made are either fixed for the family, or depend continuously on it
(as is the case for the operators P and M for instance). �





CHAPTER 4

Differential equations

The last part of the course includes some applications of Hilbert space and
the spectral theorem – the completeness of the Fourier basis, some spectral theory
for second-order differential operators on an interval or the circle and enough of a
treatment of the eigenfunctions for the harmonic oscillator to show that the Fourier
transform is an isomorphism on L2(R). Once one has all this, one can do a lot more,
but there is no time left. Such is life.

1. Fourier series and L2(0, 2π).

Let us now try applying our knowledge of Hilbert space to a concrete Hilbert
space such as L2(a, b) for a finite interval (a, b) ⊂ R. You showed that this is indeed a
Hilbert space. One of the reasons for developing Hilbert space techniques originally
was precisely the following result.

Theorem 17. If u ∈ L2(0, 2π) then the Fourier series of u,

(4.1)
1

2π

∑
k∈Z

cke
ikx, ck =

∫
(0,2π)

u(x)e−ikxdx

converges in L2(0, 2π) to u.

Notice that this does not say the series converges pointwise, or pointwise almost
everywhere. In fact it is true that the Fourier series of a function in L2(0, 2π)
converges almost everywhere to u, but it is hard to prove! In fact it is an important
result of L. Carleson. Here we are just claiming that

(4.2) lim
n→∞

∫
|u(x)− 1

2π

∑
|k|≤n

cke
ikx|2 = 0

for any u ∈ L2(0, 2π).
Our abstract Hilbert space theory has put us quite close to proving this. First

observe that if e′k(x) = exp(ikx) then these elements of L2(0, 2π) satisfy

(4.3)

∫
e′ke
′
j =

∫ 2π

0

exp(i(k − j)x) =

{
0 if k 6= j

2π if k = j.

Thus the functions

(4.4) ek =
e′k
‖e′k‖

=
1√
2π
eikx

form an orthonormal set in L2(0, 2π). It follows that (4.1) is just the Fourier-Bessel
series for u with respect to this orthonormal set:-

(4.5) ck =
√

2π(u, ek) =⇒ 1

2π
cke

ikx = (u, ek)ek.

105
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So, we already know that this series converges in L2(0, 2π) thanks to Bessel’s in-
equality. So ‘all’ we need to show is

Proposition 39. The ek, k ∈ Z, form an orthonormal basis of L2(0, 2π), i.e.
are complete:

(4.6)

∫
ueikx = 0 ∀ k =⇒ u = 0 in L2(0, 2π).

This however, is not so trivial to prove. An equivalent statement is that the
finite linear span of the ek is dense in L2(0, 2π). I will prove this using Fejér’s
method. In this approach, we check that any continuous function on [0, 2π] sat-
isfying the additional condition that u(0) = u(2π) is the uniform limit on [0, 2π]
of a sequence in the finite span of the ek. Since uniform convergence of continu-
ous functions certainly implies convergence in L2(0, 2π) and we already know that
the continuous functions which vanish near 0 and 2π are dense in L2(0, 2π) this is
enough to prove Proposition 39. However the proof is a serious piece of analysis,
at least it seems so to me! There are other approaches, for instance we could use
the Stone-Weierstrass Theorem. On the other hand Fejér’s approach is clever and
generalizes in various ways as we will see.

So, the problem is to find the sequence in the span of the ek which converges
to a given continuous function and the trick is to use the Fourier expansion that
we want to check. The idea of Cesàro is close to one we have seen before, namely
to make this Fourier expansion ‘converge faster’, or maybe better. For the moment
we can work with a general function u ∈ L2(0, 2π) – or think of it as continuous if
you prefer. The truncated Fourier series of u is a finite linear combination of the
ek :

(4.7) Un(x) =
1

2π

∑
|k|≤n

(

∫
(0,2π)

u(t)e−iktdt)eikx

where I have just inserted the definition of the ck’s into the sum. Since this is a
finite sum we can treat x as a parameter and use the linearity of the integral to
write it as

(4.8) Un(x) =

∫
(0,2π)

Dn(x− t)u(t), Dn(s) =
1

2π

∑
|k|≤n

eiks.

Now this sum can be written as an explicit quotient, since, by telescoping,

(4.9) 2πDn(s)(eis/2 − e−is/2) = ei(n+ 1
2 )s − e−i(n+ 1

2 )s.

So in fact, at least where s 6= 0,

(4.10) Dn(s) =
ei(n+ 1

2 )s − e−i(n+ 1
2 )s

2π(eis/2 − e−is/2)

and the limit as s→ 0 exists just fine.
As I said, Cesàro’s idea is to speed up the convergence by replacing Un by its

average

(4.11) Vn(x) =
1

n+ 1

n∑
l=0

Ul.
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Again plugging in the definitions of the Ul’s and using the linearity of the integral
we see that

(4.12) Vn(x) =

∫
(0,2π)

Sn(x− t)u(t), Sn(s) =
1

n+ 1

n∑
l=0

Dl(s).

So again we want to compute a more useful form for Sn(s) – which is the Fejér
kernel. Since the denominators in (4.10) are all the same,

(4.13) 2π(n+ 1)(eis/2 − e−is/2)Sn(s) =

n∑
l=0

ei(l+
1
2 )s −

n∑
l=0

e−i(l+
1
2 )s.

Using the same trick again,

(4.14) (eis/2 − e−is/2)

n∑
l=0

ei(l+
1
2 )s = ei(n+1)s − 1

so

(4.15)

2π(n+ 1)(eis/2 − e−is/2)2Sn(s) = ei(n+1)s + e−i(n+1)s − 2

=⇒ Sn(s) =
1

n+ 1

sin2( (n+1)
2 s)

2π sin2( s2 )
.

Now, what can we say about this function? One thing we know immediately is
that if we plug u = 1 into the disucssion above, we get Un = 1 for n ≥ 0 and hence
Vn = 1 as well. Thus in fact

(4.16)

∫
(0,2π)

Sn(x− ·) = 1, ∀ x ∈ (0, 2π).

Looking directly at (4.15) the first thing to notice is that Sn(s) ≥ 0. Also, we
can see that the denominator only vanishes when s = 0 or s = 2π in [0, 2π]. Thus
if we stay away from there, say s ∈ (δ, 2π − δ) for some δ > 0 then – since sin(t) is
a bounded function

(4.17) |Sn(s)| ≤ (n+ 1)−1Cδ on (δ, 2π − δ).

We are interested in how close Vn(x) is to the given u(x) in supremum norm,
where now we will take u to be continuous. Because of (4.16) we can write

(4.18) u(x) =

∫
(0,2π)

Sn(x− t)u(x)

where t denotes the variable of integration (and x is fixed in [0, 2π]). This ‘trick’
means that the difference is

(4.19) Vn(x)− u(x) =

∫
(0,2π)

Sn(x− t)(u(t)− u(x)).

For each x we split this integral into two parts, the set Γ(x) where x− t ∈ [0, δ] or
x− t ∈ [2π − δ, 2π] and the remainder. So
(4.20)

|Vn(x)− u(x)| ≤
∫

Γ(x)

Sn(x− t)|u(t)− u(x)|+
∫

(0,2π)\Γ(x)

Sn(x− t)|u(t)− u(x)|.

Now on Γ(x) either |t−x| ≤ δ – the points are close together – or t is close to 0 and
x to 2π so 2π−x+ t ≤ δ or conversely, x is close to 0 and t to 2π so 2π− t+x ≤ δ.
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In any case, by assuming that u(0) = u(2π) and using the uniform continuity of a
continuous function on [0, 2π], given ε > 0 we can choose δ so small that

(4.21) |u(x)− u(t)| ≤ ε/2 on Γ(x).

On the complement of Γ(x) we have (4.17) and since u is bounded we get the
estimate

(4.22) |Vn(x)−u(x)| ≤ ε/2
∫

Γ(x)

Sn(x−t)+(n+1)−1C ′(δ) ≤ ε/2+(n+1)−1C ′(δ).

Here the fact that Sn is non-negative and has integral one has been used again to
estimate the integral of Sn(x− t) over Γ(x) by 1. Having chosen δ to make the first
term small, we can choose n large to make the second term small and it follows
that

(4.23) Vn(x)→ u(x) uniformly on [0, 2π] as n→∞

under the assumption that u ∈ C([0, 2π]) satisfies u(0) = u(2π).
So this proves Proposition 39 subject to the density in L2(0, 2π) of the contin-

uous functions which vanish near (but not of course in a fixed neighbourhood of)
the ends. In fact we know that the L2 functions which vanish near the ends are
dense since we can chop off and use the fact that

(4.24) lim
δ→0

(∫
(0,δ)

|f |2 +

∫
(2π−δ,2π)

|f |2
)

= 0.

This proves Theorem 17.

2. Dirichlet problem on an interval

I want to do a couple more ‘serious’ applications of what we have done so
far. There are many to choose from, and I will mention some more, but let me
first consider the Diriclet problem on an interval. I will choose the interval [0, 2π]
because we looked at it before but of course we could work on a general bounded
interval instead. So, we are supposed to be trying to solve

(4.25) −d
2u(x)

dx2
+ V (x)u(x) = f(x) on (0, 2π), u(0) = u(2π) = 0

where the last part are the Dirichlet boundary conditions. I will assume that the
‘potential’

(4.26) V : [0, 2π] −→ R is continuous and real-valued.

Now, it certainly makes sense to try to solve the equation (4.25) for say a given
f ∈ C0([0, 2π]), looking for a solution which is twice continuously differentiable on
the interval. It may not exist, depending on V but one thing we can shoot for,
which has the virtue of being explicit, is the following:

Proposition 40. If V ≥ 0 as in (4.26) then for each f ∈ C0([0, 2π]) there
exists a unique twice continuously differentiable solution, u, to (4.25).

You will see that it is a bit hard to approach this directly – especially if you
have some ODE theory at your fingertips. There are in fact various approaches
to this but we want to go through L2 theory – not surprisingly of course. How to
start?
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Well, we do know how to solve (4.25) if V ≡ 0 since we can use (Riemann)
integration. Thus, ignoring the boundary conditions for the moment, we can find
a solution to −d2v/dx2 = f on the interval by integrationg twice:

(4.27) v(x) = −
∫ x

0

∫ y

0

f(t)dtdy satifies − d2v/dx2 = f on (0, 2π).

Moroever v really is twice continuously differentiable if f is continuous. So, what
has this got to do with operators? Well, we can change the order of integration in
(4.27) to write v as

(4.28) v(x) = −
∫ x

0

∫ x

t

f(t)dydt =

∫ 2π

0

a(x, t)f(t)dt, a(x, t) = (t− x)H(x− t)

where the Heaviside function H(y) is 1 when y ≥ 0 and 0 when y < 0. Thus a(x, t)
is actually continuous on [0, 2π]× [0, 2π] since the t−x factor vanishes at the jump
in H(t− x). So (4.28) shows that v is given by applying an integral operator, with
continuous kernel on the square, to f.

Before thinking more seriously about this, recall that there is also the matter
of the boundary conditions. Clearly, v(0) = 0 since we integrated from there. On
the other hand, there is no particular reason why

(4.29) v(2π) =

∫ 2π

0

(t− 2π)f(t)dt

should vanish. However, we can always add to v any linear function and still satify
the differential equation. Since we do not want to spoil the vanishing at x = 0 we
can only afford to add cx but if we choose the constant c correctly this will work.
Namely consider

(4.30) c =
1

2π

∫ 2π

0

(2π − t)f(t)dt, then (v + cx)(2π) = 0.

So, finally the solution we want is

(4.31) w(x) =

∫ 2π

0

b(x, t)f(t)dt, b(x, t) = min(t, x)− tx

2π
∈ C([0, 2π]2)

with the formula for b following by simple manipulation from

(4.32) b(x, t) = a(x, t) + x− tx

2π

Thus there is a unique, twice continuously differentiable, solution of −d2w/dx2 = f
in (0, 2π) which vanishes at both end points and it is given by the integral operator
(4.31).

Lemma 42. The integral operator (4.31) extends by continuity from C0([0, 2π])
to a compact, self-adjoint operator on L2(0, 2π).

Proof. Since w is given by an integral operator with a continuous real-valued
kernel which is even in the sense that (check it)

(4.33) b(t, x) = b(x, t)

we might as well give a more general result. �
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Proposition 41. If b ∈ C0([0, 2π]2) then

(4.34) Bf(x) =

∫ 2π

0

b(x, t)f(t)dt

defines a compact operator on L2(0, 2π) if in addition b satisfies

(4.35) b(t, x) = b(x, t)

then B is self-adjoint.

Proof. If f ∈ L2((0, 2π)) and v ∈ C([0, 2π]) then the product vf ∈ L2((0, 2π))
and ‖vf‖L2 ≤ ‖v‖∞‖f‖L2 . This can be seen for instance by taking an absolutely
summable approcimation to f, which gives a sequence of continuous functions con-
verging a.e. to f and bounded by a fixed L2 function and observing that vfn → vf
a.e. with bound a constant multiple, sup |v|, of that function. It follows that for
b ∈ C([0, 2π]2) the product

(4.36) b(x, y)f(y) ∈ L2(0, 2π)

for each x ∈ [0, 2π]. Thus Bf(x) is well-defined by (4.35) since L2((0, 2π) ⊂
L1((0, 2π)).

Not only that, but Bf ∈ C([0, 2π]) as can be seen from the Cauchy-Schwarz
inequality,
(4.37)

|Bf(x′)−Bf(x)| = |
∫

(b(x′, y)− b(x, y))f(y)| ≤ sup
y
|b(x′, y − b(x, y)|(2π)

1
2 ‖f‖L2 .

Essentially the same estimate shows that

(4.38) sup
x
‖Bf(x)‖ ≤ (2π)

1
2 sup

(x,y)

|b|‖f‖L2

so indeed, B : L2(0, 2π) −→ C([0, 2π]) is a bounded linear operator.
When b satisfies (4.35) and f and g are continuous

(4.39)

∫
Bf(x)g(x) =

∫
f(x)Bg(x)

and the general case follows by approximation in L2 by continuous functions.
So, we need to see the compactness. If we fix x then b(x, y) ∈ C([0, 2π]) and

then if we let x vary,

(4.40) [0, 2π] 3 x 7−→ b(x, ·) ∈ C([0, 2π])

is continuous as a map into this Banach space. Again this is the uniform continuity
of a continuous function on a compact set, which shows that

(4.41) sup
y
|b(x′, y)− b(x, y)| → 0 as x′ → x.

Since the inclusion map C([0, 2π]) −→ L2((0, 2π)) is bounded, i.e continuous, it
follows that the map (I have reversed the variables)

(4.42) [0, 2π] 3 y 7−→ b(·, y) ∈ L2((0, 2π))

is continuous and so has a compact range.
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Take the Fourier basis ek for [0, 2π] and expand b in the first variable. Given
ε > 0 the compactness of the image of (4.42) implies that for some N

(4.43)
∑
|k|>N

|(b(x, y), ek(x))|2 < ε ∀ y ∈ [0, 2π].

The finite part of the Fourier series is continuous as a function of both arguments

(4.44) bN (x, y) =
∑
|k|≤N

ek(x)ck(y), ck(y) = (b(x, y), ek(x))

and so defines another bounded linear operator BN as before. This operator can
be written out as

(4.45) BNf(x) =
∑
|k|≤N

ek(x)

∫
ck(y)f(y)dy

and so is of finite rank – it always takes values in the span of the first 2N + 1
trigonometric functions. On the other hand the remainder is given by a similar
operator with corresponding to qN = b− bN and this satisfies

(4.46) sup
y
‖qN (·, y)‖L2((0,2π)) → 0 as N →∞.

Thus, qN has small norm as a bounded operator on L2((0, 2π)) so B is compact –
it is the norm limit of finite rank operators. �

Now, recall from Problem# that uk = c sin(kx/2), k ∈ N, is also an orthonormal
basis for L2(0, 2π) (it is not the Fourier basis!) Moreover, differentiating we find
straight away that

(4.47) −d
2uk
dx2

=
k2

4
uk.

Since of course uk(0) = 0 = uk(2π) as well, from the uniqueness above we conclude
that

(4.48) Buk =
4

k2
uk ∀ k.

Thus, in this case we know the orthonormal basis of eigenfunctions for B. They
are the uk, each eigenspace is 1 dimensional and the eigenvalues are 4k−2. So, this
happenstance allows us to decompose B as the square of another operator defined
directly on the othornormal basis. Namely

(4.49) Auk =
2

k
uk =⇒ B = A2.

Here again it is immediate that A is a compact self-adjoint operator on L2(0, 2π)
since its eigenvalues tend to 0. In fact we can see quite a lot more than this.

Lemma 43. The operator A maps L2(0, 2π) into C0([0, 2π]) and Af(0) =
Af(2π) = 0 for all f ∈ L2(0, 2π).

Proof. If f ∈ L2(0, 2π) we may expand it in Fourier-Bessel series in terms of
the uk and find

(4.50) f =
∑
k

ckuk, {ck} ∈ l2.
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Then of course, by definition,

(4.51) Af =
∑
k

2ck
k
uk.

Here each uk is a bounded continuous function, with the bound on uk being in-
dependent of k. So in fact (4.51) converges uniformly and absolutely since it is
uniformly Cauchy, for any q > p,

(4.52) |
q∑

k=p

2ck
k
uk| ≤ 2|c|

q∑
k=p

|ck|k−1 ≤ 2|c|

 q∑
k=p

k−2

 1
2

‖f‖L2

where Cauchy-Schwarz has been used. This proves that

A : L2(0, 2π) −→ C0([0, 2π])

is bounded and by the uniform convergence uk(0) = uk(2π) = 0 for all k implies
that Af(0) = Af(2π) = 0. �

So, going back to our original problem we try to solve (4.25) by moving the V u
term to the right side of the equation (don’t worry about regularity yet) and hope
to use the observation that

(4.53) u = −A2(V u) +A2f

should satisfy the equation and boundary conditions. In fact, let’s anticipate that
u = Av, which has to be true if (4.53) holds with v = −AV u+Af, and look instead
for

(4.54) v = −AV Av +Af =⇒ (Id +AV A)v = Af.

So, we know that multiplication by V, which is real and continuous, is a bounded
self-adjoint operator on L2(0, 2π). Thus AV A is a self-adjoint compact operator so
we can apply our spectral theory to it and so examine the invertibility of Id +AV A.
Working in terms of a complete orthonormal basis of eigenfunctions ei of AV A we
see that Id +AV A is invertible if and only if it has trivial null space, i.e. if −1 is not
an eigenvalue of AV A. Indeed, an element of the null space would have to satisfy
u = −AV Au. On the other hand we know that AV A is positive since

(4.55) (AV Aw,w) = (V Av,Av) =

∫
(0,2π)

V (x)|Av|2 ≥ 0 =⇒
∫

(0,2π)

|u|2 = 0,

using the non-negativity of V. So, there can be no null space – all the eigenvalues
of AV A are at least non-negative and the inverse is the bounded operator given by
its action on the basis

(4.56) (Id +AV A)−1ei = (1 + τi)
−1, AV Aei = τiei.

Thus Id +AV A is invertible on L2(0, 2π) with inverse of the form Id +Q, Q
again compact and self-adjoint since (1 + τi)

1− 1→ 0. Now, to solve (4.54) we just
need to take

(4.57) v = (Id +Q)Af ⇐⇒ v +AV Av = Af in L2(0, 2π).

Then indeed

(4.58) u = Av satisfies u+A2V u = A2f.
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In fact since v ∈ L2(0, 2π) from (4.57) we already know that u ∈ C0([0, 2π]) vanishes
at the end points.

Moreover if f ∈ C0([0, 2π]) we know that Bf = A2f is twice continuously
differentiable, since it is given by two integrations – that is where B came from.
Now, we know that u in L2 satisfies u = −A2(V u) + A2f. Since V u ∈ L2((0, 2π)
so is A(V u) and then, as seen above, A(A(V u) is continuous. So combining this
with the result about A2f we see that u itself is continuous and hence so is V u.
But then, going through the routine again

(4.59) u = −A2(V u) +A2f

is the sum of two twice continuously differentiable functions. Thus it is so itself. In
fact from the properties of B = A2 it satisifes

(4.60) −d
2u

dx2
= −V u+ f

which is what the result claims. So, we have proved the existence part of Proposi-
tion 40.

The uniqueness follows pretty much the same way. If there were two twice
continuously differentiable solutions then the difference w would satisfy

(4.61) −d
2w

dx2
+ V w = 0, w(0) = w(2π) = 0 =⇒ w = −Bw = −A2V w.

Thus w = Aφ, φ = −AV w ∈ L2(0, 2π). Thus φ in turn satisfies φ = AV Aφ and
hence is a solution of (Id +AV A)φ = 0 which we know has none (assuming V ≥ 0).
Since φ = 0, w = 0.

This completes the proof of Proposition 40. To summarize, what we have shown
is that Id +AV A is an invertible bounded operator on L2(0, 2π) (if V ≥ 0) and then
the solution to (4.25) is precisely

(4.62) u = A(Id +AV A)−1Af

which is twice continuously differentiable and satisfies the Dirichlet conditions for
each f ∈ C0([0, 2π]).

Now, even if we do not assume that V ≥ 0 we pretty much know what is
happening.

Proposition 42. For any V ∈ C0([0, 2π]) real-valued, there is an orthonormal
basis wk of L2(0, 2π) consisting of twice-continuously differentiable functions on

[0, 2π], vanishing at the end-points and satisfying −d
2wk
dx2 + V wk = Tkwk where

Tk → ∞ as k → ∞. The equation (4.25) has a (twice continuously differentiable)
solution for given f ∈ C0([0, 2π]) if and only if

(4.63) Tk = 0 =⇒
∫

(0,2π)

fwk = 0,

i.e. f is orthogonal to the null space of Id +A2V, which is the image under A of the
null space of Id +AV A, in L2(0, 2π).

Proof. Notice the form of the solution in case V ≥ 0 in (4.62). In general, we
can choose a constant c such that V + c ≥ 0. Then the equation can be rewritten

(4.64) −d
2w

dx2
+ V w = Twk ⇐⇒ −

d2w

dx2
+ (V + c)w = (T + c)w.
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Thus, if w satisfies this eigen-equation then it also satisfies

(4.65) w = (T + c)A(Id +A(V + c)A)−1Aw ⇐⇒
Sw = (T + c)−1w, S = A(Id +A(V + c)A)−1A.

Now, we have shown that S is a compact self-adjoint operator on L2(0, 2π) so we
know that it has a complete set of eigenfunctions, ek, with eigenvalues τk 6= 0. From
the discussion above we then know that each ek is actually continuous – since it is
Aw′ with w′ ∈ L2(0, 2π) and hence also twice continuously differentiable. So indeed,
these ek satisfy the eigenvalue problem (with Dirichlet boundary conditions) with
eigenvalues

(4.66) Tk = τ−1
k + c→∞ as k →∞.

The solvability part also follows in much the same way. �

3. Friedrichs’ extension

Next I will discuss an abstract Hilbert space set-up which covers the treatment
of the Dirichlet problem above and several other applications to differential equa-
tions and indeed to other problems. I am attributing this method to Friedrichs and
he certainly had a hand in it.

Instead of just one Hilbert space we will consider two at the same time. First is
a ‘background’ space, H, a separable infinite-dimensional Hilbert space which you
can think of as being something like L2(I) for some interval I. The inner product
on this I will denote (·, ·)H or maybe sometimes leave off the ‘H’ since this is the
basic space. Let me denote a second, separable infinite-dimensional, Hilbert space
as D, which maybe stands for ‘domain’ of some operator. So D comes with its own
inner product (·, ·)D where I will try to remember not to leave off the subscript.
The relationship between these two Hilbert spaces is given by a linear map

(4.67) i : D −→ H.

This is denoted ‘i’ because it is supposed to be an ‘inclusion’. In particular I will
always require that

(4.68) i is injective.

Since we will not want to have parts of H which are inaccessible, I will also assume
that

(4.69) i has dense range i(D) ⊂ H.

In fact because of these two conditions it is quite safe to identify D with i(D)
and think of each element of D as really being an element of H. The subspace
‘i(D) = D’ will not be closed, which is what we are used to thinking about (since it
is dense) but rather has its own inner product (·, ·)D. Naturally we will also suppose
that i is continuous and to avoid too many constants showing up I will suppose that
i has norm at most 1 so that

(4.70) ‖i(u)‖H ≤ ‖u‖D.

If you are comfortable identifying i(D) with D this just means that the ‘D-norm’
on D is bigger than the H norm restricted to D. A bit later I will assume one more
thing about i.
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What can we do with this setup? Well, consider an arbitrary element f ∈ H.
Then consider the linear map

(4.71) Tf : D 3 u −→ (i(u), f)H ∈ C.

where I have put in the identification i but will leave it out from now on, so just
write Tf (u) = (u, f)H . This is in fact a continuous linear functional on D since by
Cauchy-Schwarz and then (4.70),

(4.72) |Tf (u)| = |(u, f)H | ≤ ‖u‖H‖f‖H ≤ ‖f‖H‖u‖D.
So, by the Riesz’ representation – so using the assumed completeness of D (with
respect to the D-norm of course) there exists a unique element v ∈ D such that

(4.73) (u, f)H = (u, v)D ∀ u ∈ D.
Thus, v only depends on f and always exists, so this defines a map

(4.74) B : H −→ D, Bf = v iff (f, u)H = (v, u)D ∀ u ∈ D
where I have taken complex conjugates of both sides of (4.73).

Lemma 44. The map B is a continuous linear map H −→ D and restricted to
D is self-adjoint:

(4.75) (Bw, u)D = (w,Bu)D ∀ u,w ∈ D.
The assumption that D ⊂ H is dense implies that B : H −→ D is injective.

Proof. The linearity follows from the uniqueness and the definition. Thus if
fi ∈ H and ci ∈ C for i = 1, 2 then

(4.76)
(c1f1 + c2f2, u)H = c1(f1, u)H + c2(f2, u)H

= c1(Bf1, u)D + c2(Bf2, u)D = (c1Bf1 + c2Bf2, u) ∀ u ∈ D

shows that B(c1f1 + c2f2) = c1Bf1 + c2Bf2. Moreover from the estimate (4.72),

(4.77) |(Bf, u)D| ≤ ‖f‖H‖u‖D
and setting u = Bf it follows that ‖Bf‖D ≤ ‖f‖H which is the desired continuity.

To see the self-adjointness suppose that u, w ∈ D, and hence of course since
we are erasing i, u, w ∈ H. Then, from the definitions

(4.78) (Bu,w)D = (u,w)H = (w, u)H = (Bw, u)D = (u,Bw)D

so B is self-adjoint.
Finally observe that Bf = 0 implies that (Bf, u)D = 0 for all u ∈ D and hence

that (f, u)H = 0, but since D is dense, this implies f = 0 so B is injective. �

To go a little further we will assume that the inclusion i is compact. Explicitly
this means

(4.79) un ⇀D u =⇒ un(= i(un))→H u

where the subscript denotes which space the convergence is in. Thus compactness
means that a weakly convergent sequence in D is, or is mapped to, a strongly
convergent sequence in H.

Lemma 45. Under the assumptions (4.67), (4.68), (4.69), (4.70) and (4.79) on
the inclusion of one Hilbert space into another, the operator B in (4.74) is compact
as a self-adjoint operator on D and has only positive eigenvalues.
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Proof. Suppose un ⇀ u is weakly convergent in D. Then, by assumption it is
strongly convergent in H. But B is continuous as a map from H to D so Bun → Bu
in D and it follows that B is compact as an operator on D.

So, we know that D has an orthonormal basis of eigenvectors of B. None of
the eigenvalues λj can be zero since B is injective. Moreover, from the definition if
Buj = λjuj then

(4.80) ‖uj‖2H = (uj , uj)H = (Buj , uj)D = λj‖uj‖2D
showing that λj > 0. �

Now, in view of this we can define another compact operator on D by

(4.81) Auj = λ
1
2
j uj

taking the positive square-roots. So of course A2 = B. In fact A : H −→ D is also
a bounded operator.

Lemma 46. If uj is an orthonormal basis of D of eigenvectors of B then fj =

λ−
1
2uj is an orthonormal basis of H and A : D −→ D extends by continuity to an

isometric isomorphism A : H −→ D.

Proof. The identity (4.80) extends to pairs of eigenvectors

(4.82) (uj , uk)H = (Buj , uk)D = λjδjk

which shows that the fj form an orthonormal sequence in H. The span is dense
in D (in the H norm) and hence is dense in H so this set is complete. Thus A
maps an orthonormal basis of H to an orthonormal basis of D, so it is an isometric
isomorphism. �

If you think about this a bit you will see that this is an abstract version of the
treatment of the ‘trivial’ Dirichlet problem above, except that I did not describe
the Hilbert space D concretely in that case.

There are various ways this can be extended. One thing to note is that the
failure of injectivity, i.e. the loss of (4.68) is not so crucial. If i is not injective,
then its null space is a closed subspace and we can take its orthocomplement in
place of D. The result is the same except that the operator D is only defined on
this orthocomplement.

An additional thing to observe is that the completeness of D, although used
crucially above in the application of Riesz’ Representation theorem, is not really
such a big issue either

Proposition 43. Suppose that D̃ is a pre-Hilbert space with inner product
(·, ·)D and i : Ã −→ H is a linear map into a Hilbert space. If this map is injective,
has dense range and satisfies (4.70) in the sense that

(4.83) ‖i(u)‖H ≤ ‖u‖D ∀ u ∈ D̃

then it extends by continuity to a map of the completion, D, of D̃, satisfying (4.68),

(4.69) and (4.70) and if bounded sets in D̃ are mapped by i into precompact sets in
H then (4.79) also holds.

Proof. We know that a completion exists, D̃ ⊂ D, with inner product re-
stricting to the given one and every element of D is then the limit of a Cauchy
sequence in D̃. So we denote without ambiguity the inner product on D again as
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(·, ·)D. Since i is continuous with respect to the norm on D (and on H of course)

it extends by continuity to the closure of D̃, namely D as i(u) = limn i(un) if un
is Cauchy in D̃ and hence converges in D; this uses the completeness of H since
i(un) is Cauchy in H. The value of i(u) does not depend on the choice of approx-
imating sequence, since if vn → 0, i(vn) → 0 by continuity. So, it follows that
i : D −→ H exists, is linear and continuous and its norm is no larger than before
so (4.67) holds. �

The map extended map may not be injective, i.e. it might happen that i(un) → 0
even though un → u 6= 0.

The general discussion of the set up of Lemmas 45 and 46 can be continued
further. Namely, having defined the operators B and A we can define a new positive-
definite Hermitian form on H by

(4.84) (u, v)E = (Au,Av)H , u, v ∈ H

with the same relationship as between (·, ·)H and (·, ·)D. Now, it follows directly
that

(4.85) ‖u‖H ≤ ‖u‖E
so if we let E be the completion of H with respect to this new norm, then i : H −→
E is an injection with dense range and A extends to an isometric isomorphism
A : E −→ H. Then if uj is an orthonormal basis of H of eigenfunctions of A with

eigenvalues τj > 0 it follows that uj ∈ D and that the τ−1
j uj form an orthonormal

basis for D while the τjuj form an orthonormal basis for E.

Lemma 47. With E defined as above as the completion of H with respect to
the inner product (4.84), B extends by continuity to an isomoetric isomorphism
B : E −→ D.

Proof. Since B = A2 on H this follows from the properties of the eigenbases
above. �

The typical way that Friedrichs’ extension arises is that we are actually given
an explicit ‘operator’, a linear map P : D̃ −→ H such that (u, v)D = (u, Pv)H
satisfies the conditions of Proposition 43. Then P extends by continuity to an
isomorphism P : D −→ E which is precisely the inverse of B as in Lemma 47. We
shall see examples of this below.

4. Dirichlet problem revisited

So, does the setup of the preceding section work for the Dirichlet problem? We
take H = L2((0, 2π)). Then, and this really is Friedrichs’ extension, we take as a

subspace D̃ ⊂ H the space of functions which are once continuously differentiable
and vanish outside a compact subset of (0, 2π). This just means that there is some
smaller interval, depending on the function, [δ, 2π − δ], δ > 0, on which we have a
continuously differentiable function f with f(δ) = f ′(δ) = f(2π−δ) = f ′(2π−δ) = 0
and then we take it to be zero on (0, δ) and (2π − δ, 2π). There are lots of these,

let’s call the space D̃ as above

(4.86)
D̃ = {u ∈ C0[0, 2π];u continuously differentiable on [0, 2π],

u(x) = 0 in [0, δ] ∪ [2π − δ, 2π] for some δ > 0}.
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Then our first claim is that

(4.87) D̃ is dense in L2(0, 2π)

with respect to the norm on L2 of course.
What inner product should we take on D̃? Well, we can just integrate formally

by parts and set

(4.88) (u, v)D =
1

2π

∫
[0,2π]

du

dx

dv

dx
dx.

This is a pre-Hilbert inner product. To check all this note first that (u, u)D = 0
implies du/dx = 0 by Riemann integration (since |du/dx|2 is continuous) and since

u(x) = 0 in x < δ for some δ > 0 it follows that u = 0. Thus (u, v)D makes D̃ into
a pre-Hilbert space, since it is a positive definite sesquilinear form. So, what about
the completion? Observe that, the elements of D̃ being continuosly differentiable,
we can always integrate from x = 0 and see that

(4.89) u(x) =

∫ x

0

du

dx
dx

as u(0) = 0. Now, to say that un ∈ D̃ is Cauchy is to say that the continuous
functions vn = dun/dx are Cauchy in L2(0, 2π). Thus, from the completeness of L2

we know that vn → v ∈ L2(0, 2π). On the other hand (4.89) applies to each un so

(4.90) |un(x)− um(x)| = |
∫ x

0

(vn(s)− vm(s))ds| ≤
√

2π‖vn − vm‖L2

by applying Cauchy-Schwarz. Thus in fact the sequence un is uniformly Cauchy
in C([0, 2π]) if un is Cauchy in D̃. From the completeness of the Banach space of
continuous functions it follows that un → u in C([0, 2π]) so each element of the

completion, D̃, ‘defines’ (read ‘is’) a continuous function:

(4.91) un → u ∈ D =⇒ u ∈ C([0, 2π]), u(0) = u(2π) = 0

where the Dirichlet condition follows by continuity from (4.90).
Thus we do indeed get an injection

(4.92) D 3 u −→ u ∈ L2(0, 2π)

where the injectivity follows from (4.89) that if v = lim dun/dx vanishes in L2 then
u = 0.

Now, you can go ahead and check that with these definitions, B and A are the
same operators as we constructed in the discussion of the Dirichlet problem.

5. Harmonic oscillator

As a second ‘serious’ application of our Hilbert space theory I want to discuss
the harmonic oscillator, the corresponding Hermite basis for L2(R). Note that so
far we have not found an explicit orthonormal basis on the whole real line, even
though we know L2(R) to be separable, so we certainly know that such a basis
exists. How to construct one explicitly and with some handy properties? One way
is to simply orthonormalize – using Gram-Schmidt – some countable set with dense
span. For instance consider the basic Gaussian function

(4.93) exp(−x
2

2
) ∈ L2(R).
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This is so rapidly decreasing at infinity that the product with any polynomial is
also square integrable:

(4.94) xk exp(−x
2

2
) ∈ L2(R) ∀ k ∈ N0 = {0, 1, 2, . . . }.

Orthonormalizing this sequence gives an orthonormal basis, where completeness
can be shown by an appropriate approximation technique but as usual is not so
simple. This is in fact the Hermite basis as we will eventually show.

Rather than proceed directly we will work up to this by discussing the eigen-
functions of the harmonic oscillator

(4.95) P = − d2

dx2
+ x2

which we want to think of as an operator – although for the moment I will leave
vague the question of what it operates on.

As you probably already know, and we will show later, it is straightforward
to show that P has a lot of eigenvectors using the ‘creation’ and ‘annihilation
operators. We want to know a bit more than this and in particular I want to apply
the abstract discussion above to this case but first let me go through the ‘formal’
theory. There is nothing wrong (I hope) here, just that we cannot easily conclude
the completeness of the eigenfunctions.

The first thing to observe is that the Gaussian is an eigenfunction of H

(4.96) Pe−x
2/2 = − d

dx
(−xe−x

2/2 + x2e−x
2/2

− (x2 − 1)e−x
2/2 + x2e−x

2/2 = e−x
2/2

with eigenvalue 1. It is an eigenfunctions but not, for the moment, of a bounded
operator on any Hilbert space – in this sense it is only a formal eigenfunctions.

In this special case there is an essentially algebraic way to generate a whole
sequence of eigenfunctions from the Gaussian. To do this, write

(4.97) Pu = (− d

dx
+ x)(

d

dx
+ x)u+ u = (CA+ 1)u,

Cr = (− d

dx
+ x), An = (

d

dx
+ x)

again formally as operators. Then note that

(4.98) An e−x
2/2 = 0

which again proves (4.96). The two operators in (4.97) are the ‘creation’ operator
and the ‘annihilation’ operator. They almost commute in the sense that

(4.99) (An Cr−Cr An)u = 2u

for say any twice continuously differentiable function u.

Now, set u0 = e−x
2/2 which is the ‘ground state’ and consider u1 = Cru0.

From (4.99), (4.98) and (4.97),

(4.100) Pu1 = (Cr An Cr + Cr)u0 = Cr2 Anu0 + 3 Cru0 = 3u1.

Thus, u1 is an eigenfunction with eigenvalue 3.

Lemma 48. For j ∈ N0 = {0, 1, 2, . . . } the function uj = Crj u0 satisfies
Puj = (2j + 1)uj .
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Proof. This follows by induction on j, where we know the result for j = 0
and j = 1. Then

(4.101) P Cruj = (Cr An +1) Cruj = Cr(P − 1)uj + 3 Cruj = (2j + 3)uj .

�

Again by induction we can check that uj = (2jxj + qj(x))e−x
2/2 where qj is a

polynomial of degree at most j − 2. Indeed this is true for j = 0 and j = 1 (where
q0 = q1 ≡ 0) and then

(4.102) Cruj = (2j+1xj+1 + Cr qj)e
−x2/2.

and qj+1 = Cr qj is a polynomial of degree at most j − 1 – one degree higher than
qj .

From this it follows in fact that the finite span of the uj consists of all the

products p(x)e−x
2/2 where p(x) is any polynomial.

Now, all these functions are in L2(R) and we want to compute their norms.
First, a standard integral computation1 shows that

(4.103)

∫
R

(e−x
2/2)2 =

∫
R
e−x

2

=
√
π

For j > 0, integration by parts (easily justified by taking the integral over [−R,R]
and then letting R→∞) gives

(4.104)

∫
R

(Crj u0)2 =

∫
R

Crj u0(x) Crj u0(x)dx =

∫
R
u0 Anj Crj u0.

Now, from (4.99), we can move one factor of An through the j factors of Cr until
it emerges and ‘kills’ u0

(4.105) An Crj u0 = 2 Crj−1 u0 + Cr An Crj−1 u0

= 2 Crj−1 u0 + Cr2 An Crj−2 u0 = 2j Crj−1 u0.

So in fact,

(4.106)

∫
R

(Crj u0)2 = 2j

∫
R

(Crj−1 u0)2 = 2jj!
√
π.

A similar argument shows that

(4.107)

∫
R
ukuj =

∫
R
u0 Ank Crj u0 = 0 if k 6= j.

Thus the functions

(4.108) ej = 2−j/2(j!)−
1
2π−

1
4Cje−x

2/2

form an orthonormal sequence in L2(R).

1To compute the Gaussian integral, square it and write as a double integral then introduce
polar coordinates

(

∫
R
e−x

2
dx)2 =

∫
R2
e−x

2−y2dxdy =

∫ ∞
0

∫ 2π

0
e−r

2
rdrdθ = π

[
− e−r

2]∞
0

= π.
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We would like to show this orthonormal sequence is complete. Rather than
argue through approximation, we can guess that in some sense the operator

(4.109) An Cr = (
d

dx
+ x)(− d

dx
+ x) = − d2

dx2
+ x2 + 1

should be invertible, so one approach is to use the ideas above of Friedrichs’ exten-
sion to construct its ‘inverse’ and show this really exists as a compact, self-adjoint
operator on L2(R) and that its only eigenfunctions are the ei in (4.108). Another,
more indirect approach is described below.

6. Isotropic space

There are some functions which should be in the domain of P, namely the twice
continuously differentiable functions on R with compact support, those which vanish
outside a finite interval. Recall that there are actually a lot of these, they are dense
in L2(R). Following what we did above for the Dirichlet problem set

(4.110) D̃ = {u : R 7−→ C;∃ R s.t. u = 0 in |x| > R,

u is twice continuously differentiable on R}.

Now for such functions integration by parts on a large enough interval (depend-
ing on the functions) produces no boundary terms so

(4.111) (Pu, v)L2 =

∫
R

(Pu)v =

∫
R

(
du

dx

dv

dx
+ x2uv

)
= (u, v)iso

is a positive definite hermitian form on D̃. Indeed the vanishing of ‖u‖S implies

that ‖xu‖L2 = 0 and so u = 0 since u ∈ D̃ is continuous. The suffix ‘iso’ here
stands for ‘isotropic’ and refers to the fact that xu and du/dx are essentially on the
same footing here. Thus

(4.112) (u, v)iso = (
du

dx
,
dv

dx
)L2 + (xu, xv)L2 .

This may become a bit clearer later when we get to the Fourier transform.

Definition 22. Let H1
iso(R) be the completion of D̃ in (4.110) with respect to

the inner product (·, ·)iso.

Proposition 44. The inclusion map i : D̃ −→ L2(R) extends by continuity
to i : H1

iso −→ L2(R) which satisfies (4.67), (4.68), (4.69), (4.70) and (4.79) with
D = H1

iso and H = L2(R) and the derivative and multiplication maps define an
injection

(4.113) H1
iso −→ L2(R)× L2(R).

Proof. Let us start with the last part, (4.113). The map here is supposed to
be the continuous extension of the map

(4.114) D̃ 3 u 7−→ (
du

dx
, xu) ∈ L2(R)× L2(R)

where du/dx and xu are both compactly supported continuous functions in this
case. By definition of the inner product (·, ·)iso the norm is precisely

(4.115) ‖u‖2iso = ‖du
dx
‖2L2 + ‖xu‖2L2
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so if un is Cauchy in D̃ with respect to ‖ · ‖iso then the sequences dun/dx and xun
are Cauchy in L2(R). By the completeness of L2 they converge defining an element
in L2(R)× L2(R) as in (4.113). Moreover the elements so defined only depend on
the element of the completion that the Cauchy sequence defines. The resulting map
(4.113) is clearly continuous.

Now, we need to show that the inclusion i extends to H1
iso from D̃. This follows

from another integration identity. Namely, for u ∈ D̃ the Fundamental theorem of
calculus applied to

d

dx
(uxu) = |u|2 +

du

dx
xu+ ux

du

dx
gives

(4.116) ‖u‖2L2 ≤
∫
R
|du
dx
xu|+

∫
|uxdu

dx
| ≤ ‖u‖2iso.

Thus the inequality (4.70) holds for u ∈ D̃.
It follows that the inclusion map i : D̃ −→ L2(R) extends by continuity to H1

iso

since if un ∈ D̃ is Cauchy with respect in H1
iso it is Cauchy in L2(R). It remains to

check that i is injective and compact, since the range is already dense on D̃.
If u ∈ H1

iso then to say i(u) = 0 (in L2(R)) is to say that for any un → u in

H1
iso, with un ∈ D̃, un → 0 in L2(R) and we need to show that this means un → 0

in H1
iso to conclude that u = 0. To do so we use the map (4.113). If unD̃ converges

in H1
iso then it follows that the sequence (dudx , xu) converges in L2(R)×L2(R). If v is

a continuous function of compact support then (xun, v)L2 = (un, xv) → (u, xv)L2 ,
for if u = 0 it follows that xun → 0 as well. Similarly, using integration by parts
the limit U of dun

dx in L2(R) satisfies

(4.117) (U, v)L2 = lim
n

∫
dun
dx

v = − lim
n

∫
un
dv

dx
= −(u,

dv

dx
)L2 = 0

if u = 0. It therefore follows that U = 0 so in fact un → 0 in H1
iso and the injectivity

of i follows. �

We can see a little more about the metric on H1
iso.

Lemma 49. Elements of H1
iso are continuous functions and convergence with

respect to ‖ · ‖iso implies uniform convergence on bounded intervals.

Proof. For elements of the dense subspace D̃, (twice) continuously differ-
entiable and vanishing outside a bounded interval the Fundamental Theorem of
Calculus shows that

(4.118)

u(x) = ex
2/2

∫ x

−∞
(
d

dt
(e−t

2/2u) = ex
2/2

∫ x

−∞
(e−t

2/2(−tu+
du

dt
)) =⇒

|u(x)| ≤ ex
2/2(

∫ x

−∞
e−t

2

)
1
2 ‖u‖iso

where the estimate comes from the Cauchy-Schwarz applied to the integral. It fol-
lows that if un → u with respect to the isotropic norm then the sequence converges
uniformly on bounded intervals with

(4.119) sup
[−R,R]

|u(x)| ≤ C(R)‖u‖iso.

�
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Now, to proceed further we either need to apply some ‘regularity theory’ or do a
computation. I choose to do the latter here, although the former method (outlined
below) is much more general. The idea is to show that

Lemma 50. The linear map (P + 1) : C2
c (R) −→ Cc(R) is injective with range

dense in L2(R) and if f ∈ L2(R) ∩ C(R) there is a sequence un ∈ C2
c (R) such

that un → u in H1
iso, un → u locally uniformly with its first two derivatives and

(P + 1)un → f in L2(R) and locally uniformly.

Proof. Why P + 1 and not P? The result is actually true for P but not so
easy to show directly. The advantage of P + 1 is that it factorizes

(P + 1) = An Cr on C2
c (R).

so we proceed to solve the equation (P + 1)u = f in two steps.
First, if f ∈ c(R) then using the natural integrating factor

(4.120) v(x) = ex
2/2

∫ x

−∞
et

2/2f(t)dt+ ae−x
2/2 satisfies An v = f.

The integral here is not in general finite if f does not vanish in x < −R, which by

assumption it does. Note that An e−x
2/2 = 0. This solution is of the form

(4.121) v ∈ C1(R), v(x) = a±e
−x2/2 in ± x > R

where R depends on f and the constants can be different.
In the second step we need to solve away such terms – in general one cannot.

However, we can always choose a in (4.120) so that

(4.122)

∫
R
e−x

2/2v(x) = 0.

Now consider

(4.123) u(x) = ex
2/2

∫ x

−∞
e−t

2/2v(t)dt.

Here the integral does make sense because of the decay in v from (4.121) and
u ∈ C2(R). We need to understand how it behaves as x → ±∞. From the second
part of (4.121),

(4.124) u(x) = a− erf−(x), x < −R, erf−(x) =

∫
(−∞,x]

ex
2/2−t2

is an incomplete error function. It’s derivative is e−x
2

but it actually satisfies

(4.125) |x erf−(x)| ≤ Cex
2

, x < −R.

In any case it is easy to get an estimate such as Ce−bx
2

as x → −∞ for any
0 < b < 1 by Cauchy-Schwarz.

As x→∞ we would generally expect the solution to be rapidly increasing, but
precisely because of (4.122). Indeed the vanishing of this integral means we can
rewrite (4.123) as an integral from +∞ :

(4.126) u(x) = −ex
2/2

∫
[x,∞)

e−t
2/2v(t)dt
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and then the same estimates analysis yields

(4.127) u(x) = −a+ erf+(x), x < −R, erf+(x) =

∫
[x,∞)

ex
2/2−t2

So for any f ∈ Cc(R) we have found a solution of (P +1)u = f with u satisfying
the rapid decay conditions (4.124) and (4.127). These are such that if χ ∈ C2

c (R)
has χ(t) = 1 in |t| < 1 then the sequence

(4.128) un = χ(
x

n
)u(x)→ u, u′n → u′, u′′n → u′′

in all cases with convergence in L2(R) and uniformly and even such that x2un → xu
uniformly and in L2(R).

This yields the first part of the Lemma, since if f ∈ Cc(R) and u is the solution
just constructed to (P + 1)u = f then (P + 1)un → f in L2. So the closure L2(R)
in range of (P + 1) on C2

c (R) includes Cc(R) so is certainly dense in L2(R).
The second part also follows from this construction. If f ∈ L2(R) ∩ C(R) then

the sequence

(4.129) fn = χ(
x

n
)f(x) ∈ Cc(R)

converges to f both in L2(R) and locally uniformly. Consider the solution, un to
(P + 1)un = fn constructed above. We want to show that un → u in L2 and
locally uniformly with its first two derivatives. The decay in un is enough to allow
integration by parts to see that

(4.130)

∫
R

(P + 1)unun = ‖un‖2iso + ‖u‖2L2 = |(fn, un)| ≤ ‖fn‖l2‖un‖L2 .

This shows that the sequence is bounded in H1
iso and applying the same estimate

to un− um that it is Cauchy and hence convergent in H1
iso. This implies un → u in

H1
iso and so both in L2(R) and locally uniformly. The differential equation can be

written

(4.131) (un)′′ = x2un − un − fn
where the right side converges locally uniformly. It follows from a standard result
on uniform convergence of sequences of derivatives that in fact the uniform limit u
is twice continuously differentiable and that (un)′′ → u′′ locally uniformly. So in
fact (P + 1)u = f and the last part of the Lemma is also proved. �

7. Fourier transform

The Fourier transform for functions on R is in a certain sense the limit of the
definition of the coefficients of the Fourier series on an expanding interval, although
that is not generally a good way to approach it. We know that if u ∈ L1(R) and
v ∈ C∞(R) is a bounded continuous function then vu ∈ L1(R) – this follows from
our original definition by approximation. So if u ∈ L1(R) the integral

(4.132) û(ξ) =

∫
e−ixξu(x)dx, ξ ∈ R

exists for each ξ ∈ R as a Legesgue integral. Note that there are many different
normalizations of the Fourier transform in use. This is the standard ‘analysts’
normalization.
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Proposition 45. The Fourier tranform, (4.132), defines a bounded linear map

(4.133) F : L1(R) 3 u 7−→ û ∈ C0(R)

into the closed subspace C0(R) ⊂ C∞(R) of continuous functions which vanish at
infinity (with respect to the supremum norm).

Proof. We know that the integral exists for each ξ and from the basic prop-
erties of the Lebesgue integal

(4.134) |û(ξ)| ≤ ‖u‖L1 , since |e−ixξu(x)| = |u(x)|.

To investigate its properties we restrict to u ∈ c(R), a compactly-supported
continuous function. Then the integral becomes a Riemann integral and the in-
tegrand is a continuous function of both variables. It follows that the result is
uniformly continuous:-
(4.135)

|û(ξ)− 1

2
u(ξ′)| ≤

∫
|x|≤R

|e−ixξ − e−ixξ
′
||u(x)|dx ≤ C(u) sup

|x|≤R
|e−ixξ − e−ixξ

′
|

with the right side small by the uniform continuity of continuous functions on
compact sets. From (4.134), if un → u in L1(R) with un ∈ Cc(R) it follows that
ûn → û uniformly on R. Thus the Fourier transform is uniformly continuous on
R for any u ∈ L1(R) (you can also see this from the continuity-in-the-mean of L1

functions).
Now, we know that even the compactly-supported once continuously differen-

tiable functions, forming C1
c (R) are dense in L1(R) so we can also consider (4.132)

where u ∈ C1
c (R). Then the integration by parts as follows is justified

(4.136) ξû(ξ) = i

∫
(
de−ixξ

dx
)u(x)dx = −i

∫
e−ixξ

du(x)

dx
dx.

Now, du/dx ∈ Cc(R) (by assumption) so the estimate (4.134) now gives

(4.137) sup
ξ∈R
|ξû(ξ)| ≤ sup

x∈R
|du
dx
|.

This certainly implies the weaker statement that

(4.138) lim
|ξ|→∞

|û(ξ)| = 0

which is ‘vanishing at infinity’. Now we again use the density, this time of C1
c (R),

in L1(R) and the uniform estimate (4.134), plus the fact that is a sequence of
continuous functions on R converges uniformly on R and each element vanishes at
infinity then the limit vanishes at infinity to complete the proof of the Proposition.

�

We will use the explicit eigenfunctions of the harmonic oscillator below to
show that the Fourier tranform extends by continuity from Cc(R) to define an
isomorphism

(4.139) F : L2(R) −→ L2(R)

with inverse given by the corresponding continuous extension of

(4.140) Gv(x) = (2π)−1

∫
eixξv(ξ).
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8. Fourier inversion

This year, 2015, I decided to go directly to the proof of the Fourier inversion
formula, via Schwartz space and an elegant argument due to Hörmander.

We have shown above that the Fourier transform is defined as an integral if
u ∈ L1(R). Suppose that in addition we know that xu ∈ L1(R). We can summarize
the combined information as (why?)

(4.141) (1 + |x|)u ∈ L1(R).

Lemma 51. If u satisfies (4.141) then û is continuously differentiable and
dû/dξ = F(−ixu) is bounded.

Proof. Consider the difference quotient for the Fourier transform:

(4.142)
û(ξ + s)− û(ξ)

s
=

∫
e−ixs − 1

s
e−ixξu(x).

We can use the standard proof of Taylor’s formula to write the difference quotient
inside the integral as

(4.143) D(x, s) = −ix
∫ 1

0

e−itxsdt =⇒ |D(x, s)| ≤ |x|.

It follows that as s→ 0 (along a sequence if you prefer) D(x, s)e−ixξf(x) is bounded
by the L1(R) function |x||u(x)| and converges pointwise to −ie−ixξxu(x). Domi-
nated convergence therefore shows that the integral converges showing that the
derivative exists and that

(4.144)
dû(ξ)

dξ
= F(−ixu).

From the earlier results it follows that the derivative is continuous and bounded,
proving the lemma. �

Now, we can iterate this result and so conclude:

(4.145)

(1 + |x|)ku ∈ L1(R) ∀ k =⇒
û is infinitely differentiable with bounded derivatives and

dkû

dξk
= F((−ix)ku).

This result shows that from ‘decay’ of u we deduce smoothness of û. We can
go the other way too. Note one way to ensure the assumption in (4.145) is to make
the stronger assumption that

(4.146) xku is bounded and continuous ∀ k.
Indeed, Dominated Convergence shows that if u is continuous and satisfies the
bound

|u(x)| ≤ (1 + |x|)−r, r > 1

then u ∈ L1(R). So the integrability of xju follows from the bounds in (4.146) for
k ≤ j + 2. This is throwing away information but simplifies things below.

In the opposite direction, suppose that u is continuously differentiable and
satisfies the estimates (4.146) and

|u(x)

dx
| ≤ (1 + |x|)−r, r > 1.
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Then consider

(4.147) ξû = i

∫
de−ixξ

dx
u(x) = lim

R→∞
i

∫ R

−R

de−ixξ

dx
u(x).

We may integrate by parts in this integral to get

(4.148) ξû = lim
R→∞

(
i
[
e−ixξu(x)

]R
−R − i

∫ R

−R
e−ixξ

du

dx

)
.

The decay of u shows that the first term vanishes in the limit so

(4.149) ξû = F(−idu
dx

).

Iterating this in turn we see that if u has continuous derivatives of all orders
and for all j

(4.150) |d
ju

dxj
| ≤ Cj(1 + |x|)−r, r > 1 then ξj û = F((−i)j d

ju

dxj
)

are all bounded.
Laurent Schwartz defined a space which handily encapsulates these results.

Definition 23. Schwartz space, S(R), consists of all the infinitely differentiable
functions u : R −→ C such that

(4.151) ‖u‖j,k = sup |xj d
ku

dxk
| <∞ ∀ j, k ≥ 0

This is clearly a linear space. In fact it is a complete metric space in a natural
way. All the ‖ · ‖j,k in (4.151) are norms on S(R), but none of them is stronger
than the others. So there is no natural norm on S(R) with respect to which it is
complete. In the problems below you can find some discussion of the fact that

(4.152) d(u, v) =
∑
j,k≥0

2−j−k
‖u− v‖j,k

1 + ‖u− v‖j,k

is a complete metric. We will not use this here.
Notice that there is some prejudice on the order of multiplication by x and dif-

ferentiation in (4.151). This is only apparent, since these estimates (taken together)
are equivalent to

(4.153) sup |d
k(xju)

dxk
| <∞ ∀ j, k ≥ 0.

To see the equivalence we can use induction over N where the inductive statement
is the equivalence of (4.151) and (4.153) for j + k ≤ N. Certainly this is true for
N = 0 and to carry out the inductive step just differentiate out the product to see
that

dk(xju)

dxk
= xj

dku

dxk
+

∑
l+m<k+j

cl,m,k,jx
m d

lu

dxl

where one can be much more precise about the extra terms, but the important
thing is that they all are lower order (in fact both degrees go down). If you want to
be careful, you can of course prove this identity by induction too! The equivalence
of (4.151) and (4.153) for N + 1 now follows from that for N.
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Theorem 18. The Fourier transform restricts to a bijection on S(R) with
inverse

(4.154) G(v)(x) =
1

2π

∫
eixξv(ξ).

Proof. The proof (due to Hörmander as I said above) will take a little while
because we need to do some computation, but I hope you will see that it is quite
clear and elementary.

First we need to check that F : S(R) −→ S(R), but this is what I just did the
preparation for. Namely the estimates (4.151) imply that (4.150) applies to all the
dk(xju)
dxk

and so

(4.155) ξk
dj û

dξj
is continuous and bounded ∀ k, j =⇒ û ∈ S(R).

This indeed is why Schwartz introduced this space.
So, what we want to show is that with G defined by (4.154), u = G(û) for all

u ∈ S(R). Notice that there is only a sign change and a constant factor to get from
F to G so certainly G : S(R) −→ S(R). We start off with what looks like a small
part of this. Namely we want to show that

(4.156) I(û) =

∫
û = 2πu(0).

Here, I : S(R) −→ C is just integration, so it is certainly well-defined. To prove
(4.156) we need to use a version of Taylor’s formula and then do a little computation.

Lemma 52. If u ∈ S(R) then

(4.157) u(x) = u(0) exp(−x
2

2
) + xv(x), v ∈ S(R).

Proof. Here I will leave it to you (look in the problems) to show that the
Gaussian

(4.158) exp(−x
2

2
) ∈ S(R).

Observe then that the difference

w(x) = u(x)− u(0) exp(−x
2

2
) ∈ S(R) and w(0) = 0.

This is clearly a necessary condition to see that w = xv with v ∈ S(R) and we can
then see from the Fundamental Theorem of Calculus that

(4.159) w(x) =

∫ x

0

w′(y)dy = x

∫ 1

0

w′(tx)dt =⇒ v(x) =

∫ 1

0

w′(tx) =
w(x)

x
.

From the first formula for v it follows that it is infinitely differentiable and from the
second formula the derivatives decay rapidly since each derivative can be written

in the form of a finite sum of terms p(x)d
lw
dxl

/xN where the ps are polynomials.
The rapid decay of the derivatives of w therefore implies the rapid decay of the
derivatives of v. So indeed we have proved Lemma 52. �

Let me set γ(x) = exp(−x
2

2 ) to simplify the notation. Taking the Fourier
transform of each of the terms in (4.157) gives

(4.160) û = u(0)γ̂ + i
dv̂

dξ
.
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Since v̂ ∈ S(R),

(4.161)

∫
dv̂

dξ
= lim
R→∞

∫ R

−R

dv̂

dξ
= lim
R→∞

[
v̂(ξ)

]R
−R = 0.

So now we see that ∫
û = cu(0), c =

∫
γ̂

being a constant that we still need to work out!

Lemma 53. For the Gaussian, γ(x) = exp(−x
2

2 ),

(4.162) γ̂(ξ) =
√

2πγ(ξ).

Proof. Certainly, γ̂ ∈ S(R) and from the identities for derivatives above

(4.163)
dγ̂

dξ
= −iF(xγ), ξγ̂ = F(−idγ

dx
).

Thus, γ̂ satisfies the same differential equation as γ :

dγ̂

dξ
+ ξγ̂ = −iF(

dγ

dx
+ xγ) = 0.

This equation we can solve and so we conclude that γ̂ = c′γ where c′ is also a
constant that we need to compute. To do this observe that

(4.164) c′ = γ̂(0) =

∫
γ =
√

2π

which gives (4.162). The computation of the integral in (4.164) is a standard clever
argument which you probably know. Namely take the square and work in polar
coordinates in two variables:

(4.165) (

∫
γ)2 =

∫ ∞
0

∫ ∞
0

e−(x2+y2)dxdy

=

∫ 2π

0

∫ ∞
0

e−r
2/2rdrdθ = 2π

[
− e−r

2/2
]∞
0

= 2π.

�

So, finally we need to get from (4.156) to the inversion formula. Changing
variable in the Fourier transform we can see that for any y ∈ R, setting uy(x) =
u(x+ y), which is in S(R) if u ∈ S(R),

(4.166) F(uy) =

∫
e−ixξuy(x)dx =

∫
e−i(s−y)ξu(s)ds = eiyξû.

Now, plugging uy into (4.156) we see that

(4.167)

∫
ûy(0) = 2πuy(0) = 2πu(y) =

∫
eiyξû(ξ)dξ =⇒ u(y) = Gu,

the Fourier inversion formula. So we have proved the Theorem. �
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9. Convolution

There is a discussion of convolution later in the notes, I have inserted a new
(but not very different) treatment here to cover the density of S(R) in L2(R) needed
in the next section.

Consider two continuous functions of compact support u, v ∈ Cc(R). Their
convolution is

(4.168) u ∗ v(x) =

∫
u(x− y)v(y)dy =

∫
u(y)v(x− y)dy.

The first integral is the definition, clearly it is a well-defined Riemann integral since
the integrand is continuous as a function of y and vanishes whenever v(y) vanishes
– so has compact support. In fact if both u and v vanish outside [−R,R] then
u ∗ v = 0 outside [−2R, 2R].

From standard properties of the Riemann integral (or Dominated convergence
if you prefer!) it follows easily that u∗v is continuous. What we need to understand
is what happens if (at least) one of u or v is smoother. In fact we will want to take
a very smooth function, so I pause here to point out

Lemma 54. There exists a (‘bump’) function ψ : R −→ R which is infinitely
differentiable, i.e. has continuous derivatives of all orders, vanishes outside [−1, 1],
is strictly positive on (−1, 1) and has integral 1.

Proof. We start with an explicit function,

(4.169) φ(x) =

{
e−1/x x > 0

0 x ≤ 0.

The exponential function grows faster than any polynomial at +∞, since

(4.170) exp(x) >
xk

k!
in x > 0 ∀ k.

This can be seen directly from the Taylor series which converges on the whole line
(indeed in the whole complex plane)

exp(x) =
∑
k≥0

xk

k!
.

From (4.170) we deduce that

(4.171) lim
x↓0

e−1/x

xk
= lim
R→∞

Rk

eR
= 0 ∀ k

where we substitute R = 1/x and use the properties of exp . In particular φ in
(4.169) is continuous across the origin, and so everywhere. We can compute the
derivatives in x > 0 and these are of the form

(4.172)
dlφ

dxl
=
pl(x)

x2l
e−1/x, x > 0, pl a polynomial.

As usual, do this by induction since it is true for l = 0 and differetiation the formula
for a given l one finds

(4.173)
dl+1φ

dxl+1
=

(
pl(x)

x2l+2
− 2l

pl(x)

x2l+1
+
p′l(x)

x2l

)
e−1/x

where the coefficient function is of the desired form pl+1/x
2l+2.
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Once we know (4.172) then we see from (4.171) that all these functions are
continuous down to 0 where they vanish. From this it follows that φ in (4.169)
is infinitely differentiable. For φ itself we can use the Fundamental Theorem of
Calculus to write

(4.174) φ(x) =

∫ x

ε

U(t)dt+ φ(ε), x > ε > 0.

Here U is the derivative in x > 0. Taking the limit as ε ↓ 0 both sides converge,
and then we see that

φ(x) =

∫ x

0

U(t)dt.

From this it follows that φ is continuously differentiable across 0 and it derivative
is U, the continuous extension of the derivative from x > 0. The same argument
applies to successive derivatives, so indeed φ is infinitely differentiable.

From φ we can construct a function closer to the desired bump function.
Namely

Φ(x) = φ(x+ 1)φ(1− x).

The first factor vanishes when x ≤ −1 and is otherwise positive while the second
vanishes when x ≥ 1 but is otherwise positive, so the product is infinitely differ-
entiable on R and positive on (−1, 1) but otherwise 0. Then we can normalize the
integral to 1 by taking

(4.175) ψ(x) = Φ(x)/

∫
Φ.

�

In particular from Lemma 54 we conclude that the space C∞c (R), of infinitely
differentiable functions of compact support, is not empty. Going back to convolution
in (4.168) suppose now that is smooth. Then

(4.176) u ∈ Cc(R), v ∈ C∞c (R) =⇒ u ∗ v ∈ C∞c (R).

As usual this follows from properties of the Riemann integral or by looking directly
at the difference quotient

u ∗ v(x+ t)− u ∗ v(x)

t
=

∫
u(y)

v(x+ t− y)− v(x− y)

t
dt.

As t → 0, the differce quotient for v converges uniformly (in y) to the derivative
and hence the integral converges and the derivative of the convolution exists,

(4.177)
d

dx
u ∗ v(x) = u ∗ (

dv

dx
).

This result allows of immediate iteration, showing that the convolution is smooth
and we know that it has compact support

Proposition 46. For any u ∈ Cc(R) there exists un → u uniformly on R where
un ∈ C∞c (R) with supports in a fixed compact set.

Proof. For each ε > 0 consider the rescaled bump function

(4.178) ψε = ε−1ψ(
x

ε
) ∈ C∞c (R).
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In fact, ψε vanishes outside the interval (ε, ε), is positive within this interval and
has integral 1 – which is what the factor of ε−1 does. Now set

(4.179) uε = u ∗ ψε ∈ C∞c (R), ε > 0,

from what we have just seen. From the supports of these functions, uε vanishes
outside [−R−ε, R+ε] if u vanishes outside [−R,R]. So only the convergence remains.
To get this we use the fact that the integral of ψε is equal to 1 to write

(4.180) uε(x)− u(x) =

∫
(u(x− y)ψε(y)− u(x)ψε(y))dy.

Estimating the integral using the positivity of the bump function

(4.181) |uε(x)− u(x)| =
∫ ε

−ε
|u(x− y)− u(x)|ψε(y)dy.

By the uniformity of a continuous function on a compact set, given δ > 0 there
exists ε > 0 such that

sup
[−ε,ε]

|u(x− y)− y(x)| < δ ∀ x ∈ R.

So the uniform convergence follows:-

(4.182) sup |uε(x)− u(x)| ≤ δ
∫
φε = δ

Pass to a sequence εn → 0 if you wish, �

Corollary 5. The spaces C∞c (R) and S(R) are dense in L2(R).

Uniform convegence of continuous functions with support in a fixed subset is
stronger than L2 convergence the result follows from the Proposition above for
C∞c (R) ⊂ S(R).

10. Plancherel and Parseval

But which is which?
We proceed to show that F and G both extend to isomorphisms of L2(R) which

are inverses of each other. The main step is to show that

(4.183)

∫
u(x)v̂(x)dx =

∫
û(ξ)v(ξ)dξ, u, v ∈ S(R).

Since the integrals are rapidly convergent at infinity we may substitute the definite
of the Fourier transform into (4.183), write the result out as a double integral and
change the order of integration

(4.184)

∫
u(x)v̂(x)dx =

∫
u(x)

∫
e−ixξv(ξ)dξdx

=

∫
v(ξ)

∫
e−ixξu(x)dxdξ =

∫
û(ξ)v(ξ)dξ.

Now, if w ∈ S(R) we may replace v(ξ) by ŵ(ξ), since it is another element of
S(R). By the Fourier Inversion formula,

(4.185) w(x) = (2π)−1

∫
e−ixξŵ(ξ) =⇒ w(x) = (2π)−1

∫
eixξŵ(ξ) = (2π)−1v̂.
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Substituting these into (4.183) gives Parseval’s formula

(4.186)

∫
uw =

1

2π

∫
ûŵ, u, w ∈ S(R).

Proposition 47. The Fourier transform F extends from S(R) to an isomor-
phism on L2(R) with 1√

2π
an isometric isomorphism with adjoint, and inverse,

√
2πG.

Proof. Setting u = w in (4.186) shows that

(4.187) ‖F(u)‖L2 =
√

2π‖u‖L2

for all u ∈ S(R). The density of S(R), established above, then implies that F
extends by continuity to the whole of L2(R) as indicated. �

This isomorphism of L2(R) has many implications. For instance, we would
like to define the Sobolev space H1(R) by the conditions that u ∈ L2(R) and
du
dx ∈ L

2(R) but to do this we would need to make sense of the derivative. However,
we can ‘guess’ that if it exists, the Fourier transform of du/dx should be ξû(ξ).
For a function in L2, such as û given that u ∈ L2, we do know what it means to
require ξû(ξ) ∈ L2(R). We can then define the Sobolev spaces of any positive, even
non-integral, order by

(4.188) Hr(R) = {u ∈ L2(R); |ξ|rû ∈ L2(R)}.

Of course it would take us some time to investigate the properties of these spaces!

11. Completeness of the Hermite functions

In 2015 I gave a different proof of the completeness of the eigenfunctions of
the harmonic operator, reducing it to the spectral theorem, discussed in Section 5
above.

The starting point is to find a (generalized) inverse to the creation operator.

Namely e−x
2/2 is an integrating factor for it, so acting on once differentiable func-

tions

(4.189) Cru = −du
dx

+ xu = ex
2/2 d

dx
(e−x

2/2u).

For a function, say f ∈ Cc(R), we therefore get a solution by integration

(4.190) u(x) = −ex
2/2

∫ x

−∞
e−t

2/2f(t)dt.

This function vanishes for x << 0 but as x → +∞, after passing the top of the
support of f,

(4.191) u(x) = cex
2/2, c = −

∫
R
e−t

2/2f(t)dt.

So, to have Sf decay in both directions we need to assume that this integral van-
ishes.

Proposition 48. The creation operator gives a bijection

(4.192) Cr : S(R) −→ {f ∈ S(R);

∫
et

2/2f(t)dt = 0}
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with two-sided inverse in this sense

(4.193) u = Sf, Sf(x) = −ex
2/2

∫ x

−∞
e−t

2/2(Π0f)(t)dt,

Π0f = f − (
1√
π

∫
e−t

2/2f(t)dt)e−x
2/2.

Note that Π0 is the orthogonal projection off the ground state of the harmonic
oscillator and gives a map from S(R) to the right side of (4.192).

Proof. For any f ∈ S(R) consider the behaviour of u given by (4.190) as
x→ −∞. [This is what I messed up in lecture.] What we wish to show is that

(4.194) |xku(x)| is bounded as x→ −∞

for all k. Now, it is not possible to find an explicit primitive for et
2/2 but we can

make do with the identity

(4.195)
d

dt

e−t
2/2

t
= −e−t

2/2 − e−t
2/2

t2
.

Inserting this into the integral defining u and integrating by parts we find

(4.196) u(x) = −f(x)/x− ex
2/2

∫ x

−∞
e−t

2/2(
f ′(t)

t
− f(t)

t2
)dt.

The first term here obviously satisfies the estimate (4.194) and we can substitute
in the integral and repeat the procedure. Proceeding inductively we find after N
steps
(4.197)

u(x) =
∑

1≤k≤2N+1

hj
xj

+ ex
2/2

∫ x

−∞
e−t

2/2

 ∑
N≤j≤2N

gj,n(t)

tj

 dt, hj , gj,N ∈ S(R).

The first terms certainly satisfy (4.194) for any k and the integral is bounded by

C|x|−Ne−x2/2 so indeed (4.194) holds for all k.

For g ∈ S(R) such that
∫
e−t

2/2g(t) = 0 we can replace (4.190) by

(4.198) u(x) = −ex
2/2

∫ ∞
x

e−t
2/2f(t)dt

to which the same argument applies as x→ +∞. The effect of Π0 is to ensure this,
so

(4.199) sup(1 + |x|)k|Sf | <∞ ∀ k.
By construction, d

dxSf = xSf(x) − Π0f so this also shows rapid decrease of
the first derivative. In fact we may differentiate this equation N times and deduce,
inductively, that all derivatives of Sf are rapidly decaying at infinity.

So, we see that S defined by (4.193) maps S(R) to S(R) with null space con-

taining the span of e−x
2/2. Since it solves the differetial equation we find

(4.200) CrS = Id−Π0, S Cr = Id on S(R).

Indeed, the first identity is what we have just shown and this shows that Cr in
(4.192) is surjective. We already know it is injective since Cr f‖L2 ≥ ‖f‖L2 for
f ∈ S(R). So S Cr in (4.192) is a bijection and S is the bijection inverting it, so
the second identity in (4.200) follows. �
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Notice that we can deduce from (4.200) that S extends by continuity to a
bounded operator

(4.201) S : L2(R) −→ L2(R).

Namely, it is zero on the span of e−x
2/2 and

(4.202) ‖dSf
dx
‖2L2 + ‖xSf‖2L2 + ‖Sf‖2L2 = ‖Π0f‖2L2 ≤ ‖f‖2L2 .

This actually shows that the bounded extension of S is compact.

Theorem 19. The composite SS∗ is a compact injective self-adjoint operator
on L2(R) with eigenvalues (2j + 2)−1 for f ≥ 0 and associated one-dimesnional

eigenspaces Ej ⊂ S(R) spanned by Crj e−x
2/2; in particular the Hermite functions

form an orthonormal basis of L2(R).

Proof. We know that S has dense range (since this is already true when it acts

on S(R)) so S∗ is injective and has range dense in the orthocomplement of e−x
2/2.

From this it follows that SS∗ is injective. Compactness follows from the discussion
of the isotropic space above, showing the compactness of S. By the spectral theorem
SS∗ has an orthonormal basis of eigenfunctions in L2(R), say vj , with eigenvalues
sj > 0 which we may assume to be decreasing to 0.

�

12. Mehler’s formula and completeness

Starting from the ground state for the harmonic oscillator

(4.203) P = − d2

dx2
+ x2, Hu0 = u0, u0 = e−x

2/2

and using the creation and annihilation operators

(4.204) An =
d

dx
+ x, Cr = − d

dx
+ x, An Cr−Cr An = 2 Id, H = Cr An + Id

we have constructed the higher eigenfunctions:

(4.205) uj = Crj u0 = pj(x)u0(c), p(x) = 2jxj + l.o.ts, Huj = (2j + 1)uj

and shown that these are orthogonal, uj ⊥ uk, j 6= k, and so when normalized give
an orthonormal system in L2(R) :

(4.206) ej =
uj

2j/2(j!)
1
2π

1
4

.

Now, what we want to see, is that these ej form an orthonormal basis of L2(R),
meaning they are complete as an orthonormal sequence. There are various proofs
of this, but the only ‘simple’ ones I know involve the Fourier inversion formula and
I want to use the completeness to prove the Fourier inversion formula, so that will
not do. Instead I want to use a version of Mehler’s formula.

To show the completeness of the ej ’s it is enough to find a compact self-adjoint
operator with these as eigenfunctions and no null space. It is the last part which
is tricky. The first part is easy. Remembering that all the ej are real, we can find
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an operator with the ej ;s as eigenfunctions with corresponding eigenvalues λj > 0
(say) by just defining

(4.207) Au(x) =

∞∑
j=0

λj(u, ej)ej(x) =

∞∑
j=0

λjej(x)

∫
ej(y)u(y).

For this to be a compact operator we need λj → 0 as j →∞, although for bound-
edness we just need the λj to be bounded. So, the problem with this is to show
that A has no null space – which of course is just the completeness of the e′j since
(assuming all the λj are positive)

(4.208) Au = 0⇐⇒ u ⊥ ej ∀ j.

Nevertheless, this is essentially what we will do. The idea is to write A as an
integral operator and then work with that. I will take the λj = wj where w ∈ (0, 1).
The point is that we can find an explicit formula for

(4.209) Aw(x, y) =

∞∑
j=0

wjej(x)ej(y) = A(w, x, y).

To find A(w, x, y) we will need to compute the Fourier transforms of the ej .
Recall that

(4.210)

F : L1(R) −→ C0
∞(R), F(u) = û,

û(ξ) =

∫
e−ixξu(x), sup |û| ≤ ‖u‖L1 .

Lemma 55. The Fourier transform of u0 is

(4.211) (Fu0)(ξ) =
√

2πu0(ξ).

Proof. Since u0 is both continuous and Lebesgue integrable, the Fourier trans-
form is the limit of a Riemann integral

(4.212) û0(ξ) = lim
R→∞

∫ R

−R
eiξxu0(x).

Now, for the Riemann integral we can differentiate under the integral sign with
respect to the parameter ξ – since the integrand is continuously differentiable – and
see that

(4.213)

d

dξ
û0(ξ) = lim

R→∞

∫ R

−R
ixeiξxu0(x)

= lim
R→∞

i

∫ R

−R
eiξx(− d

dx
u0(x)

= lim
R→∞

−i
∫ R

−R

d

dx

(
eiξxu0(x)

)
− ξ lim

R→∞

∫ R

−R
eiξxu0(x)

= −ξû0(ξ).

Here I have used the fact that Anu0 = 0 and the fact that the boundary terms
in the integration by parts tend to zero rapidly with R. So this means that û0 is
annihilated by An :

(4.214) (
d

dξ
+ ξ)û0(ξ) = 0.
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Thus, it follows that û0(ξ) = c exp(−ξ2/2) since these are the only functions in
annihilated by An . The constant is easy to compute, since

(4.215) û0(0) =

∫
e−x

2/2dx =
√

2π

proving (4.211). �

We can use this formula, of if you prefer the argument to prove it, to show that

(4.216) v = e−x
2/4 =⇒ v̂ =

√
πe−ξ

2

.

Changing the names of the variables this just says

(4.217) e−x
2

=
1

2
√
π

∫
R
eixs−s

2/4ds.

The definition of the uj ’s can be rewritten

(4.218) uj(x) = (− d

dx
+ x)je−x

2/2 = ex
2/2(− d

dx
)je−x

2

as is easy to see inductively – the point being that ex
2/2 is an integrating factor for

the creation operator. Plugging this into (4.217) and carrying out the derivatives
– which is legitimate since the integral is so strongly convergent – gives

(4.219) uj(x) =
ex

2/2

2
√
π

∫
R

(−is)jeixs−s
2/4ds.

Now we can use this formula twice on the sum on the left in (4.209) and insert
the normalizations in (4.206) to find that

(4.220)

∞∑
j=0

wjej(x)ej(y) =

∞∑
j=0

ex
2/2+y2/2

4π3/2

∫
R2

(−1)jwjsjtj

2jj!
eisx+ity−s2/4−t2/4dsdt.

The crucial thing here is that we can sum the series to get an exponential, this
allows us to finally conclude:

Lemma 56. The identity (4.209) holds with

(4.221) A(w, x, y) =
1

√
π
√

1− w2
exp

(
− 1− w

4(1 + w)
(x+ y)2 − 1 + w

4(1− w)
(x− y)2

)
Proof. Summing the series in (4.220) we find that

(4.222) A(w, x, y) =
ex

2/2+y2/2

4π3/2

∫
R2

exp(−1

2
wst+ isx+ ity − 1

4
s2 − 1

4
t2)dsdt.

Now, we can use the same formula as before for the Fourier transform of u0 to
evaluate these integrals explicitly. One way to do this is to make a change of
variables by setting

(4.223) s = (S + T )/
√

2, t = (S − T )/
√

2 =⇒ dsdt = dSdT,

− 1

2
wst+ isx+ ity− 1

4
s2− 1

4
t2 = iS

x+ y√
2
− 1

4
(1+w)S2 + iT

x− y√
2
− 1

4
(1−w)T 2.
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Note that the integrals in (4.222) are ‘improper’ (but rapidly convergent) Riemann
integrals, so there is no problem with the change of variable formula. The formula
for the Fourier transform of exp(−x2) can be used to conclude that

(4.224)

∫
R

exp(iS
x+ y√

2
− 1

4
(1 + w)S2)dS =

2
√
π√

(1 + w)
exp(− (x+ y)2

2(1 + w)
)∫

R
exp(iT

x− y√
2
− 1

4
(1− w)T 2)dT =

2
√
π√

(1− w)
exp(− (x− y)2

2(1− w)
).

Inserting these formulæ back into (4.222) gives

(4.225) A(w, x, y) =
1

√
π
√

1− w2
exp

(
− (x+ y)2

2(1 + w)
− (x− y)2

2(1− w)
+
x2

2
+
y2

2

)
which after a little adjustment gives (4.221). �

Now, this explicit representation of Aw as an integral operator allows us to
show

Proposition 49. For all real-valued f ∈ L2(R),

(4.226)

∞∑
j=1

|(u, ej)|2 = ‖f‖2L2 .

Proof. By definition of Aw

(4.227)

∞∑
j=1

|(u, ej)|2 = lim
w↑1

(f,Awf)

so (4.226) reduces to

(4.228) lim
w↑1

(f,Awf) = ‖f‖2L2 .

To prove (4.228) we will make our work on the integral operators rather simpler
by assuming first that f ∈ C0(R) is continuous and vanishes outside some bounded
interval, f(x) = 0 in |x| > R. Then we can write out the L2 inner product as a
double integral, which is a genuine (iterated) Riemann integral:

(4.229) (f,Awf) =

∫ ∫
A(w, x, y)f(x)f(y)dydx.

Here I have used the fact that f and A are real-valued.
Look at the formula for A in (4.221). The first thing to notice is the factor

(1 − w2)−
1
2 which blows up as w → 1. On the other hand, the argument of the

exponential has two terms, the first tends to 0 as w → 1 and the becomes very
large and negative, at least when x− y 6= 0. Given the signs, we see that

(4.230)
if ε > 0, X = {(x, y); |x| ≤ R, |y| ≤ R, |x− y| ≥ ε} then

sup
X
|A(w, x, y)| → 0 as w → 1.

So, the part of the integral in (4.229) over |x− y| ≥ ε tends to zero as w → 1.
So, look at the other part, where |x− y| ≤ ε. By the (uniform) continuity of f,

given δ > 0 there exits ε > 0 such that

(4.231) |x− y| ≤ ε =⇒ |f(x)− f(y)| ≤ δ.
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Now we can divide (4.229) up into three pieces:-

(4.232) (f,Awf) =

∫
S∩{|x−y|≥ε}

A(w, x, y)f(x)f(y)dydx

+

∫
S∩{|x−y|≤ε}

A(w, x, y)(f(x)− f(y))f(y)dydx

+

∫
S∩{|x−y|≤ε}

A(w, x, y)f(y)2dydx

where S = [−R,R]2.
Look now at the third integral in (4.232) since it is the important one. We can

change variable of integration from x to t =
√

1+w
1−w (x − y). Since |x − y| ≤ ε, the

new t variable runs over |t| ≤ ε
√

1+w
1−w and then the integral becomes

(4.233)

∫
S∩{|t|≤ε

√
1+w
1−w }

A(w, y + t

√
1− w
1 + w

, y)f(y)2dydt, where

A(w, y+t

√
1− w
1 + w

, y)

=
1√

π(1 + w)
exp

(
− 1− w

4(1 + w)
(2y + t

√
1− w)2

)
exp

(
− t

2

4

)
.

Here y is bounded; the first exponential factor tends to 1 and the t domain extends
to (−∞,∞) as w → 1, so it follows that for any ε > 0 the third term in (4.232)
tends to

(4.234) ‖f‖2L2 as w → 1 since

∫
e−t

2/4 = 2
√
π.

Noting that A ≥ 0 the same argument shows that the second term is bounded by
a constant multiple of δ. Now, we have already shown that the first term in (4.232)
tends to zero as ε→ 0, so this proves (4.228) – given some γ > 0 first choose ε > 0
so small that the first two terms are each less than 1

2γ and then let w ↑ 0 to see

that the lim sup and lim inf as w ↑ 0 must lie in the range [‖f‖2−γ, ‖f‖2 +γ]. Since
this is true for all γ > 0 the limit exists and (4.226) follows under the assumption
that f is continuous and vanishes outside some interval [−R,R].

This actually suffices to prove the completeness of the Hermite basis. In any
case, the general case follows by continuity since such continuous functions vanishing
outside compact sets are dense in L2(R) and both sides of (4.226) are continuous
in f ∈ L2(R). �

Now, (4.228) certainly implies that the ej form an orthonormal basis, which is
what we wanted to show – but hard work! It is done here in part to remind you
of how we did the Fourier series computation of the same sort and to suggest that
you might like to compare the two arguments.

13. Weak and strong derivatives

In approaching the issue of the completeness of the eigenbasis for harmonic
oscillator more directly, rather than by the kernel method discussed above, we run
into the issue of weak and strong solutions of differential equations. Suppose that
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u ∈ L2(R), what does it mean to say that du
dx ∈ L

2(R). For instance, we will want
to understand what the ‘possible solutions of’

(4.235) Anu = f, u, f ∈ L2(R), An =
d

dx
+ x

are. Of course, if we assume that u is continuously differentiable then we know
what this means, but we need to consider the possibilities of giving a meaning to
(4.235) under more general conditions – without assuming too much regularity on
u (or any at all).

Notice that there is a difference between the two terms in Anu = du
dx + xu. If

u ∈ L2(R) we can assign a meaning to the second term, xu, since we know that
xu ∈ L2

loc(R). This is not a normed space, but it is a perfectly good vector space,
in which L2(R) ‘sits’ – if you want to be pedantic it naturally injects into it. The
point however, is that we do know what the statement xu ∈2 (R) means, given
that u ∈ L2(R), it means that there exists v ∈ L2(R) so that xu = v in L2

loc(R)
(or L2

loc(R)). The derivative can actually be handled in a similar fashion using the
Fourier transform but I will not do that here.

Rather, consider the following three ‘L2-based notions’ of derivative.

Definition 24. (1) We say that u ∈ L2(R) has a Sobolev derivative if
there exists a sequence φn ∈ C1

c (R) such that φn → u in L2(R) and φ′n → v

in L2(R), φ′n = dφn
dx in the usual sense of course.

(2) We say that u ∈ L2(R) has a strong derivative (in the L2 sense) if the
limit

(4.236) lim
06=s→0

u(x+ s)− u(x)

s
= ṽ exists in L2(R).

(3) Thirdly, we say that u ∈ L2(R) has a weak derivative in L2 if there exists
w ∈ L2(R) such that

(4.237) (u,− df
dx

)L2 = (w, f)L2 ∀ f ∈ C1
c (R).

In all cases, we will see that it is justified to write v = ṽ = w = du
dx because these

defintions turn out to be equivalent. Of course if u ∈ C1
c (R) then u is differentiable

in each sense and the derivative is always du/dx – note that the integration by parts
used to prove (4.237) is justified in that case. In fact we are most interested in the
first and third of these definitions, the first two are both called ‘strong derivatives.’

It is easy to see that the existence of a Sobolev derivative implies that this
is also a weak derivative. Indeed, since φn, the approximating sequence whose
existence is the definition of the Soboleve derivative, is in C1

c (R) so the integration
by parts implicit in (4.237) is valid and so for all f ∈ C1

c (R),

(4.238) (φn,−
df

dx
)L2 = (φ′n, f)L2 .

Since φn → u in L2 and φ′n → v in L2 both sides of (4.238) converge to give the
identity (4.237).

Before proceeding to the rest of the equivalence of these definitions we need
to do some preparation. First let us investigate a little the consequence of the
existence of a Sobolev derivative.



13. WEAK AND STRONG DERIVATIVES 141

Lemma 57. If u ∈ L2(R) has a Sobolev derivative then u ∈ C(R) and there
exists an unquely defined element w ∈ L2(R) such that

(4.239) u(x)− u(y) =

∫ x

y

w(s)ds ∀ y ≥ x ∈ R.

Proof. Suppose u has a Sobolev derivative, determined by some approximat-
ing sequence φn. Consider a general element ψ ∈ C1

c (R). Then φ̃n = ψφn is a

sequence in C1
c (R) and φ̃n → ψu in L2. Moreover, by the product rule for standard

derivatives

(4.240)
d

dx
φ̃n = ψ′φn + ψφ′n → ψ′u+ ψw in L2(R).

Thus in fact ψu also has a Sobolev derivative, namely φ′u+ψw if w is the Sobolev
derivative for u given by φn – which is to say that the product rule for derivatives
holds under these conditions.

Now, the formula (4.239) comes from the Fundamental Theorem of Calculus

which in this case really does apply to φ̃n and shows that

(4.241) ψ(x)φn(x)− ψ(y)φn(y) =

∫ x

y

(
dφ̃n
ds

(s))ds.

For any given x = x̄ we can choose ψ so that ψ(x̄) = 1 and then we can take y
below the lower limit of the support of ψ so ψ(y) = 0. It follows that for this choice
of ψ,

(4.242) φn(x̄) =

∫ x̄

y

(ψ′φn(s) + ψφ′n(s))ds.

Now, we can pass to the limit as n→∞ and the left side converges for each fixed x̄
(with ψ fixed) since the integrand converges in L2 and hence in L1 on this compact
interval. This actually shows that the limit φn(x̄) must exist for each fixed x̄. In
fact we can always choose ψ to be constant near a particular point and apply this
argument to see that

(4.243) φn(x)→ u(x) locally uniformly on R.

That is, the limit exists locally uniformly, hence represents a continuous function
but that continuous function must be equal to the original u almost everywhere
(since ψφn → ψu in L2).

Thus in fact we conclude that ‘u ∈ C(R)’ (which really means that u has a
representative which is continuous). Not only that but we get (4.239) from passing
to the limit on both sides of

(4.244) u(x)− u(y) = lim
n→∞

(φn(x)− φn(y)) = lim
n→∞

∫ s

y

(φ′(s))ds =

∫ s

y

w(s)ds.

�

One immediate consequence of this is

(4.245) The Sobolev derivative is unique if it exists.

Indeed, if w1 and w2 are both Sobolev derivatives then (4.239) holds for both of
them, which means that w2 − w1 has vanishing integral on any finite interval and
we know that this implies that w2 = w1 a.e.
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So at least for Sobolev derivatives we are now justified in writing

(4.246) w =
du

dx

since w is unique and behaves like a derivative in the integral sense that (4.239)
holds.

Lemma 58. If u has a Sobolev derivative then u has a stong derivative and if
u has a strong derivative then this is also a weak derivative.

Proof. If u has a Sobolev derivative then (3.15) holds. We can use this to
write the difference quotient as

(4.247)
u(x+ s)− u(x)

s
− w(x) =

1

s

∫ s

0

(w(x+ t)− w(x))dt

since the integral in the second term can be carried out. Using this formula twice
the square of the L2 norm, which is finite, is

(4.248) ‖u(x+ s)− u(x)

s
− w(x)‖2L2

=
1

s2

∫ ∫ s

0

∫ s

0

(w(x+ t)− w(x)(w(x+ t′)− w(x))dtdt′dx.

There is a small issue of manupulating the integrals, but we can always ‘back off
a little’ and replace u by the approximating sequence φn and then everything is
fine – and we only have to check what happens at the end. Now, we can apply the
Cauchy-Schwarz inequality as a triple integral. The two factors turn out to be the
same so we find that

(4.249) ‖u(x+ s)− u(x)

s
− w(x)‖2L2 ≤

1

s2

∫ ∫ s

0

∫ s

0

|w(x+ t)− w(x)|2dxdtdt′.

Now, something we checked long ago was that L2 functions are ‘continuous in the
mean’ in the sense that

(4.250) lim
06=t→0

∫
|w(x+ t)− w(x)|2dx = 0.

Applying this to (4.249) and then estimating the t and t′ integrals shows that

(4.251)
u(x+ s)− u(x)

s
− w(x)→ 0 in L2(R) as s→ 0.

By definition this means that u has w as a strong derivative. I leave it up to you
to make sure that the manipulation of integrals is okay.

So, now suppose that u has a strong derivative, ṽ. Obsever that if f ∈ C1
c (R)

then the limit defining the derivative

(4.252) lim
06=s→0

f(x+ s)− f(x)

s
= f ′(x)

is uniform. In fact this follows by writing down the Fundamental Theorem of
Calculus, as in (4.239), again and using the properties of Riemann integrals. Now,
consider

(4.253)
(u(x),

f(x+ s)− f(x)

s
)L2 =

1

s

∫
u(x)f(x+ s)dx− 1

s

∫
u(x)f(x)dx

= (
u(x− s)− u(x)

s
, f(x))L2
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where we just need to change the variable of integration in the first integral from
x to x + s. However, letting s → 0 the left side converges because of the uniform
convergence of the difference quotient and the right side converges because of the
assumed strong differentiability and as a result (noting that the parameter on the
right is really −s)

(4.254) (u,
df

dx
)L2 = −(w, f)L2 ∀ f ∈ C1

c (R)

which is weak differentiability with derivative ṽ. �

So, at this point we know that Sobolev differentiabilty implies strong differen-
tiability and either of the stong ones implies the weak. So it remains only to show
that weak differentiability implies Sobolev differentiability and we can forget about
the difference!

Before doing that, note again that a weak derivative, if it exists, is unique –
since the difference of two would have to pair to zero in L2 with all of C1

c (R) which
is dense. Similarly, if u has a weak derivative then so does ψu for any ψ ∈ C1

c (R)
since we can just move ψ around in the integrals and see that

(4.255)

(ψu,− df
dx

) = (u,−ψ df
dx

)

= (u,−dψf
dx

) + (u, ψ′f)

= (w,ψf + (ψ′u, f) = (ψw + ψ′u, f)

which also proves that the product formula holds for weak derivatives.
So, let us consider u ∈ L2

c(R) which does have a weak derivative. To show that
it has a Sobolev derivative we need to construct a sequence φn. We will do this by
convolution.

Lemma 59. If µ ∈ Cc(R) then for any u ∈ L2
c(R),

(4.256) µ ∗ u(x) =

∫
µ(x− s)u(s)ds ∈ Cc(R)

and if µ ∈ C1
c (R) then

(4.257) µ ∗ u(x) ∈ C1
c (R),

dµ ∗ u
dx

= µ′ ∗ u(x).

It folows that if µ has more continuous derivatives, then so does µ ∗ u.

Proof. Since u has compact support and is in L2 it in L1 so the integral in
(4.256) exists for each x ∈ R and also vanishes if |x| is large enough, since the
integrand vanishes when the supports become separate – for some R, µ(x − s) is
supported in |s − x| ≤ R and u(s) in |s| < R which are disjoint for |x| > 2R. It is
also clear that µ ∗ u is continuous using the estimate (from uniform continuity of
µ)

(4.258) |µ ∗ u(x′)− µ ∗ u(x)| ≤ sup |µ(x− s)− µ(x′ − s)|‖u‖L1 .

Similarly the difference quotient can be written

(4.259)
µ ∗ u(x′)− µ ∗ u(x)

t
=

∫
µ(x′ − s)− µ(x− s)

s
u(s)ds
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and the uniform convergence of the difference quotient shows that

(4.260)
dµ ∗ u
dx

= µ′ ∗ u.

�

One of the key properties of thes convolution integrals is that we can examine
what happens when we ‘concentrate’ µ. Replace the one µ by the family

(4.261) µε(x) = ε−1µ(
x

ε
), ε > 0.

The singular factor here is introduced so that
∫
µε is independent of ε > 0,

(4.262)

∫
µε =

∫
µ ∀ ε > 0.

Note that since µ has compact support, the support of µε is concentrated in |x| ≤ εR
for some fixed R.

Lemma 60. If u ∈ L2
c(R) and 0 ≤ µ ∈ C1

c (R) then

(4.263) lim
0 6=ε→0

µε ∗ u = (

∫
µ)u in L2(R).

In fact there is no need to assume that u has compact support for this to work.

Proof. First we can change the variable of integration in the definition of the
convolution and write it intead as

(4.264) µ ∗ u(x) =

∫
µ(s)u(x− s)ds.

Now, the rest is similar to one of the arguments above. First write out the difference
we want to examine as

(4.265) µε ∗ u(x)− (

∫
µ)(x) =

∫
|s|≤εR

µε(s)(u(x− s)− u(x))ds.

Write out the square of the absolute value using the formula twice and we find that

(4.266)

∫
|µε ∗ u(x)− (

∫
µ)(x)|2dx

=

∫ ∫
|s|≤εR

∫
|t|≤εR

µε(s)µε(t)(u(x− s)− u(x))(u(x− s)− u(x))dsdtdx

Now we can write the integrand as the product of two similar factors, one being

(4.267) µε(s)
1
2µε(t)

1
2 (u(x− s)− u(x))

using the non-negativity of µ. Applying the Cauchy-Schwarz inequality to this we
get two factors, which are again the same after relabelling variables, so

(4.268)

∫
|µε∗u(x)−(

∫
µ)(x)|2dx ≤

∫ ∫
|s|≤εR

∫
|t|≤εR

µε(s)µε(t)|u(x−s)−u(x)|2.
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The integral in x can be carried out first, then using continuity-in-the mean bounded
by J(s)→ 0 as ε→ 0 since |s| < εR. This leaves

(4.269)

∫
|µε ∗ u(x)− (

∫
µ)u(x)|2dx

≤ sup
|s|≤εR

J(s)

∫
|s|≤εR

∫
|t|≤εR

µε(s)µε(t) = (

∫
ψ)2Y sup

|s|≤εR
→ 0.

�

After all this preliminary work we are in a position to to prove the remaining
part of ‘weak=strong’.

Lemma 61. If u ∈ L2(R) has w as a weak L2-derivative then w is also the
Sobolev derivative of u.

Proof. Let’s assume first that u has compact support, so we can use the
discussion above. Then set φn = µ1/n ∗ u where µ ∈ C1

c (R) is chosen to be non-

negative and have integral
∫
µ = 0; µε is defined in (4.261). Now from Lemma 60

it follows that φn → u in L2(R). Also, from Lemma 59, φn ∈ C1
c (R) has derivative

given by (4.257). This formula can be written as a pairing in L2 :

(4.270) (µ1/n)′ ∗ u(x) = (u(s),−
dµ1/n(x− s)

ds
)2
L = (w(s),

dµ1/n(x− s)
ds

)L2

using the definition of the weak derivative of u. It therefore follows from Lemma 60
applied again that

(4.271) φ′n = µ/m1/n ∗ w → w in L2(R).

Thus indeed, φn is an approximating sequence showing that w is the Sobolev de-
rivative of u.

In the general case that u ∈ L2(R) has a weak derivative but is not necessarily
compactly supported, consider a function γ ∈ C1

c (R) with γ(0) = 1 and consider
the sequence vm = γ(x)u(x) in L2(R) each element of which has compact support.
Moreover, γ(x/m)→ 1 for each x so by Lebesgue dominated convergence, vm → u
in L2(R) as m→∞. As shown above, vm has as weak derivative

dγ(x/m)

dx
u+ γ(x/m)w =

1

m
γ′(x/m)u+ γ(x/m)w → w

as m → ∞ by the same argument applied to the second term and the fact that
the first converges to 0 in L2(R). Now, use the approximating sequence µ1/n ∗ vm
discussed converges to vm with its derivative converging to the weak derivative of
vm. Taking n = N(m) sufficiently large for each m ensures that φm = µ1/N(m) ∗ vm
converges to u and its sequence of derivatives converges to w in L2. Thus the weak
derivative is again a Sobolev derivative. �

Finally then we see that the three definitions are equivalent and we will freely
denote the Sobolev/strong/weak derivative as du/dx or u′.
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14. Fourier transform and L2

Recall that one reason for proving the completeness of the Hermite basis was
to apply it to prove some of the important facts about the Fourier transform, which
we already know is a linear operator

(4.272) L1(R) −→ C0
∞(R), û(ξ) =

∫
eixξu(x)dx.

Namely we have already shown the effect of the Fourier transform on the ‘ground
state’:

(4.273) F(u0)(ξ) =
√

2πe0(ξ).

By a similar argument we can check that

(4.274) F(uj)(ξ) =
√

2πijuj(ξ) ∀ j ∈ N.

As usual we can proceed by induction using the fact that uj = Cruj−1. The integrals
involved here are very rapidly convergent at infinity, so there is no problem with
the integration by parts in
(4.275)

F(
d

dx
uj−1) = lim

T→∞

∫ T

−T
e−ixξ

duj−1

dx
dx

= lim
T→∞

(∫ T

−T
(iξ)e−ixξuj−1dx+

[
e−ixξuj−1(x)

]T
−T

)
= (iξ)F(uj−1),

F(xuj−1) = i

∫
de−ixξ

dξ
uj−1dx = i

d

dξ
F(uj−1).

Taken together these identities imply the validity of the inductive step:

(4.276) F(uj) = F((− d

dx
+ x)uj−1) = (i(− d

dξ
+ ξ)F(uj−1) = iCr(

√
2πij−1uj−1)

so proving (4.274).
So, we have found an orthonormal basis for L2(R) with elements which are all

in L1(R) and which are also eigenfunctions for F .

Theorem 20. The Fourier transform maps L1(R) ∩ L2(R) into L2(R) and
extends by continuity to an isomorphism of L2(R) such that 1√

2π
F is unitary with

the inverse of F the continuous extension from L1(R) ∩ L2(R) of

(4.277) F(f)(x) =
1

2π

∫
eixξf(ξ).

Proof. This really is what we have already proved. The elements of the
Hermite basis ej are all in both L1(R) and L2(R) so if u ∈ L1(R)∩L2(R) its image
under F is in L2(R) because we can compute the L2 inner products and see that

(4.278) (F(u), ej) =

∫
R2

ej(ξ)e
ixξu(x)dxdξ =

∫
F(ej)(x)u(x) =

√
2πij(u, ej).

Now Bessel’s inequality shows that F(u) ∈ L2(R) (it is of course locally integrable
since it is continuous).

Everything else now follows easily. �
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Notice in particular that we have also proved Parseval’s and Plancherel’s identities
for the Fourier transform:-

(4.279) ‖F(u)‖L2 =
√

2π‖u‖L2 , (F(u),F(v)) = 2π(u, v), ∀ u, v ∈ L2(R).

Now there are lots of applications of the Fourier transform which we do not
have the time to get into. However, let me just indicate the definitions of Sobolev
spaces and Schwartz space and how they are related to the Fourier transform.

First Sobolev spaces. We now see that F maps L2(R) isomorphically onto
L2(R) and we can see from (4.275) for instance that it ‘turns differentiations by
x into multiplication by ξ’. Of course we do not know how to differentiate L2

functions so we have some problems making sense of this. One way, the usual
mathematicians trick, is to turn what we want into a definition.

Definition 25. The Sobolev spaces of order s, for any s ∈ (0,∞), are defined
as subspaces of L2(R) :

(4.280) Hs(R) = {u ∈ L2(R); (1 + |ξ|2)sû ∈ L2(R)}.

It is natural to identify H0(R) = L2(R).
These Sobolev spaces, for each positive order s, are Hilbert spaces with the

inner product and norm

(4.281) (u, v)Hs =

∫
(1 + |ξ|2)sû(ξ)v̂(ξ), ‖u‖s = ‖(1 + |ξ|2)

s
2 û‖L2 .

That they are pre-Hilbert spaces is clear enough. Completeness is also easy, given
that we know the completeness of L2(R). Namely, if un is Cauchy in Hs(R) then
it follows from the fact that

(4.282) ‖v‖L2 ≤ C‖v‖s ∀ v ∈ Hs(R)

that un is Cauchy in L2 and also that (1 + |ξ|2)
s
2 ûn(ξ) is Cauchy in L2. Both

therefore converge to a limit u in L2 and the continuity of the Fourier transform
shows that u ∈ Hs(R) and that un → u in Hs.

These spaces are examples of what is discussed above where we have a dense
inclusion of one Hilbert space in another, Hs(R) −→ L2(R). In this case the in-
clusion in not compact but it does give rise to a bounded self-adjoint operator on
L2(R), Es : L2(R) −→ Hs(R) ⊂ L2(R) such that

(4.283) (u, v)L2 = (Esu,Esv)Hs .

It is reasonable to denote this as Es = (1 + |Dx|2)−
s
2 since

(4.284) u ∈ L2(Rn) =⇒ Êsu(ξ) = (1 + |ξ|2)−
s
2 û(ξ).

It is a form of ‘fractional integration’ which turns any u ∈ L2(R) into Esu ∈ Hs(R).
Having defined these spaces, which get smaller as s increases it can be shown for

instance that if n ≥ s is an integer then the set of n times continuously differentiable
functions on R which vanish outside a compact set are dense in Hs. This allows us
to justify, by continuity, the following statement:-

Proposition 50. The bounded linear map

(4.285)
d

dx
: Hs(R) −→ Hs−1(R), s ≥ 1, v(x) =

du

dx
⇐⇒ v̂(ξ) = iξû(ξ)

is consistent with differentiation on n times continuously differentiable functions of
compact support, for any integer n ≥ s.
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In fact one can even get a ‘strong form’ of differentiation. The condition that
u ∈ H1(R), that u ∈ L2 ‘has one derivative in L2’ is actually equivalent, for
u ∈ L2(R) to the existence of the limit

(4.286) lim
t→0

u(x+ t)u(x)

t
= v, in L2(R)

and then v̂ = iξû. Another way of looking at this is

(4.287)

u ∈ H1(R) =⇒ u : R −→ C is continuous and

u(x)− u(y) =

∫ x

y

v(t)dt, v ∈ L2.

If such a v ∈ L2(R) exists then it is unique – since the difference of two such
functions would have to have integral zero over any finite interval and we know
(from one of the exercises) that this implies that the function vansishes a.e.

One of the more important results about Sobolev spaces – of which there are
many – is the relationship between these ‘L2 derivatives’ and ‘true derivatives’.

Theorem 21 (Sobolev embedding). If n is an integer and s > n+ 1
2 then

(4.288) Hs(R) ⊂ Cn∞(R)

consists of n times continuosly differentiable functions with bounded derivatives to
order n (which also vanish at infinity).

This is actually not so hard to prove, there are some hints in the exercises below.
These are not the only sort of spaces with ‘more regularity’ one can define

and use. For instance one can try to treat x and ξ more symmetrically and define
smaller spaces than the Hs above by setting

(4.289) Hs
iso(R) = {u ∈ L2(R); (1 + |ξ|2)

s
2 û ∈ L2(R), (1 + |x|2)

s
2u ∈ L2(R)}.

The ‘obvious’ inner product with respect to which these ‘isotropic’ Sobolev
spaces Hs

iso(R) are indeed Hilbert spaces is

(4.290) (u, v)s,iso =

∫
R
uv +

∫
R
|x|2suv +

∫
R
|ξ|2sûv̂

which makes them look rather symmetric between u and û and indeed

(4.291) F : Hs
iso(R) −→ Hs

iso(R) is an isomorphism ∀ s ≥ 0.

At this point, by dint of a little, only moderately hard, work, it is possible to
show that the harmonic oscillator extends by continuity to an isomorphism

(4.292) H : Hs+2
iso (R) −→ Hs

iso(R) ∀ s ≥ 2.

Finally in this general vein, I wanted to point out that Hilbert, and even Ba-
nach, spaces are not the end of the road! One very important space in relation to
a direct treatment of the Fourier transform, is the Schwartz space. The definition
is reasonably simple. Namely we denote Schwartz space by S(R) and say

(4.293)

u ∈ S(R)⇐⇒ u : R −→ C
is continuously differentiable of all orders and for every n,

‖u‖n =
∑

k+p≤n

sup
x∈R

(1 + |x|)k|d
pu

dxp
| <∞.
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All these inequalities just mean that all the derivatives of u are ‘rapidly decreasing
at ∞’ in the sense that they stay bounded when multiplied by any polynomial.

So in fact we know already that S(R) is not empty since the elements of the
Hermite basis, ej ∈ S(R) for all j. In fact it follows immediately from this that

(4.294) S(R) −→ L2(R) is dense.

If you want to try your hand at something a little challenging, see if you can check
that

(4.295) S(R) =
⋂
s>0

Hs
iso(R)

which uses the Sobolev embedding theorem above.
As you can see from the definition in (4.293), S(R) is not likely to be a Banach

space. Each of the ‖ · ‖n is a norm. However, S(R) is pretty clearly not going to be
complete with respect to any one of these. However it is complete with respect to
all, countably many, norms. What does this mean? In fact S(R) is a metric space
with the metric

(4.296) d(u, v) =
∑
n

2−n
‖u− v‖n

1 + ‖u− v‖n

as you can check. So the claim is that S(R) is comlete as a metric space – such a
thing is called a Fréchet space.

What has this got to do with the Fourier transform? The point is that
(4.297)

F : S(R) −→ S(R) is an isomorphism and F(
du

dx
) = iξF(u), F(xu) = −idF(u)

dξ

where this now makes sense. The dual space of S(R) – the space of continuous
linear functionals on it, is the space, denoted S ′(R), of tempered distributions on
R.

15. Dirichlet problem

As a final application, which I do not have time to do in full detail in lectures,
I want to consider the Dirichlet problem again, but now in higher dimensions. Of
course this is a small issue, since I have not really gone through the treatment of
the Lebesgue integral etc in higher dimensions – still I hope it is clear that with a
little more application we could do it and for the moment I will just pretend that
we have.

So, what is the issue? Consider Laplace’s equation on an open set in Rn. That
is, we want to find a solution of

(4.298) −(
∂2u(x)

∂x2
1

+
∂2u(x)

∂x2
2

+ · · ·+ ∂2u(x)

∂x2
n

) = f(x) in Ω ⊂ Rn.

Now, maybe some of you have not had a rigorous treatment of partical deriva-
tives either. Just add that to the heap of unresolved issues. In any case, partial
derivatives are just one-dimensional derivatives in the variable concerned with the
other variables held fixed. So, we are looking for a function u which has all partial
derivatives up to order 2 existing everywhere and continous. So, f will have to be
continuous too. Unfortunately this is not enough to guarantee the existence of a
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twice continuously differentiable solution – later we will just suppose that f itself
is once continuously differentiable.

Now, we want a solution of (4.298) which satisfies the Dirichlet condition. For
this we need to have a reasonable domain, which has a decent boundary. To short
cut the work involved, let’s just suppose that 0 ∈ Ω and that it is given by an
inequality of the sort

(4.299) Ω = {z ∈ Rn; |z| < ρ(z/|z|)
where ρ is another once continuously differentiable, and strictly positive, function
on Rn (although we only care about its values on the unit vectors). So, this is no
worse than what we are already dealing with.

Now, the Dirichlet condition can be stated as

(4.300) u ∈ C0(Ω), u
∣∣z| = ρ(z/|z|) = 0.

Here we need the first condition to make much sense of the second.
So, what I want to approach is the following result – which can be improved a

lot and which I will not quite manage to prove anyway.

Theorem 22. If 0 < ρ ∈ C1(Rn), and f ∈ C1(Rn) then there exists a unique
u ∈ C2(Ω) ∩ C0(Ω) satisfying (4.298) and (4.300).



CHAPTER 5

Problems and solutions

1. Problems – Chapter 1

Missing or badly referenced:-

Outline of finite-dimensional theory.
Quotient space.
Norm from seminorm.
Norm on quotient and completeness.
Completness of the completion.
Subspace of functions vanishing at infinity.
Completeness of the space of k times differentiable functions.
Direct proof of open mapping.

Problem 5.1. Show from first principles that if V is a vector space (over R or
C) then for any set X the space

(5.1) F(X;V ) = {u : X −→ V }

is a linear space over the same field, with ‘pointwise operations’.

Problem 5.2. If V is a vector space and S ⊂ V is a subset which is closed
under addition and scalar multiplication:

(5.2) v1, v2 ∈ S, λ ∈ K =⇒ v1 + v2 ∈ S and λv1 ∈ S

then S is a vector space as well (called of course a subspace).

Problem 5.3. If S ⊂ V be a linear subspace of a vector space show that the
relation on V

(5.3) v1 ∼ v2 ⇐⇒ v1 − v2 ∈ S

is an equivalence relation and that the set of equivalence classes, denoted usually
V/S, is a vector space in a natural way.

Problem 5.4. In case you do not know it, go through the basic theory of
finite-dimensional vector spaces. Define a vector space V to be finite-dimensional
if there is an integer N such that any N elements of V are linearly dependent – if
vi ∈ V for i = 1, . . . N, then there exist ai ∈ K, not all zero, such that

(5.4)

N∑
i=1

aivi = 0 in V.

Call the smallest such integer the dimension of V and show that a finite dimensional
vector space always has a basis, ei ∈ V, i = 1, . . . ,dimV such that any element of

151
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V can be written uniquely as a linear combination

(5.5) v =

dimV∑
i=1

biei, bi ∈ K.

Problem 5.5. Recall the notion of a linear map between vector spaces (dis-
cussed above) and show that between two finite dimensional vector spaces V and
W over the same field

(1) If dimV ≤ dimW then there is an injective linear map L : V −→W.
(2) If dimV ≥W then there is a surjective linear map L : V −→W.
(3) if dimV = dimW then there is a linear isomorphism L : V −→W, i.e. an

injective and surjective linear map.

Problem 5.6. Show that any two norms on a finite dimensional vector space
are equivalent.

Problem 5.7. Show that if two norms on a vector space are equivalent then
the topologies induced are the same – the sets open with respect to the distance
from one are open with respect to the distance coming from the other. The converse
is also true, you can use another result from this section to prove it.

Problem 5.8. Write out a proof (you can steal it from one of many places but
at least write it out in your own hand) either for p = 2 or for each p with 1 ≤ p <∞
that

lp = {a : N −→ C;

∞∑
j=1

|aj |p <∞, aj = a(j)}

is a normed space with the norm

‖a‖p =

 ∞∑
j=1

|aj |p
 1

p

.

This means writing out the proof that this is a linear space and that the three
conditions required of a norm hold.

Problem 5.9. Prove directly that each lp as defined in Problem 5.8 is complete,
i.e. it is a Banach space.

Problem 5.10. The space l∞ consists of the bounded sequences

(5.6) l∞ = {a : N −→ C; sup
n
|an| <∞}, ‖a‖∞ = sup

n
|an|.

Show that it is a Banach space.

Problem 5.11. Another closely related space consists of the sequences con-
verging to 0 :

(5.7) c0 = {a : N −→ C; lim
n→∞

an = 0}, ‖a‖∞ = sup
n
|an|.

Check that this is a Banach space and that it is a closed subspace of l∞ (perhaps
in the opposite order).

Problem 5.12. Consider the ‘unit sphere’ in lp. This is the set of vectors of
length 1 :

S = {a ∈ lp; ‖a‖p = 1}.
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(1) Show that S is closed.
(2) Recall the sequential (so not the open covering definition) characterization

of compactness of a set in a metric space (e.g. by checking in Rudin’s
book).

(3) Show that S is not compact by considering the sequence in lp with kth
element the sequence which is all zeros except for a 1 in the kth slot. Note
that the main problem is not to get yourself confused about sequences of
sequences!

Problem 5.13. Show that the norm on any normed space is continuous.

Problem 5.14. Finish the proof of the completeness of the space B constructed
in the second proof of Theorem 1.

2. Hints for some problems

Hint 1 (Problem 5.9). You need to show that each Cauchy sequence converges.
The problem here is to find the limit of a given Cauchy sequence. Show that for
each N the sequence in CN obtained by truncating each of the elements at point
N is Cauchy with respect to the norm in Problem 5.2 on CN . Show that this is
the same as being Cauchy in CN in the usual sense (if you are doing p = 2 it is
already the usual sense) and hence, this cut-off sequence converges. Use this to find
a putative limit of the Cauchy sequence and then check that it works.

3. Solutions to problems

Solution 5.1 (5.1). If V is a vector space (over K which is R or C) then for
any set X consider

(5.8) F(X;V ) = {u : X −→ V }.
Addition and scalar multiplication are defined ‘pointwise’:

(5.9) (u+ v)(x) = u(x) + v(x), (cu)(x) = cu(x), u, v ∈ F(X;V ), c ∈ K.
These are well-defined functions since addition and multiplication are defined in K.

So, one needs to check all the axioms of a vector space. Since an equality
of functions is just equality at all points, these all follow from the corresponding
identities for K.

Solution 5.2 (5.2). If S ⊂ V is a (non-empty) subset of a vector space and
S ⊂ V which is closed under addition and scalar multiplication:

(5.10) v1, v2 ∈ S, λ ∈ K =⇒ v1 + v2 ∈ S and λv1 ∈ S
then 0 ∈ S, since 0 ∈ K and for any v ∈ S, 0v = 0 ∈ S. Similarly, if v ∈ S
then −v = (−1)v ∈ S. Then all the axioms of a vector space follow from the
corresponding identities in V.

Solution 5.3. If S ⊂ V be a linear subspace of a vector space consider the
relation on V

(5.11) v1 ∼ v2 ⇐⇒ v1 − v2 ∈ S.
To say that this is an equivalence relation means that symmetry and transitivity
hold. Since S is a subspace, v ∈ S implies −v ∈ S so

v1 ∼ v2 =⇒ v1 − v2 ∈ S =⇒ v2 − v1 ∈ S =⇒ v2 ∼ v1.
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Similarly, since it is also possible to add and remain in S

v1 ∼ v2, v2 ∼ v3 =⇒ v1 − v2, v2 − v3 ∈ S =⇒ v1 − v3 ∈ S =⇒ v1 ∼ v3.

So this is an equivalence relation and the quotient V/ ∼= V/S is well-defined –
where the latter is notation. That is, and element of V/S is an equivalence class of
elements of V which can be written v + S :

(5.12) v + S = w + S ⇐⇒ v − w ∈ S.

Now, we can check the axioms of a linear space once we define addition and scalar
multiplication. Notice that

(v + S) + (w + S) = (v + w) + S, λ(v + S) = λv + S

are well-defined elements, independent of the choice of representatives, since adding
an lement of S to v or w does not change the right sides.

Now, to the axioms. These amount to showing that S is a zero element for
addition, −v + S is the additive inverse of v + S and that the other axioms follow
directly from the fact that the hold as identities in V.

Solution 5.4 (5.4). In case you do not know it, go through the basic theory of
finite-dimensional vector spaces. Define a vector space V to be finite-dimensional
if there is an integer N such that any N + 1 elements of V are linearly dependent
in the sense that the satisfy a non-trivial dependence relation – if vi ∈ V for
i = 1, . . . N + 1, then there exist ai ∈ K, not all zero, such that

(5.13)

N+1∑
i=1

aivi = 0 in V.

Call the smallest such integer the dimension of V – it is also the largest integer such
that there are N linearly independent vectors – and show that a finite dimensional
vector space always has a basis, ei ∈ V, i = 1, . . . ,dimV which are not linearly
dependent and such that any element of V can be written as a linear combination

(5.14) v =

dimV∑
i=1

biei, bi ∈ K.

Solution 5.5 (5.6). Show that any two norms on a finite dimensional vector
space are equivalent.

Solution 5.6 (5.7). Show that if two norms on a vector space are equivalent
then the topologies induced are the same – the sets open with respect to the distance
from one are open with respect to the distance coming from the other. The converse
is also true, you can use another result from this section to prove it.

Solution 5.7 (5.8). Write out a proof (you can steal it from one of many
places but at least write it out in your own hand) either for p = 2 or for each p
with 1 ≤ p <∞ that

lp = {a : N −→ C;

∞∑
j=1

|aj |p <∞, aj = a(j)}
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is a normed space with the norm

‖a‖p =

 ∞∑
j=1

|aj |p
 1

p

.

This means writing out the proof that this is a linear space and that the three
conditions required of a norm hold.

Solution 5.8 (). The ‘tricky’ part in Problem 5.1 is the triangle inequality.
Suppose you knew – meaning I tell you – that for each N N∑

j=1

|aj |p
 1

p

is a norm on CN

would that help?

Solution 5.9 (5.9). Prove directly that each lp as defined in Problem 5.1 is
complete, i.e. it is a Banach space. At the risk of offending some, let me say that
this means showing that each Cauchy sequence converges. The problem here is to
find the limit of a given Cauchy sequence. Show that for each N the sequence in
CN obtained by truncating each of the elements at point N is Cauchy with respect
to the norm in Problem 5.2 on CN . Show that this is the same as being Cauchy
in CN in the usual sense (if you are doing p = 2 it is already the usual sense)
and hence, this cut-off sequence converges. Use this to find a putative limit of the
Cauchy sequence and then check that it works.

Solution 5.10 (5.10). The space l∞ consists of the bounded sequences

(5.15) l∞ = {a : N −→ C; sup
n
|an| <∞}, ‖a‖∞ = sup

n
|an|.

Show that it is a Banach space.

Solution 5.11 (5.11). Another closely related space consists of the sequences
converging to 0 :

(5.16) c0 = {a : N −→ C; lim
n→∞

an = 0}, ‖a‖∞ = sup
n
|an|.

Check that this is a Banach space and that it is a closed subspace of l∞ (perhaps
in the opposite order).

Solution 5.12 (5.12). Consider the ‘unit sphere’ in lp. This is the set of vectors
of length 1 :

S = {a ∈ lp; ‖a‖p = 1}.
(1) Show that S is closed.
(2) Recall the sequential (so not the open covering definition) characterization

of compactness of a set in a metric space (e .g . by checking in Rudin).
(3) Show that S is not compact by considering the sequence in lp with kth

element the sequence which is all zeros except for a 1 in the kth slot. Note
that the main problem is not to get yourself confused about sequences of
sequences!
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Solution 5.13 (5.13). Since the distance between two points is ‖x − y‖ the
continuity of the norm follows directly from the ‘reverse triangle inequality’

(5.17) |‖x‖ − ‖y‖| ≤ ‖x− y‖
which in turn follows from the triangle inequality applied twice:-

(5.18) ‖x‖ ≤ ‖x− y‖+ ‖y‖, ‖y‖ ≤ ‖x− y‖+ ‖x‖.

4. Problems – Chapter 2

Missing

Problem 5.15. Let’s consider an example of an absolutely summable sequence
of step functions. For the interval [0, 1) (remember there is a strong preference
for left-closed but right-open intervals for the moment) consider a variant of the
construction of the standard Cantor subset based on 3 proceeding in steps. Thus,
remove the ‘central interval [1/3, 2/3). This leave C1 = [0, 1/3) ∪ [2/3, 1). Then
remove the central interval from each of the remaining two intervals to get C2 =
[0, 1/9) ∪ [2/9, 1/3) ∪ [2/3, 7/9) ∪ [8/9, 1). Carry on in this way to define successive
sets Ck ⊂ Ck−1, each consisting of a finite union of semi-open intervals. Now,
consider the series of step functions fk where fk(x) = 1 on Ck and 0 otherwise.

(1) Check that this is an absolutely summable series.
(2) For which x ∈ [0, 1) does

∑
k

|fk(x)| converge?

(3) Describe a function on [0, 1) which is shown to be Lebesgue integrable
(as defined in Lecture 4) by the existence of this series and compute its
Lebesgue integral.

(4) Is this function Riemann integrable (this is easy, not hard, if you check
the definition of Riemann integrability)?

(5) Finally consider the function g which is equal to one on the union of all
the intervals which are removed in the construction and zero elsewhere.
Show that g is Lebesgue integrable and compute its integral.

Problem 5.16. The covering lemma for R2. By a rectangle we will mean a set
of the form [a1, b1)× [a2, b2) in R2. The area of a rectangle is (b1 − a1)× (b2 − a2).

(1) We may subdivide a rectangle by subdividing either of the intervals –
replacing [a1, b1) by [a1, c1) ∪ [c1, b1). Show that the sum of the areas of
rectangles made by any repeated subdivision is always the same as that
of the original.

(2) Suppose that a finite collection of disjoint rectangles has union a rectangle
(always in this same half-open sense). Show, and I really mean prove, that
the sum of the areas is the area of the whole rectange. Hint:- proceed by
subdivision.

(3) Now show that for any countable collection of disjoint rectangles contained
in a given rectange the sum of the areas is less than or equal to that of
the containing rectangle.

(4) Show that if a finite collection of rectangles has union containing a given
rectange then the sum of the areas of the rectangles is at least as large of
that of the rectangle contained in the union.

(5) Prove the extension of the preceeding result to a countable collection of
rectangles with union containing a given rectangle.
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Problem 5.17. (1) Show that any continuous function on [0, 1] is the
uniform limit on [0, 1) of a sequence of step functions. Hint:- Reduce to
the real case, divide the interval into 2n equal pieces and define the step
functions to take infimim of the continuous function on the corresponding
interval. Then use uniform convergence.

(2) By using the ‘telescoping trick’ show that any continuous function on [0, 1)
can be written as the sum

(5.19)
∑
i

fj(x) ∀ x ∈ [0, 1)

where the fj are step functions and
∑
j

|fj(x)| <∞ for all x ∈ [0, 1).

(3) Conclude that any continuous function on [0, 1], extended to be 0 outside
this interval, is a Lebesgue integrable function on R and show that the
Lebesgue integral is equal to the Riemann integral.

Problem 5.18. If f and g ∈ L1(R) are Lebesgue integrable functions on the
line show that

(1) If f(x) ≥ 0 a.e. then
∫
f ≥ 0.

(2) If f(x) ≤ g(x) a.e. then
∫
f ≤

∫
g.

(3) If f is complex valued then its real part, Re f, is Lebesgue integrable and
|
∫

Re f | ≤
∫
|f |.

(4) For a general complex-valued Lebesgue integrable function

(5.20) |
∫
f | ≤

∫
|f |.

Hint: You can look up a proof of this easily enough, but the usual trick
is to choose θ ∈ [0, 2π) so that eiθ

∫
f =

∫
(eiθf) ≥ 0. Then apply the

preceeding estimate to g = eiθf.
(5) Show that the integral is a continuous linear functional

(5.21)

∫
: L1(R) −→ C.

Problem 5.19. If I ⊂ R is an interval, including possibly (−∞, a) or (a,∞),
we define Lebesgue integrability of a function f : I −→ C to mean the Lebesgue
integrability of

(5.22) f̃ : R −→ C, f̃(x) =

{
f(x) x ∈ I
0 x ∈ R \ I.

The integral of f on I is then defined to be

(5.23)

∫
I

f =

∫
f̃ .

(1) Show that the space of such integrable functions on I is linear, denote it
L1(I).

(2) Show that is f is integrable on I then so is |f |.
(3) Show that if f is integrable on I and

∫
I
|f | = 0 then f = 0 a.e. in the

sense that f(x) = 0 for all x ∈ I \ E where E ⊂ I is of measure zero as a
subset of R.

(4) Show that the set of null functions as in the preceeding question is a linear
space, denote it N (I).
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(5) Show that
∫
I
|f | defines a norm on L1(I) = L1(I)/N (I).

(6) Show that if f ∈ L1(R) then

(5.24) g : I −→ C, g(x) =

{
f(x) x ∈ I
0 x ∈ R \ I

is integrable on I.
(7) Show that the preceeding construction gives a surjective and continuous

linear map ‘restriction to I’

(5.25) L1(R) −→ L1(I).

(Notice that these are the quotient spaces of integrable functions modulo
equality a.e.)

Problem 5.20. Really continuing the previous one.

(1) Show that if I = [a, b) and f ∈ L1(I) then the restriction of f to Ix = [x, b)
is an element of L1(Ix) for all a ≤ x < b.

(2) Show that the function

(5.26) F (x) =

∫
Ix

f : [a, b) −→ C

is continuous.
(3) Prove that the function x−1 cos(1/x) is not Lebesgue integrable on the

interval (0, 1]. Hint: Think about it a bit and use what you have shown
above.

Problem 5.21. [Harder but still doable] Suppose f ∈ L1(R).

(1) Show that for each t ∈ R the translates

(5.27) ft(x) = f(x− t) : R −→ C
are elements of L1(R).

(2) Show that

(5.28) lim
t→0

∫
|ft − f | = 0.

This is called ‘Continuity in the mean for integrable functions’. Hint: I
will add one!

(3) Conclude that for each f ∈ L1(R) the map (it is a ‘curve’)

(5.29) R 3 t 7−→ [ft] ∈ L1(R)

is continuous.

Problem 5.22. In the last problem set you showed that a continuous function
on a compact interval, extended to be zero outside, is Lebesgue integrable. Using
this, and the fact that step functions are dense in L1(R) show that the linear space
of continuous functions on R each of which vanishes outside a compact set (which
depends on the function) form a dense subset of L1(R).

Problem 5.23. (1) If g : R −→ C is bounded and continuous and f ∈
L1(R) show that gf ∈ L1(R) and that

(5.30)

∫
|gf | ≤ sup

R
|g| ·

∫
|f |.
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(2) Suppose now that G ∈ C([0, 1]×[0, 1]) is a continuous function (I use C(K)
to denote the continuous functions on a compact metric space). Recall
from the preceeding discussion that we have defined L1([0, 1]). Now, using
the first part show that if f ∈ L1([0, 1]) then

(5.31) F (x) =

∫
[0,1]

G(x, ·)f(·) ∈ C

(where · is the variable in which the integral is taken) is well-defined for
each x ∈ [0, 1].

(3) Show that for each f ∈ L1([0, 1]), F is a continuous function on [0, 1].
(4) Show that

(5.32) L1([0, 1]) 3 f 7−→ F ∈ C([0, 1])

is a bounded (i.e. continuous) linear map into the Banach space of con-
tinuous functions, with supremum norm, on [0, 1].

Problem 5.24. Let f : R −→ C be an element of L1(R). Define

(5.33) fL(x) =

{
f(x) x ∈ [−L,L]

0 otherwise.

Show that fL ∈ L1(R) and that
∫
|fL − f | → 0 as L→∞.

Problem 5.25. Consider a real-valued function f : R −→ R which is locally
integrable in the sense that

(5.34) gL(x) =

{
f(x) x ∈ [−L,L]

0 x ∈ R \ [−L,L]

is Lebesgue integrable of each L ∈ N.
(1) Show that for each fixed L the function

(5.35) g
(N)
L (x) =


gL(x) if gL(x) ∈ [−N,N ]

N if gL(x) > N

−N if gL(x) < −N
is Lebesgue integrable.

(2) Show that
∫
|g(N)
L − gL| → 0 as N →∞.

(3) Show that there is a sequence, hn, of step functions such that

(5.36) hn(x)→ f(x) a.e. in R.
(4) Defining

(5.37) h
(N)
n,L =


0 x 6∈ [−L,L]

hn(x) if hn(x) ∈ [−N,N ], x ∈ [−L,L]

N if hn(x) > N, x ∈ [−L,L]

−N if hn(x) < −N, x ∈ [−L,L]

.

Show that
∫
|h(N)
n,L − g

(N)
L | → 0 as n→∞.

Problem 5.26. Show that L2(R) is a Hilbert space.
First working with real functions, define L2(R) as the set of functions f : R −→

R which are locally integrable and such that |f |2 is integrable.
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(1) For such f choose hn and define gL, g
(N)
L and h

(N)
n by (5.34), (5.35) and

(5.37).

(2) Show using the sequence h
(N)
n,L for fixed N and L that g

(N)
L and (g

(N)
L )2

are in L1(R) and that
∫
|(h(N)

n,L)2 − (g
(N)
L )2| → 0 as n→∞.

(3) Show that (gL)2 ∈ L1(R) and that
∫
|(g(N)

L )2 − (gL)2| → 0 as N →∞.
(4) Show that

∫
|(gL)2 − f2| → 0 as L→∞.

(5) Show that f, g ∈ L2(R) then fg ∈ L1(R) and that

(5.38) |
∫
fg| ≤

∫
|fg| ≤ ‖f‖L2‖g‖L2 , ‖f‖2L2 =

∫
|f |2.

(6) Use these constructions to show that L2(R) is a linear space.
(7) Conclude that the quotient space L2(R) = L2(R)/N , whereN is the space

of null functions, is a real Hilbert space.
(8) Extend the arguments to the case of complex-valued functions.

Problem 5.27. Consider the sequence space

(5.39) h2,1 =

c : N 3 j 7−→ cj ∈ C;
∑
j

(1 + j2)|cj |2 <∞

 .

(1) Show that

(5.40) h2,1 × h2,1 3 (c, d) 7−→ 〈c, d〉 =
∑
j

(1 + j2)cjdj

is an Hermitian inner form which turns h2,1 into a Hilbert space.
(2) Denoting the norm on this space by ‖ · ‖2,1 and the norm on l2 by ‖ · ‖2,

show that

(5.41) h2,1 ⊂ l2, ‖c‖2 ≤ ‖c‖2,1 ∀ c ∈ h2,1.

Problem 5.28. In the separable case, prove Riesz Representation Theorem
directly.

Choose an orthonormal basis {ei} of the separable Hilbert space H. Suppose
T : H −→ C is a bounded linear functional. Define a sequence

(5.42) wi = T (ei), i ∈ N.

(1) Now, recall that |Tu| ≤ C‖u‖H for some constant C. Show that for every
finite N,

(5.43)

N∑
j=1

|wi|2 ≤ C2.

(2) Conclude that {wi} ∈ l2 and that

(5.44) w =
∑
i

wiei ∈ H.

(3) Show that

(5.45) T (u) = 〈u,w〉H ∀ u ∈ H and ‖T‖ = ‖w‖H .
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Problem 5.29. If f ∈ L1(Rk × Rp) show that there exists a set of measure
zero E ⊂ Rk such that

(5.46) x ∈ Rk \ E =⇒ gx(y) = f(x, y) defines gx ∈ L1(Rp),
that F (x) =

∫
gx defines an element F ∈ L1(Rk) and that

(5.47)

∫
Rk
F =

∫
Rk×Rp

f.

Note: These identities are usually written out as an equality of an iterated
integral and a ‘regular’ integral:

(5.48)

∫
Rk

∫
Rp
f(x, y) =

∫
f.

It is often used to ‘exchange the order of integration’ since the hypotheses are
the same if we exchange the variables.

5. Solutions to problems

Problem 5.30. Suppose that f ∈ L1(0, 2π) is such that the constants

ck =

∫
(0,2π)

f(x)e−ikx, k ∈ Z,

satisfy ∑
k∈Z
|ck|2 <∞.

Show that f ∈ L2(0, 2π).

Solution. So, this was a good bit harder than I meant it to be – but still in
principle solvable (even though no one quite got to the end).

First, (for half marks in fact!) we know that the ck exists, since f ∈ L1(0, 2π)
and e−ikx is continuous so fe−ikx ∈ L1(0, 2π) and then the condition

∑
k

|ck|2 <∞

implies that the Fourier series does converge in L2(0, 2π) so there is a function

(5.49) g =
1

2π

∑
k∈C

cke
ikx.

Now, what we want to show is that f = g a .e . since then f ∈ L2(0, 2π).
Set h = f − g ∈ L1(0, 2π) since L2(0, 2π) ⊂ L1(0, 2π). It follows from (5.49)

that f and g have the same Fourier coefficients, and hence that

(5.50)

∫
(0,2π)

h(x)eikx = 0 ∀ k ∈ Z.

So, we need to show that this implies that h = 0 a .e . Now, we can recall from
class that we showed (in the proof of the completeness of the Fourier basis of L2)
that these exponentials are dense, in the supremum norm, in continuous functions
which vanish near the ends of the interval. Thus, by continuity of the integral we
know that

(5.51)

∫
(0,2π)

hg = 0

for all such continuous functions g. We also showed at some point that we can
find such a sequence of continuous functions gn to approximate the characteristic



162 5. PROBLEMS AND SOLUTIONS

function of any interval χI . It is not true that gn → χI uniformly, but for any
integrable function h, hgn → hχI in L1. So, the upshot of this is that we know a
bit more than (5.51), namely we know that

(5.52)

∫
(0,2π)

hg = 0 ∀ step functions g.

So, now the trick is to show that (5.52) implies that h = 0 almost everywhere.
Well, this would follow if we know that

∫
(0,2π)

|h| = 0, so let’s aim for that. Here

is the trick. Since g ∈ L1 we know that there is a sequence (the partial sums of
an absolutely convergent series) of step functions hn such that hn → g both in
L1(0, 2π) and almost everywhere and also |hn| → |h| in both these senses. Now,
consider the functions

(5.53) sn(x) =

{
0 if hn(x) = 0
hn(x)
|hn(x)| otherwise.

Clearly sn is a sequence of step functions, bounded (in absolute value by 1 in fact)
and such that snhn = |hn|. Now, write out the wonderful identity

(5.54) |h(x)| = |h(x)| − |hn(x)|+ sn(x)(hn(x)− h(x)) + sn(x)h(x).

Integrate this identity and then apply the triangle inequality to conclude that

(5.55)

∫
(0,2π)

|h| =
∫

(0,2π)

(|h(x)| − |hn(x)|+
∫

(0,2π)

sn(x)(hn − h)

≤
∫

(0,2π)

(||h(x)| − |hn(x)||+
∫

(0,2π)

|hn − h| → 0 as n→∞.

Here on the first line we have used (5.52) to see that the third term on the right
in (5.54) integrates to zero. Then the fact that |sn| ≤ 1 and the convergence
properties.

Thus in fact h = 0 a .e . so indeed f = g and f ∈ L2(0, 2π). Piece of cake,
right! Mia culpa.

6. Problems – Chapter 3

Problem 5.31. Let H be a normed space in which the norm satisfies the
parallelogram law:

(5.56) ‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2) ∀ u, v ∈ H.

Show that the norm comes from a positive definite sesquilinear (i.e. ermitian) inner
product. Big Hint:- Try

(5.57) (u, v) =
1

4

(
‖u+ v‖2 − ‖u− v‖2 + i‖u+ iv‖2 − i‖u− iv‖2

)
!

Problem 5.32. Let H be a finite dimensional (pre)Hilbert space. So, by defi-
nition H has a basis {vi}ni=1, meaning that any element of H can be written

(5.58) v =
∑
i

civi

and there is no dependence relation between the vi’s – the presentation of v = 0 in
the form (5.58) is unique. Show that H has an orthonormal basis, {ei}ni=1 satisfying
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(ei, ej) = δij (= 1 if i = j and 0 otherwise). Check that for the orthonormal basis
the coefficients in (5.58) are ci = (v, ei) and that the map

(5.59) T : H 3 v 7−→ ((v, ei)) ∈ Cn

is a linear isomorphism with the properties

(5.60) (u, v) =
∑
i

(Tu)i(Tv)i, ‖u‖H = ‖Tu‖Cn ∀ u, v ∈ H.

Why is a finite dimensional preHilbert space a Hilbert space?

Problem 5.33. : Prove (3.149). The important step is actually the fact that
Spec(A) ⊂ [−‖A‖, ‖A‖] if A is self-adjoint, which is proved somewhere above. Now,
if f is a real polynomial, we can assume the leading constant, c, in (3.148) is 1.
If λ /∈ f([−‖A‖, ‖A‖]) then f(A) is self-adjoint and λ − f(A) is invertible – it is
enough to check this for each factor in (3.148). Thus Spec(f(A)) ⊂ f([−‖A‖, ‖A‖])
which means that

(5.61) ‖f(A)‖ ≤ sup{z ∈ f([−‖A‖, ‖A‖])}
which is in fact (3.148).

Problem 5.34. Let H be a separable Hilbert space. Show that K ⊂ H is
compact if and only if it is closed, bounded and has the property that any sequence
in K which is weakly convergent sequence in H is (strongly) convergent.

Hint (Problem 5.34) In one direction use the result from class that any bounded
sequence has a weakly convergent subsequence.

Problem 5.35. Show that, in a separable Hilbert space, a weakly convergent
sequence {vn}, is (strongly) convergent if and only if the weak limit, v satisfies

(5.62) ‖v‖H = lim
n→∞

‖vn‖H .

Hint (Problem 5.35) To show that this condition is sufficient, expand

(5.63) (vn − v, vn − v) = ‖vn‖2 − 2 Re(vn, v) + ‖v‖2.

Problem 5.36. Show that a subset of a separable Hilbert space is compact
if and only if it is closed and bounded and has the property of ‘finite dimensional
approximation’ meaning that for any ε > 0 there exists a linear subspace DN ⊂ H
of finite dimension such that

(5.64) d(K,DN ) = sup
u∈K

inf
v∈DN

{d(u, v)} ≤ ε.

See Hint 6
Hint (Problem 5.36) To prove necessity of this condition use the ‘equi-small

tails’ property of compact sets with respect to an orthonormal basis. To use the
finite dimensional approximation condition to show that any weakly convergent
sequence in K is strongly convergent, use the convexity result from class to define
the sequence {v′n} in DN where v′n is the closest point in DN to vn. Show that v′n
is weakly, hence strongly, convergent and hence deduce that {vn} is Cauchy.

Problem 5.37. Suppose that A : H −→ H is a bounded linear operator with
the property that A(H) ⊂ H is finite dimensional. Show that if vn is weakly
convergent in H then Avn is strongly convergent in H.
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Problem 5.38. Suppose that H1 and H2 are two different Hilbert spaces and
A : H1 −→ H2 is a bounded linear operator. Show that there is a unique bounded
linear operator (the adjoint) A∗ : H2 −→ H1 with the property

(5.65) (Au1, u2)H2 = (u1, A
∗u2)H1 ∀ u1 ∈ H1, u2 ∈ H2.

Problem 5.39. Question:- Is it possible to show the completeness of the Fourier
basis

exp(ikx)/
√

2π

by computation? Maybe, see what you think. These questions are also intended to
get you to say things clearly.

(1) Work out the Fourier coefficients ck(t) =
∫

(0,2π)
fte
−ikx of the step func-

tion

(5.66) ft(x) =

{
1 0 ≤ x < t

0 t ≤ x ≤ 2π

for each fixed t ∈ (0, 2π).
(2) Explain why this Fourier series converges to ft in L2(0, 2π) if and only if

(5.67) 2
∑
k>0

|ck(t)|2 = 2πt− t2, t ∈ (0, 2π).

(3) Write this condition out as a Fourier series and apply the argument again
to show that the completeness of the Fourier basis implies identities for
the sum of k−2 and k−4.

(4) Can you explain how reversing the argument, that knowledge of the sums
of these two series should imply the completeness of the Fourier basis?
There is a serious subtlety in this argument, and you get full marks for
spotting it, without going ahead a using it to prove completeness.

Problem 5.40. Prove that for appropriate choice of constants dk, the functions
dk sin(kx/2), k ∈ N, form an orthonormal basis for L2(0, 2π).

See Hint 6
Hint (Problem 5.40 The usual method is to use the basic result from class plus

translation and rescaling to show that d′k exp(ikx/2) k ∈ Z form an orthonormal
basis of L2(−2π, 2π). Then extend functions as odd from (0, 2π) to (−2π, 2π).

Problem 5.41. Let ek, k ∈ N, be an orthonormal basis in a separable Hilbert
space, H. Show that there is a uniquely defined bounded linear operator S : H −→
H, satisfying

(5.68) Sej = ej+1 ∀ j ∈ N.

Show that if B : H −→ H is a bounded linear operator then S+εB is not invertible
if ε < ε0 for some ε0 > 0.

Hint (Problem 5.41)- Consider the linear functional L : H −→ C, Lu =
(Bu, e1). Show that B′u = Bu − (Lu)e1 is a bounded linear operator from H
to the Hilbert space H1 = {u ∈ H; (u, e1) = 0}. Conclude that S+ εB′ is invertible
as a linear map from H to H1 for small ε. Use this to argue that S + εB cannot be
an isomorphism from H to H by showing that either e1 is not in the range or else
there is a non-trivial element in the null space.
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Problem 5.42. Show that the product of bounded operators on a Hilbert space
is strong continuous, in the sense that if An and Bn are strong convergent sequences
of bounded operators on H with limits A and B then the product AnBn is strongly
convergent with limit AB.

Hint (Problem 5.42) Be careful! Use the result in class which was deduced from
the Uniform Boundedness Theorem.

Problem 5.43. Show that a continuous function K : [0, 1] −→ L2(0, 2π) has
the property that the Fourier series of K(x) ∈ L2(0, 2π), for x ∈ [0, 1], converges
uniformly in the sense that if Kn(x) is the sum of the Fourier series over |k| ≤ n
then Kn : [0, 1] −→ L2(0, 2π) is also continuous and

(5.69) sup
x∈[0,1]

‖K(x)−Kn(x)‖L2(0,2π) → 0.

Hint (Problem 5.43) Use one of the properties of compactness in a Hilbert space
that you proved earlier.

Problem 5.44. Consider an integral operator acting on L2(0, 1) with a kernel
which is continuous – K ∈ C([0, 1]2). Thus, the operator is

(5.70) Tu(x) =

∫
(0,1)

K(x, y)u(y).

Show that T is bounded on L2 (I think we did this before) and that it is in the
norm closure of the finite rank operators.

Hint (Problem 5.43) Use the previous problem! Show that a continuous function
such as K in this Problem defines a continuous map [0, 1] 3 x 7−→ K(x, ·) ∈ C([0, 1])
and hence a continuous function K : [0, 1] −→ L2(0, 1) then apply the previous
problem with the interval rescaled.

Here is an even more expanded version of the hint: You can think of K(x, y) as
a continuous function of x with values in L2(0, 1). Let Kn(x, y) be the continuous
function of x and y given by the previous problem, by truncating the Fourier series
(in y) at some point n. Check that this defines a finite rank operator on L2(0, 1)
– yes it maps into continuous functions but that is fine, they are Lebesgue square
integrable. Now, the idea is the difference K−Kn defines a bounded operator with
small norm as n becomes large. It might actually be clearer to do this the other
way round, exchanging the roles of x and y.

Problem 5.45. Although we have concentrated on the Lebesgue integral in
one variable, you proved at some point the covering lemma in dimension 2 and
that is pretty much all that was needed to extend the discussion to 2 dimensions.
Let’s just assume you have assiduously checked everything and so you know that
L2((0, 2π)2) is a Hilbert space. Sketch a proof – noting anything that you are not
sure of – that the functions exp(ikx+ily)/2π, k, l ∈ Z, form a complete orthonormal
basis.

Problem 5.46. Let H be a separable (partly because that is mostly what I
have been talking about) Hilbert space with inner product (·, ·) and norm ‖ · ‖. Say
that a sequence un in H converges weakly if (un, v) is Cauchy in C for each v ∈ H.

(1) Explain why the sequence ‖un‖H is bounded.
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Solution: Each un defines a continuous linear functional on H by

(5.71) Tn(v) = (v, un), ‖Tn‖ = ‖un‖, Tn : H −→ C.

For fixed v the sequence Tn(v) is Cauchy, and hence bounded, in C so by
the ‘Uniform Boundedness Principle’ the ‖Tn‖ are bounded, hence ‖un‖
is bounded in R.

(2) Show that there exists an element u ∈ H such that (un, v) → (u, v) for
each v ∈ H.

Solution: Since (v, un) is Cauchy in C for each fixed v ∈ H it is
convergent. Set

(5.72) Tv = lim
n→∞

(v, un) in C.

This is a linear map, since

(5.73) T (c1v1 + c2v2) = lim
n→∞

c1(v1, un) + c2(v2, u) = c1Tv1 + c2Tv2

and is bounded since |Tv| ≤ C‖v‖, C = supn ‖un‖. Thus, by Riesz’ the-
orem there exists u ∈ H such that Tv = (v, u). Then, by definition of
T,

(5.74) (un, v)→ (u, v) ∀ v ∈ H.

(3) If ei, i ∈ N, is an orthonormal sequence, give, with justification, an ex-
ample of a sequence un which is not weakly convergent in H but is such
that (un, ej) converges for each j.

Solution: One such example is un = nen. Certainly (un, ei) = 0 for all
i > n, so converges to 0. However, ‖un‖ is not bounded, so the sequence
cannot be weakly convergent by the first part above.

(4) Show that if the ei form an orthonormal basis, ‖un‖ is bounded and
(un, ej) converges for each j then un converges weakly.

Solution: By the assumption that (un, ej) converges for all j it follows
that (un, v) converges as n → ∞ for all v which is a finite linear combi-
nation of the ei. For general v ∈ H the convergence of the Fourier-Bessell
series for v with respect to the orthonormal basis ej

(5.75) v =
∑
k

(v, ek)ek

shows that there is a sequence vk → v where each vk is in the finite span
of the ej . Now, by Cauchy’s inequality

(5.76) |(un, v)− (um, v)| ≤ |(unvk)− (um, vk)|+ |(un, v − vk)|+ |(um, v − vk)|.

Given ε > 0 the boundedness of ‖un‖means that the last two terms can be
arranged to be each less than ε/4 by choosing k sufficiently large. Having
chosen k the first term is less than ε/4 if n,m > N by the fact that (un, vk)
converges as n→∞. Thus the sequence (un, v) is Cauchy in C and hence
convergent.

Problem 5.47. Consider the two spaces of sequences

h±2 = {c : N 7−→ C;

∞∑
j=1

j±4|cj |2 <∞}.
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Show that both h±2 are Hilbert spaces and that any linear functional satisfying

T : h2 −→ C, |Tc| ≤ C‖c‖h2

for some constant C is of the form

Tc =

∞∑
j=1

cidi

where d : N −→ C is an element of h−2.

Solution: Many of you hammered this out by parallel with l2. This is fine, but
to prove that h±2 are Hilbert spaces we can actually use l2 itself. Thus, consider
the maps on complex sequences

(5.77) (T±c)j = cjj
±2.

Without knowing anything about h±2 this is a bijection between the sequences in
h±2 and those in l2 which takes the norm

(5.78) ‖c‖h±2
= ‖Tc‖l2 .

It is also a linear map, so it follows that h± are linear, and that they are indeed
Hilbert spaces with T± isometric isomorphisms onto l2; The inner products on h±2

are then

(5.79) (c, d)h±2
=

∞∑
j=1

j±4cjdj .

Don’t feel bad if you wrote it all out, it is good for you!
Now, once we know that h2 is a Hilbert space we can apply Riesz’ theorem to

see that any continuous linear functional T : h2 −→ C, |Tc| ≤ C‖c‖h2
is of the form

(5.80) Tc = (c, d′)h2
=

∞∑
j=1

j4cjd′j , d
′ ∈ h2.

Now, if d′ ∈ h2 then dj = j4d′j defines a sequence in h−2. Namely,

(5.81)
∑
j

j−4|dj |2 =
∑
j

j4|d′j |2 <∞.

Inserting this in (5.80) we find that

(5.82) Tc =

∞∑
j=1

cjdj , d ∈ h−2.

(1) In P9.2 (2), and elsewhere, C∞(S) should be C0(S), the space of continuous
functions on the circle – with supremum norm.

(2) In (5.95) it should be u = Fv, not u = Sv.
(3) Similarly, before (5.96) it should be u = Fv.
(4) Discussion around (5.98) clarified.
(5) Last part of P10.2 clarified.

This week I want you to go through the invertibility theory for the operator

(5.83) Qu = (− d2

dx2
+ V (x))u(x)

acting on periodic functions. Since we have not developed the theory to handle this
directly we need to approach it through integral operators.
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Problem 5.48. Let S be the circle of radius 1 in the complex plane, centered
at the origin, S = {z; |z| = 1}.

(1) Show that there is a 1-1 correspondence

(5.84) C0(S) = {u : S −→ C, continuous} −→
{u : R −→ C; continuous and satisfying u(x+ 2π) = u(x) ∀ x ∈ R}.

(2) Show that there is a 1-1 correspondence

(5.85) L2(0, 2π)←→ {u ∈ L1
loc(R);u

∣∣
(0,2π)

∈ L2(0, 2π)

and u(x+ 2π) = u(x) ∀ x ∈ R}/NP

where NP is the space of null functions on R satisfying u(x+ 2π) = u(x)
for all x ∈ R.

(3) If we denote by L2(S) the space on the left in (5.85) show that there is a
dense inclusion

(5.86) C0(S) −→ L2(S).

So, the idea is that we can think of functions on S as 2π-periodic functions on
R.

Next are some problems dealing with Schrödinger’s equation, or at least it is
an example thereof:

(5.87) −d
2u(x)

dx2
+ V (x)u(x) = f(x), x ∈ R,

(1) First we will consider the special case V = 1. Why not V = 0? – Don’t
try to answer this until the end!

(2) Recall how to solve the differential equation

(5.88) −d
2u(x)

dx2
+ u(x) = f(x), x ∈ R,

where f(x) ∈ C0(S) is a continuous, 2π-periodic function on the line. Show
that there is a unique 2π-periodic and twice continuously differentiable
function, u, on R satisfying (5.88) and that this solution can be written
in the form

(5.89) u(x) = (Sf)(x) =

∫
0,2π

A(x, y)f(y)

where A(x, y) ∈ C0(R2) satisfies A(x+2π, y+2π) = A(x, y) for all (x, y) ∈
R.

Extended hint: In case you managed to avoid a course on differential
equations! First try to find a solution, igonoring the periodicity issue. To
do so one can (for example, there are other ways) factorize the differential
operator involved, checking that

(5.90) −d
2u(x)

dx2
+ u(x) = −(

dv

dx
+ v) if v =

du

dx
− u
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since the cross terms cancel. Then recall the idea of integrating factors to
see that

(5.91)

du

dx
− u = ex

dφ

dx
, φ = e−xu,

dv

dx
+ v = e−x

dψ

dx
, ψ = exv.

Now, solve the problem by integrating twice from the origin (say) and
hence get a solution to the differential equation (5.88). Write this out
explicitly as a double integral, and then change the order of integration
to write the solution as

(5.92) u′(x) =

∫
0,2π

A′(x, y)f(y)dy

where A′ is continuous on R×[0, 2π]. Compute the difference u′(2π)−u′(0)

and du′

dx (2π)− du′

dx (0) as integrals involving f. Now, add to u′ as solution
to the homogeneous equation, for f = 0, namely c1e

x + c2e
−x, so that the

new solution to (5.88) satisfies u(2π) = u(0) and du
dx (2π) = du

dx (0). Now,
check that u is given by an integral of the form (5.89) with A as stated.

(3) Check, either directly or indirectly, that A(y, x) = A(x, y) and that A is
real.

(4) Conclude that the operator S extends by continuity to a bounded operator
on L2(S).

(5) Check, probably indirectly rather than directly, that

(5.93) S(eikx) = (k2 + 1)−1eikx, k ∈ Z.

(6) Conclude, either from the previous result or otherwise that S is a compact
self-adjoint operator on L2(S).

(7) Show that if g ∈ C0(S)) then Sg is twice continuously differentiable. Hint:
Proceed directly by differentiating the integral.

(8) From (5.93) conclude that S = F 2 where F is also a compact self-adjoint

operator on L2(S) with eigenvalues (k2 + 1)−
1
2 .

(9) Show that F : L2(S) −→ C0(S).
(10) Now, going back to the real equation (5.87), we assume that V is contin-

uous, real-valued and 2π-periodic. Show that if u is a twice-differentiable
2π-periodic function satisfying (5.87) for a given f ∈ C0(S) then

(5.94) u+ S((V − 1)u) = Sf and hence u = −F 2((V − 1)u) + F 2f

and hence conclude that

(5.95) u = Fv where v ∈ L2(S) satisfies v + (F (V − 1)F )v = Ff

where V − 1 is the operator defined by multiplication by V − 1.
(11) Show the converse, that if v ∈ L2(S) satisfies

(5.96) v + (F (V − 1)F )v = Ff, f ∈ C0(S)

then u = Fv is 2π-periodic and twice-differentiable on R and satisfies
(5.87).
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(12) Apply the Spectral theorem to F (V − 1)F (including why it applies) and
show that there is a sequence λj in R \ {0} with |λj | → 0 such that for all
λ ∈ C \ {0}, the equation

(5.97) λv + (F (V − 1)F )v = g, g ∈ L2(S)

has a unique solution for every g ∈ L2(S) if and only if λ 6= λj for any j.
(13) Show that for the λj the solutions of

(5.98) λjv + (F (V − 1)F )v = 0, v ∈ L2(S),

are all continuous 2π-periodic functions on R.
(14) Show that the corresponding functions u = Fv where v satisfies (5.98) are

all twice continuously differentiable, 2π-periodic functions on R satisfying

(5.99) −d
2u

dx2
+ (1− sj + sjV (x))u(x) = 0, sj = 1/λj .

(15) Conversely, show that if u is a twice continuously differentiable and 2π-
periodic function satisfying

(5.100) −d
2u

dx2
+ (1− s+ sV (x))u(x) = 0, s ∈ C,

and u is not identically 0 then s = sj for some j.
(16) Finally, conclude that Fredholm’s alternative holds for the equation (5.87)

Theorem 23. For a given real-valued, continuous 2π-periodic func-
tion V on R, either (5.87) has a unique twice continuously differentiable,
2π-periodic, solution for each f which is continuous and 2π-periodic or
else there exists a finite, but positive, dimensional space of twice continu-
ously differentiable 2π-periodic solutions to the homogeneous equation

(5.101) −d
2w(x)

dx2
+ V (x)w(x) = 0, x ∈ R,

and (5.87) has a solution if and only if
∫

(0,2π)
fw = 0 for every 2π-periodic

solution, w, to (5.101).

Problem 5.49. Check that we really can understand all the 2π periodic eigen-
functions of the Schrödinger operator using the discussion above. First of all, there
was nothing sacred about the addition of 1 to −d2/dx2, we could add any positive
number and get a similar result – the problem with 0 is that the constants satisfy
the homogeneous equation d2u/dx2 = 0. What we have shown is that the operator

(5.102) u 7−→ Qu = −d
2u

dx2
u+ V u

applied to twice continuously differentiable functions has at least a left inverse
unless there is a non-trivial solution of

(5.103) −d
2u

dx2
u+ V u = 0.

Namely, the left inverse is R = F (Id +F (V −1)F )−1F. This is a compact self-adjoint
operator. Show – and there is still a bit of work to do – that (twice continuously
differentiable) eigenfunctions of Q, meaning solutions of Qu = τu are precisely the
non-trivial solutions of Ru = τ−1u.
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What to do in case (5.103) does have a non-trivial solution? Show that the
space of these is finite dimensional and conclude that essentially the same result
holds by working on the orthocomplement in L2(S).

By now you should have become reasonably comfortable with a separable
Hilbert space such as l2. However, it is worthwhile checking once again that it
is rather large – if you like, let me try to make you uncomfortable for one last time.
An important result in this direction is Kuiper’s theorem, which I will not ask you
to prove1. However, I want you to go through the closely related result sometimes
known as Eilenberg’s swindle. Perhaps you will appreciate the little bit of trickery.
First some preliminary results. Note that everything below is a closed curve in the
x ∈ [0, 1] variable – you might want to identify this with a circle instead, I just did
it the primitive way.

Problem 5.50. Let H be a separable, infinite dimensional Hilbert space. Show
that the direct sum of two copies of H is a Hilbert space with the norm

(5.104) H ⊕H 3 (u1, u2) 7−→ (‖u1‖2H + ‖u2‖2H)
1
2

either by constructing an isometric isomorphism

(5.105) T : H −→ H ⊕H, 1-1 and onto, ‖u‖H = ‖Tu‖H⊕H
or otherwise. In any case, construct a map as in (5.105).

Problem 5.51. One can repeat the preceding construction any finite number
of times. Show that it can be done ‘countably often’ in the sense that if H is a
separable, infinite dimensional, Hilbert space then

(5.106) l2(H) = {u : N −→ H; ‖u‖2l2(H) =
∑
i

‖ui‖2H <∞}

has a Hilbert space structure and construct an explicit isometric isomorphism from
l2(H) to H.

Problem 5.52. Recall, or perhaps learn about, the winding number of a closed
curve with values in C∗ = C \ {0}. We take as given the following fact:2 If Q =
[0, 1]N and f : Q −→ C∗ is continuous then for each choice of b ∈ C satisfying
exp(2πib) = f(0), there exists a unique continuous function F : Q −→ C satisfying

(5.107) exp(2πiF (q)) = f(q), ∀ q ∈ Q and F (0) = b.

Of course, you are free to change b to b + n for any n ∈ Z but then F changes to
F + n, just shifting by the same integer.

(1) Now, suppose c : [0, 1] −→ C∗ is a closed curve – meaning it is continuous
and c(1) = c(0). Let C : [0, 1] −→ C be a choice of F for N = 1 and
f = c. Show that the winding number of the closed curve c may be defined
unambiguously as

(5.108) wn(c) = C(1)− C(0) ∈ Z.

1Kuiper’s theorem says that for any (norm) continuous map, say from any compact metric
space, g : M −→ GL(H) with values in the invertible operators on a separable infinite-dimensional
Hilbert space there exists a continuous map, an homotopy, h : M × [0, 1] −→ GL(H) such that

h(m, 0) = g(m) and h(m, 1) = IdH for all m ∈M.
2Of course, you are free to give a proof – it is not hard.
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(2) Show that wn(c) is constant under homotopy. That is if ci : [0, 1] −→ C∗,
i = 1, 2, are two closed curves so ci(1) = ci(0), i = 1, 2, which are homo-
topic through closed curves in the sense that there exists f : [0, 1]2 −→ C∗
continuous and such that f(0, x) = c1(x), f(1, x) = c2(x) for all x ∈ [0, 1]
and f(y, 0) = f(y, 1) for all y ∈ [0, 1], then wn(c1) = wn(c2).

(3) Consider the closed curve Ln : [0, 1] 3 x 7−→ e2πix Idn×n of n×n matrices.
Using the standard properties of the determinant, show that this curve
is not homotopic to the identity through closed curves in the sense that
there does not exist a continuous map G : [0, 1]2 −→ GL(n), with values in
the invertible n×n matrices, such that G(0, x) = Ln(x), G(1, x) ≡ Idn×n
for all x ∈ [0, 1], G(y, 0) = G(y, 1) for all y ∈ [0, 1].

Problem 5.53. Consider the closed curve corresponding to Ln above in the
case of a separable but now infinite dimensional Hilbert space:

(5.109) L : [0, 1] 3 x 7−→ e2πix IdH ∈ GL(H) ⊂ B(H)

taking values in the invertible operators on H. Show that after identifying H with
H ⊕H as above, there is a continuous map

(5.110) M : [0, 1]2 −→ GL(H ⊕H)

with values in the invertible operators and satisfying
(5.111)
M(0, x) = L(x), M(1, x)(u1, u2) = (e4πixu1, u2), M(y, 0) = M(y, 1), ∀ x, y ∈ [0, 1].

Hint: So, think of H ⊕H as being 2-vectors (u1, u2) with entries in H. This allows
one to think of ‘rotation’ between the two factors. Indeed, show that

(5.112) U(y)(u1, u2) = (cos(πy/2)u1 + sin(πy/2)u2,− sin(πy/2)u1 + cos(πy/2)u2)

defines a continuous map [0, 1] 3 y 7−→ U(y) ∈ GL(H ⊕H) such that U(0) = Id,
U(1)(u1, u2) = (u2,−u1). Now, consider the 2-parameter family of maps

(5.113) U−1(y)V2(x)U(y)V1(x)

where V1(x) and V2(x) are defined on H⊕H as multiplication by exp(2πix) on the
first and the second component respectively, leaving the other fixed.

Problem 5.54. Using a rotation similar to the one in the preceeding problem
(or otherwise) show that there is a continuous map

(5.114) G : [0, 1]2 −→ GL(H ⊕H)

such that

(5.115) G(0, x)(u1, u2) = (e2πixu1, e
−2πixu2),

G(1, x)(u1, u2) = (u1, u2), G(y, 0) = G(y, 1) ∀ x, y ∈ [0, 1].

Problem 5.55. Now, think about combining the various constructions above
in the following way. Show that on l2(H) there is an homotopy like (5.114), G̃ :
[0, 1]2 −→ GL(l2(H)), (very like in fact) such that

(5.116) G̃(0, x) {uk}∞k=1 =
{

exp((−1)k2πix)uk
}∞
k=1

,

G̃(1, x) = Id, G̃(y, 0) = G̃(y, 1) ∀ x, y ∈ [0, 1].
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Problem 5.56. “Eilenberg’s swindle” For an infinite dimenisonal separable
Hilbert space, construct an homotopy – meaning a continuous map G : [0, 1]2 −→
GL(H) – with G(0, x) = L(x) in (5.109) and G(1, x) = Id and of course G(y, 0) =
G(y, 1) for all x, y ∈ [0, 1].

Hint: Just put things together – of course you can rescale the interval at the end
to make it all happen over [0, 1]. First ‘divide H into 2 copies of itself’ and deform
from L to M(1, x) in (5.111). Now, ‘divide the second H up into l2(H)’ and apply
an argument just like the preceding problem to turn the identity on this factor into
alternating terms multiplying by exp(±4πix) – starting with −. Now, you are on
H ⊕ l2(H), ‘renumbering’ allows you to regard this as l2(H) again and when you
do so your curve has become alternate multiplication by exp(±4πix) (with + first).
Finally then, apply the preceding problem again, to deform to the identity (always
of course through closed curves). Presto, Eilenberg’s swindle!

Problem 5.57. Check that we really can understand all the 2π periodic eigen-
functions of the Schrödinger operator using the discussion above. First of all, there
was nothing sacred about the addition of 1 to −d2/dx2, we could add any positive
number and get a similar result – the problem with 0 is that the constants satisfy
the homogeneous equation d2u/dx2 = 0. What we have shown is that the operator

(5.117) u 7−→ Qu = −d
2u

dx2
u+ V u

applied to twice continuously differentiable functions has at least a left inverse
unless there is a non-trivial solution of

(5.118) −d
2u

dx2
u+ V u = 0.

Namely, the left inverse is R = F (Id +F (V −1)F )−1F. This is a compact self-adjoint
operator. Show – and there is still a bit of work to do – that (twice continuously
differentiable) eigenfunctions of Q, meaning solutions of Qu = τu are precisely the
non-trivial solutions of Ru = τ−1u.

What to do in case (5.118) does have a non-trivial solution? Show that the
space of these is finite dimensional and conclude that essentially the same result
holds by working on the orthocomplement in L2(S).

7. Exam Preparation Problems

EP.1 Let H be a Hilbert space with inner product (·, ·) and suppose that

(5.119) B : H ×H ←→ C

is a(nother) sesquilinear form – so for all c1, c2 ∈ C, u, u1, u2 and v ∈ H,

(5.120) B(c1u1 + c2u2, v) = c1B(u1, v) + c2B(u2, v), B(u, v) = B(v, u).

Show that B is continuous, with respect to the norm ‖(u, v)‖ = ‖u‖H + ‖v‖H on
H ×H if and only if it is bounded, in the sense that for some C > 0,

(5.121) |B(u, v)| ≤ C‖u‖H‖v‖H .

EP.2 A continuous linear map T : H1 −→ H2 between two, possibly different,
Hilbert spaces is said to be compact if the image of the unit ball in H1 under T is
precompact in H2. Suppose A : H1 −→ H2 is a continuous linear operator which
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is injective and surjective and T : H1 −→ H2 is compact. Show that there is a
compact operator K : H2 −→ H2 such that T = KA.

EP.3 Suppose P ⊂ H is a (non-trivial, i.e. not {0}) closed linear subspace of
a Hilbert space. Deduce from a result done in class that each u in H has a unique
decomposition

(5.122) u = v + v′, v ∈ P, v′ ⊥ P

and that the map πP : H 3 u 7−→ v ∈ P has the properties

(5.123) (πP )∗ = πP , (πP )2 = πP , ‖πP ‖B(H) = 1.

EP.4 Show that for a sequence of non-negative step functions fj , defined on
R, which is absolutely summable, meaning

∑
j

∫
fj <∞, the series

∑
j

fj(x) cannot

diverge for all x ∈ (a, b), for any a < b.
EP.5 Let Aj ⊂ [−N,N ] ⊂ R (for N fixed) be a sequence of subsets with the

property that the characteristic function, χj of Aj , is integrable for each j. Show
that the characteristic function of

(5.124) A =
⋃
j

Aj

is integrable.

EP.6 Let ej = cjC
je−x

2/2, cj > 0, C = − d
dx + x the creation operator, be

the orthonormal basis of L2(R) consisting of the eigenfunctions of the harmonic
oscillator discussed in class. Define an operator on L2(R) by

(5.125) Au =

∞∑
j=0

(2j + 1)−
1
2 (u, ej)L2ej .

(1) Show that A is compact as an operator on L2(R).
(2) Suppose that V ∈ C0

∞(R) is a bounded, real-valued, continuous function
on R. What can you say about the eigenvalues τj , and eigenfunctions vj ,
of K = AV A, where V is acting by multiplication on L2(R)?

(3) Show that for C > 0 a large enough constant, Id +A(V +C)A is invertible
(with bounded inverse on L2(R)).

(4) Show that L2(R) has an orthonormal basis of eigenfunctions of J =
A(Id +A(V + C)A)−1A.

(5) What would you need to show to conclude that these eigenfunctions of J
satisfy

(5.126) −d
2vj(x)

dx2
+ x2vj(x) + V (x)vj(x) = λjvj?

(6) What would you need to show to check that all the square-integrable,
twice continuously differentiable, solutions of (5.126), for some λj ∈ C,
are eigenfunctions of K?

EP.7 Test 1 from last year (N.B. There may be some confusion between L1

and L1 here, just choose the correct interpretation!):-
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Q1. Recall Lebesgue’s Dominated Convergence Theorem and use it to show
that if u ∈ L2(R) and v ∈ L1(R) then

(Eq1)

lim
N→∞

∫
|x|>N

|u|2 = 0, lim
N→∞

∫
|CNu− u|2 = 0,

lim
N→∞

∫
|x|>N

|v| = 0 and lim
N→∞

∫
|CNv − v| = 0.

where

(Eq2) CNf(x) =


N if f(x) > N

−N if f(x) < −N
f(x) otherwise.

Q2. Show that step functions are dense in L1(R) and in L2(R) (Hint:- Look at
Q1 above and think about f−fN , fN = CNfχ[−N,N ] and its square. So it

suffices to show that fN is the limit in L2 of a sequence of step functions.
Show that if gn is a sequence of step functions converging to fN in L1

then CNgnχ[−N,N ] is converges to fN in L2.) and that if f ∈ L1(R) then

there is a sequence of step functions un and an element g ∈ L1(R) such
that un → f a.e. and |un| ≤ g.

Q3. Show that L1(R) and L2(R) are separable, meaning that each has a count-
able dense subset.

Q4. Show that the minimum and the maximum of two locally integrable func-
tions is locally integrable.

Q5. A subset of R is said to be (Lebesgue) measurable if its characteristic
function is locally integrable. Show that a countable union of measurable
sets is measurable. Hint: Start with two!

Q6. Define L∞(R) as consisting of the locally integrable functions which are
bounded, supR |u| <∞. IfN∞ ⊂ L∞(R) consists of the bounded functions
which vanish outside a set of measure zero show that

(Eq3) ‖u+N∞‖L∞ = inf
h∈N∞

sup
x∈R
|u(x) + h(x)|

is a norm on L∞(R) = L∞(R)/N∞.
Q7. Show that if u ∈ L∞(R) and v ∈ L1(R) then uv ∈ L1(R) and that

(Eq4) |
∫
uv| ≤ ‖u‖L∞‖v‖L1 .

Q8. Show that each u ∈ L2(R) is continuous in the mean in the sense that
Tzu(x) = u(x− z) ∈ L2(R) for all z ∈ R and that

(Eq5) lim
|z|→0

∫
|Tzu− u|2 = 0.

Q9. If {uj} is a Cauchy sequence in L2(R) show that both (Eq5) and (Eq1)
are uniform in j, so given ε > 0 there exists δ > 0 such that

(Eq6)

∫
|Tzuj − uj |2 < ε,

∫
|x|>1/δ

|uj |2 < ε ∀ |z| < δ and all j.

Q10. Construct a sequence in L2(R) for which the uniformity in (Eq6) does not
hold.

EP.8 Test 2 from last year.
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(1) Recall the discussion of the Dirichlet problem for d2/dx2 from class and
carry out an analogous discussion for the Neumann problem to arrive at
a complete orthonormal basis of L2([0, 1]) consisting of ψn ∈ C2 functions
which are all eigenfunctions in the sense that

(NeuEig)
d2ψn(x)

dx2
= γnψn(x) ∀ x ∈ [0, 1],

dψn
dx

(0) =
dψn
dx

(1) = 0.

This is actually a little harder than the Dirichlet problem which I did in
class, because there is an eigenfunction of norm 1 with γ = 0. Here are
some individual steps which may help you along the way!

What is the eigenfunction with eigenvalue 0 for (NeuEig)?
What is the operator of orthogonal projection onto this function?
What is the operator of orthogonal projection onto the orthocom-

plement of this function?
The crucual part. Find an integral operator AN = B −BN , where

B is the operator from class,

(B-Def) (Bf)(x) =

∫ x

0

(x− s)f(s)ds

and BN is of finite rank, such that if f is continuous then u = ANf is

twice continuously differentiable, satisfies
∫ 1

0
u(x)dx = 0, AN1 = 0 (where

1 is the constant function) and

(GI)

∫ 1

0

f(x)dx = 0 =⇒

d2u

dx2
= f(x) ∀ x ∈ [0, 1],

du

dx
(0) =

du

dx
(1) = 0.

Show that AN is compact and self-adjoint.
Work out what the spectrum of AN is, including its null space.
Deduce the desired conclusion.

(2) Show that these two orthonormal bases of L2([0, 1]) (the one above and the
one from class) can each be turned into an orthonormal basis of L2([0, π])
by change of variable.

(3) Construct an orthonormal basis of L2([−π, π]) by dividing each element
into its odd and even parts, resticting these to [0, π] and using the Neu-
mann basis above on the even part and the Dirichlet basis from class on
the odd part.

(4) Prove the basic theorem of Fourier series, namely that for any function
u ∈ L2([−π, π]) there exist unique constants ck ∈ C, k ∈ Z such that

(FS) u(x) =
∑
k∈Z

cke
ikx converges in L2([−π, π])

and give an integral formula for the constants.
EP.9 Let B ∈ C([0, 1]2) be a continuous function of two variables.

Explain why the integral operator

Tu(x) =

∫
[0,1]

B(x, y)u(y)

defines a bounded linear map L1([0, 1]) −→ C([0, 1]) and hence a bounded
operator on L2([0, 1]).
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(a) Explain why T is not surjective as a bounded operator on L2([0, 1]).
(b) Explain why Id−T has finite dimensional null space N ⊂ L2([0, 1])

as an operator on L2([0, 1])
(c) Show that N ⊂ C([0, 1]).
(d) Show that Id−T has closed range R ⊂ L2([0, 1])) as a bounded op-

erator on L2([0, 1]).
(e) Show that the orthocomplement of R is a subspace of C([0, 1]).

EP.10 Let c : N2 −→ C be an ‘infinite matrix’ of complex numbers
satisfying

(5.127)

∞∑
i,j=1

|cij |2 <∞.

If {ei}∞i=1 is an orthornomal basis of a (separable of course) Hilbert space
H, show that

(5.128) Au =

∞∑
i,j=1

cij(u, ej)ei

defines a compact operator on H.

8. Solutions to problems

Solution 5.14 (Problem 5.1). Write out a proof (you can steal it from one of
many places but at least write it out in your own hand) either for p = 2 or for each
p with 1 ≤ p <∞ that

lp = {a : N −→ C;

∞∑
j=1

|aj |p <∞, aj = a(j)}

is a normed space with the norm

‖a‖p =

 ∞∑
j=1

|aj |p
 1

p

.

This means writing out the proof that this is a linear space and that the three
conditions required of a norm hold.

Solution:- We know that the functions from any set with values in a linear space
form a linear space – under addition of values (don’t feel bad if you wrote this out,
it is a good thing to do once). So, to see that lp is a linear space it suffices to see
that it is closed under addition and scalar multiplication. For scalar multiples this
is clear:-

(5.129) |tai| = |t||ai| so ‖ta‖p = |t|‖a‖p
which is part of what is needed for the proof that ‖ · ‖p is a norm anyway. The fact
that a, b ∈ lp imples a + b ∈ lp follows once we show the triangle inequality or we
can be a little cruder and observe that

(5.130)

|ai + bi|p ≤ (2 max(|a|i, |bi|))p = 2p max(|a|pi , |bi|
p) ≤ 2p(|ai|+ |bi|)

‖a+ b‖pp =
∑
j

|ai + bi|p ≤ 2p(‖a‖p + ‖b‖p),

where we use the fact that tp is an increasing function of t ≥ 0.
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Now, to see that lp is a normed space we need to check that ‖a‖p is indeed a
norm. It is non-negative and ‖a‖p = 0 implies ai = 0 for all i which is to say a = 0.
So, only the triangle inequality remains. For p = 1 this is a direct consequence of
the usual triangle inequality:

(5.131) ‖a+ b‖1 =
∑
i

|ai + bi| ≤
∑
i

(|ai|+ |bi|) = ‖a‖1 + ‖b‖1.

For 1 < p < ∞ it is known as Minkowski’s inequality. This in turn is deduced
from Hölder’s inequality – which follows from Young’s inequality! The latter says
if 1/p+ 1/q = 1, so q = p/(p− 1), then

(5.132) αβ ≤ αp

p
+
βq

q
∀ α, β ≥ 0.

To check it, observe that as a function of α = x,

(5.133) f(x) =
xp

p
− xβ +

βq

q

if non-negative at x = 0 and clearly positive when x >> 0, since xp grows faster
than xβ. Moreover, it is differentiable and the derivative only vanishes at xp−1 =
β, where it must have a global minimum in x > 0. At this point f(x) = 0 so
Young’s inequality follows. Now, applying this with α = |ai|/‖a‖p and β = |bi|/‖b‖q
(assuming both are non-zero) and summing over i gives Hölder’s inequality

(5.134)

|
∑
i

aibi|/‖a‖p‖b‖q ≤
∑
i

|ai||bi|/‖a‖p‖b‖q ≤
∑
i

(
|ai|p

‖a‖ppp
+
|bi|q

‖b‖qqq

)
= 1

=⇒ |
∑
i

aibi| ≤ ‖a‖p‖b‖q.

Of course, if either ‖a‖p = 0 or ‖b‖q = 0 this inequality holds anyway.

Now, from this Minkowski’s inequality follows. Namely from the ordinary tri-
angle inequality and then Minkowski’s inequality (with q power in the first factor)

(5.135)
∑
i

|ai + bi|p =
∑
i

|ai + bi|(p−1)|ai + bi|

≤
∑
i

|ai + bi|(p−1)|ai|+
∑
i

|ai + bi|(p−1)|bi|

≤

(∑
i

|ai + bi|p
)1/q

(‖a‖p + ‖b‖p)

gives after division by the first factor on the right

(5.136) ‖a+ b‖p ≤ ‖a‖p + ‖b‖p.

Thus, lp is indeed a normed space.
I did not necessarily expect you to go through the proof of Young-Hölder-

Minkowksi, but I think you should do so at some point since I will not do it in
class.
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Solution 5.15. The ‘tricky’ part in Problem 1.1 is the triangle inequality.
Suppose you knew – meaning I tell you – that for each N N∑

j=1

|aj |p
 1

p

is a norm on CN

would that help?

Solution. Yes indeed it helps. If we know that for each N

(5.137)

 N∑
j=1

|aj + bj |p
 1

p

≤

 N∑
j=1

|aj |p
 1

p

+

 N∑
j=1

|bj |p
 1

p

then for elements of lp the norms always bounds the right side from above, meaning

(5.138)

 N∑
j=1

|aj + bj |p
 1

p

≤ ‖a‖p + ‖b‖p.

Since the left side is increasing with N it must converge and be bounded by the
right, which is independent of N. That is, the triangle inequality follows. Really
this just means it is enough to go through the discussion in the first problem for
finite, but arbitrary, N. �

Solution 5.16. Prove directly that each lp as defined in Problem 1.1 – or just
l2 – is complete, i.e. it is a Banach space. At the risk of offending some, let me
say that this means showing that each Cauchy sequence converges. The problem
here is to find the limit of a given Cauchy sequence. Show that for each N the
sequence in CN obtained by truncating each of the elements at point N is Cauchy
with respect to the norm in Problem 1.2 on CN . Show that this is the same as being
Cauchy in CN in the usual sense (if you are doing p = 2 it is already the usual
sense) and hence, this cut-off sequence converges. Use this to find a putative limit
of the Cauchy sequence and then check that it works.

Solution. So, suppose we are given a Cauchy sequence a(n) in lp. Thus, each

element is a sequence {a(n)
j }∞j=1 in lp. From the continuity of the norm in Problem

1.5 below, ‖a(n)‖ must be Cauchy in R and so converges. In particular the sequence
is norm bounded, there exists A such that ‖a(n)‖p ≤ A for all n. The Cauchy
condition itself is that given ε > 0 there exists M such that for all m,n > M,

(5.139) ‖a(n) − a(m)‖p =

(∑
i

|a(n)
i − a(m)

i |p
) 1
p

< ε/2.

Now for each i, |a(n)
i − a(m)

i | ≤ ‖a(n) − a(m)‖p so each of the sequences a
(n)
i must

be Cauchy in C. Since C is complete

(5.140) lim
n→∞

a
(n)
i = ai exists for each i = 1, 2, . . . .

So, our putative limit is a, the sequence {ai}∞i=1. The boundedness of the norms
shows that

(5.141)

N∑
i=1

|a(n)
i |

p ≤ Ap
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and we can pass to the limit here as n → ∞ since there are only finitely many
terms. Thus

(5.142)

N∑
i=1

|ai|p ≤ Ap ∀ N =⇒ ‖a‖p ≤ A.

Thus, a ∈ lp as we hoped. Similarly, we can pass to the limit as m → ∞ in the
finite inequality which follows from the Cauchy conditions

(5.143) (

N∑
i=1

|a(n)
i − a(m)

i |p)
1
p < ε/2

to see that for each N

(5.144) (

N∑
i=1

|a(n)
i − ai|p)

1
p ≤ ε/2

and hence

(5.145) ‖a(n) − a‖ < ε ∀ n > M.

Thus indeed, a(n) → a in lp as we were trying to show.
Notice that the trick is to ‘back off’ to finite sums to avoid any issues of inter-

changing limits. �

Solution 5.17. Consider the ‘unit sphere’ in lp – where if you want you can
set p = 2. This is the set of vectors of length 1 :

S = {a ∈ lp; ‖a‖p = 1}.
(1) Show that S is closed.
(2) Recall the sequential (so not the open covering definition) characterization

of compactness of a set in a metric space (e .g . by checking in Rudin).
(3) Show that S is not compact by considering the sequence in lp with kth

element the sequence which is all zeros except for a 1 in the kth slot. Note
that the main problem is not to get yourself confused about sequences of
sequences!

Solution. By the next problem, the norm is continuous as a function, so

(5.146) S = {a; ‖a‖ = 1}
is the inverse image of the closed subset {1}, hence closed.

Now, the standard result on metric spaces is that a subset is compact if and
only if every sequence with values in the subset has a convergent subsequence with
limit in the subset (if you drop the last condition then the closure is compact).

In this case we consider the sequence (of sequences)

(5.147) a
(n)
i =

{
0 i 6= n

1 i = n
.

This has the property that ‖a(n) − a(m)‖p = 2
1
p whenever n 6= m. Thus, it cannot

have any Cauchy subsequence, and hence cannot have a convergent subsequence,
so S is not compact.

This is important. In fact it is a major difference between finite-dimensional
and infinite-dimensional normed spaces. In the latter case the unit sphere cannot
be compact whereas in the former it is. �
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Solution 5.18. Show that the norm on any normed space is continuous.
Solution:- Right, so I should have put this problem earlier!

The triangle inequality shows that for any u, v in a normed space

(5.148) ‖u‖ ≤ ‖u− v‖+ ‖v‖, ‖v‖ ≤ ‖u− v‖+ ‖u‖
which implies that

(5.149) |‖u‖ − ‖v‖| ≤ ‖u− v‖.
This shows that ‖ · ‖ is continuous, indeed it is Lipschitz continuous.

Solution 5.19. Finish the proof of the completeness of the spaceB constructed
in lecture on February 10. The description of that construction can be found in the
notes to Lecture 3 as well as an indication of one way to proceed.

Solution. The proof could be shorter than this, I have tried to be fairly
complete.

To recap. We start of with a normed space V. From this normed space we
construct the new linear space Ṽ with points the absolutely summable series in V.
Then we consider the subspace S ⊂ Ṽ of those absolutely summable series which
converge to 0 in V. We are interested in the quotient space

(5.150) B = Ṽ /S.

What we know already is that this is a normed space where the norm of b = {vn}+S
– where {vn} is an absolutely summable series in V is

(5.151) ‖b‖B = lim
N→∞

‖
N∑
n=1

vn‖V .

This is independent of which series is used to represent b – i.e. is the same if an
element of S is added to the series.

Now, what is an absolutely summable series in B? It is a sequence {bn}, thought
of a series, with the property that

(5.152)
∑
n

‖bn‖B <∞.

We have to show that it converges in B. The first task is to guess what the limit
should be. The idea is that it should be a series which adds up to ‘the sum of the

bn’s’. Each bn is represented by an absolutely summable series v
(n)
k in V. So, we

can just look for the usual diagonal sum of the double series and set

(5.153) wj =
∑

n+k=j

v
(n)
k .

The problem is that this will not in generall be absolutely summable as a series in
V. What we want is the estimate

(5.154)
∑
j

‖wj‖ =
∑
j

‖
∑

j=n+k

v
(n)
k ‖ <∞.

The only way we can really estimate this is to use the triangle inequality and
conclude that

(5.155)

∞∑
j=1

‖wj‖ ≤
∑
k,n

‖v(n)
k ‖V .
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Each of the sums over k on the right is finite, but we do not know that the sum
over k is then finite. This is where the first suggestion comes in:-

We can choose the absolutely summable series v
(n)
k representing bn such that

(5.156)
∑
k

‖v(n)
k ‖ ≤ ‖bn‖B + 2−n.

Suppose an initial choice of absolutely summable series representing bn is uk, so

‖bn‖ = limN→∞ ‖
N∑
k=1

uk‖ and
∑
k

‖uk‖V <∞. Choosing M large it follows that

(5.157)
∑
k>M

‖uk‖V ≤ 2−n−1.

With this choice of M set v
(n)
1 =

M∑
k=1

uk and v
(n)
k = uM+k−1 for all k ≥ 2. This does

still represent bn since the difference of the sums,

(5.158)

N∑
k=1

v
(n)
k −

N∑
k=1

uk = −
N+M−1∑
k=N

uk

for all N. The sum on the right tends to 0 in V (since it is a fixed number of terms).
Moreover, because of (5.157),
(5.159)∑
k

‖v(n)
k ‖V = ‖

M∑
j=1

uj‖V +
∑
k>M

‖uk‖ ≤ ‖
N∑
j=1

uj‖+ 2
∑
k>M

‖uk‖ ≤ ‖
N∑
j=1

uj‖+ 2−n

for all N. Passing to the limit as N →∞ gives (5.156).
Once we have chosen these ‘nice’ representatives of each of the bn’s if we define

the wj ’s by (5.153) then (5.154) means that

(5.160)
∑
j

‖wj‖V ≤
∑
n

‖bn‖B +
∑
n

2−n <∞

because the series bn is absolutely summable. Thus {wj} defines an element of Ṽ
and hence b ∈ B.

Finally then we want to show that
∑
n
bn = b in B. This just means that we

need to show

(5.161) lim
N→∞

‖b−
N∑
n=1

bn‖B = 0.

The norm here is itself a limit – b −
N∑
n=1

bn is represented by the summable series

with nth term

(5.162) wk −
N∑
n=1

v
(n)
k

and the norm is then

(5.163) lim
p→∞

‖
p∑
k=1

(wk −
N∑
n=1

v
(n)
k )‖V .
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Then we need to understand what happens as N → ∞! Now, wk is the diagonal

sum of the v
(n)
j ’s so sum over k gives the difference of the sum of the v

(n)
j over the

first p anti-diagonals minus the sum over a square with height N (in n) and width
p. So, using the triangle inequality the norm of the difference can be estimated by
the sum of the norms of all the ‘missing terms’ and then some so

(5.164) ‖
p∑
k=1

(wk −
N∑
n=1

v
(n)
k )‖V ≤

∑
l+m≥L

‖v(m)
l ‖V

where L = min(p,N). This sum is finite and letting p→∞ is replaced by the sum
over l + m ≥ N. Then letting N → ∞ it tends to zero by the absolute (double)
summability. Thus

(5.165) lim
N→∞

‖b−
N∑
n=1

bn‖B = 0

which is the statelent we wanted, that
∑
n
bn = b. �

Problem 5.58. Let’s consider an example of an absolutely summable sequence
of step functions. For the interval [0, 1) (remember there is a strong preference
for left-closed but right-open intervals for the moment) consider a variant of the
construction of the standard Cantor subset based on 3 proceeding in steps. Thus,
remove the ‘central interval [1/3, 2/3). This leave C1 = [0, 1/3) ∪ [2/3, 1). Then
remove the central interval from each of the remaining two intervals to get C2 =
[0, 1/9) ∪ [2/9, 1/3) ∪ [2/3, 7/9) ∪ [8/9, 1). Carry on in this way to define successive
sets Ck ⊂ Ck−1, each consisting of a finite union of semi-open intervals. Now,
consider the series of step functions fk where fk(x) = 1 on Ck and 0 otherwise.

(1) Check that this is an absolutely summable series.
(2) For which x ∈ [0, 1) does

∑
k

|fk(x)| converge?

(3) Describe a function on [0, 1) which is shown to be Lebesgue integrable
(as defined in Lecture 4) by the existence of this series and compute its
Lebesgue integral.

(4) Is this function Riemann integrable (this is easy, not hard, if you check
the definition of Riemann integrability)?

(5) Finally consider the function g which is equal to one on the union of all
the subintervals of [0, 1) which are removed in the construction and zero
elsewhere. Show that g is Lebesgue integrable and compute its integral.

Solution. (1) The total length of the intervals is being reduced by a

factor of 1/3 each time. Thus l(Ck) = 2k

3k
. Thus the integral of f, which

is non-negative, is actually

(5.166)

∫
fk =

2k

3k
=⇒

∑
k

∫
|fk| =

∞∑
k=1

2k

3k
= 2

Thus the series is absolutely summable.
(2) Since the Ck are decreasing, Ck ⊃ Ck+1, only if

(5.167) x ∈ E =
⋂
k

Ck
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does the series
∑
k

|fk(x)| diverge (to +∞) otherwise it converges.

(3) The function defined as the sum of the series where it converges and zero
otherwise

(5.168) f(x) =


∑
k

fk(x) x ∈ R \ E

0 x ∈ E

is integrable by definition. Its integral is by definition

(5.169)

∫
f =

∑
k

∫
fk = 2

from the discussion above.
(4) The function f is not Riemann integrable since it is not bounded – and

this is part of the definition. In particular for x ∈ Ck \Ck+1, which is not
an empty set, f(x) = k.

(5) The set F, which is the union of the intervals removed is [0, 1)\E. Taking
step functions equal to 1 on each of the intervals removed gives an abso-
lutely summable series, since they are non-negative and the kth one has
integral 1/3× (2/3)k−1 for k = 1, . . . . This series converges to g on F so
g is Lebesgue integrable and hence

(5.170)

∫
g = 1.

�

Problem 5.59. The covering lemma for R2. By a rectangle we will mean a set
of the form [a1, b1)× [a2, b2) in R2. The area of a rectangle is (b1 − a1)× (b2 − a2).

(1) We may subdivide a rectangle by subdividing either of the intervals –
replacing [a1, b1) by [a1, c1) ∪ [c1, b1). Show that the sum of the areas of
rectangles made by any repeated subdivision is always the same as that
of the original.

(2) Suppose that a finite collection of disjoint rectangles has union a rectangle
(always in this same half-open sense). Show, and I really mean prove, that
the sum of the areas is the area of the whole rectange. Hint:- proceed by
subdivision.

(3) Now show that for any countable collection of disjoint rectangles contained
in a given rectange the sum of the areas is less than or equal to that of
the containing rectangle.

(4) Show that if a finite collection of rectangles has union containing a given
rectange then the sum of the areas of the rectangles is at least as large of
that of the rectangle contained in the union.

(5) Prove the extension of the preceeding result to a countable collection of
rectangles with union containing a given rectangle.

Solution. (1) For the subdivision of one rectangle this is clear enough.
Namely we either divide the first side in two or the second side in two at
an intermediate point c. After subdivision the area of the two rectanges
is either

(5.171)
(c− a1)(b2 − a2) + (b1 − c)(b2 − a2) = (b1 − c1)(b2 − a2) or

(b1 − a1)(c− a2) + (b1 − a1)(b2 − c) = (b1 − c1)(b2 − a2).
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this shows by induction that the sum of the areas of any the rectangles
made by repeated subdivision is always the same as the original.

(2) If a finite collection of disjoint rectangles has union a rectangle, say
[a1, b2) × [a2, b2) then the same is true after any subdivision of any of
the rectangles. Moreover, by the preceeding result, after such subdivi-
sion the sum of the areas is always the same. Look at all the points
C1 ⊂ [a1, b1) which occur as an endpoint of the first interval of one of
the rectangles. Similarly let C2 be the corresponding set of end-points of
the second intervals of the rectangles. Now divide each of the rectangles
repeatedly using the finite number of points in C1 and the finite number
of points in C2. The total area remains the same and now the rectangles
covering [a1, b1)× [A2, b2) are precisely the Ai×Bj where the Ai are a set
of disjoint intervals covering [a1, b1) and the Bj are a similar set covering
[a2, b2). Applying the one-dimensional result from class we see that the
sum of the areas of the rectangles with first interval Ai is the product

(5.172) length of Ai × (b2 − a2).

Then we can sum over i and use the same result again to prove what we
want.

(3) For any finite collection of disjoint rectangles contained in [a1, b1)×[a2, b2)
we can use the same division process to show that we can add more disjoint
rectangles to cover the whole big rectangle. Thus, from the preceeding
result the sum of the areas must be less than or equal to (b1−a1)(b2−a2).
For a countable collection of disjoint rectangles the sum of the areas is
therefore bounded above by this constant.

(4) Let the rectangles be Di, i = 1, . . . , N the union of which contains the
rectangle D. Subdivide D1 using all the endpoints of the intervals of D.
Each of the resulting rectangles is either contained in D or is disjoint from
it. Replace D1 by the (one in fact) subrectangle contained in D. Proceed-
ing by induction we can suppose that the first N − k of the rectangles are
disjoint and all contained in D and together all the rectangles cover D.
Now look at the next one, DN−k+1. Subdivide it using all the endpoints
of the intervals for the earlier rectangles D1, . . . , Dk and D. After subdi-
vision of DN−k+1 each resulting rectangle is either contained in one of the
Dj , j ≤ N − k or is not contained in D. All these can be discarded and
the result is to decrease k by 1 (maybe increasing N but that is okay). So,
by induction we can decompose and throw away rectangles until what is
left are disjoint and individually contained in D but still cover. The sum
of the areas of the remaining rectangles is precisely the area of D by the
previous result, so the sum of the areas must originally have been at least
this large.

(5) Now, for a countable collection of rectangles covering D = [a1, b1)×[a2, b2)
we proceed as in the one-dimensional case. First, we can assume that
there is a fixed upper bound C on the lengths of the sides. Make the
kth rectangle a little larger by extending both the upper limits by 2−kδ
where δ > 0. The area increases, but by no more than 2C2−k. After
extension the interiors of the countable collection cover the compact set
[a1, b1 − δ] × [a2, b1 − δ]. By compactness, a finite number of these open
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rectangles cover, and hence there semi-closed version, with the same end-
points, covers [a1, b1−δ)×[a2, b1−δ). Applying the preceeding finite result
we see that

(5.173) Sum of areas + 2Cδ ≥ Area D − 2Cδ.

Since this is true for all δ > 0 the result follows.
�

I encourage you to go through the discussion of integrals of step functions – now
based on rectangles instead of intervals – and see that everything we have done can
be extended to the case of two dimensions. In fact if you want you can go ahead
and see that everything works in Rn!

Problem 2.4

(1) Show that any continuous function on [0, 1] is the uniform limit on [0, 1)
of a sequence of step functions. Hint:- Reduce to the real case, divide
the interval into 2n equal pieces and define the step functions to take
infimim of the continuous function on the corresponding interval. Then
use uniform convergence.

(2) By using the ‘telescoping trick’ show that any continuous function on [0, 1)
can be written as the sum

(5.174)
∑
i

fj(x) ∀ x ∈ [0, 1)

where the fj are step functions and
∑
j

|fj(x)| <∞ for all x ∈ [0, 1).

(3) Conclude that any continuous function on [0, 1], extended to be 0 outside
this interval, is a Lebesgue integrable function on R.

Solution. (1) Since the real and imaginary parts of a continuous func-
tion are continuous, it suffices to consider a real continous function f and
then add afterwards. By the uniform continuity of a continuous function
on a compact set, in this case [0, 1], given n there exists N such that
|x − y| ≤ 2−N =⇒ |f(x) − f(y)| ≤ 2−n. So, if we divide into 2N equal
intervals, where N depends on n and we insist that it be non-decreasing
as a function of n and take the step function fn on each interval which is
equal to min f = inf f on the closure of the interval then

(5.175) |f(x)− Fn(x)| ≤ 2−n ∀ x ∈ [0, 1)

since this even works at the endpoints. Thus Fn → f uniformly on [0, 1).
(2) Now just define f1 = F1 and fk = Fk − Fk−1 for all k > 1. It follows that

these are step functions and that

(5.176)

n∑
k=1

= fn.

Moreover, each interval for Fn+1 is a subinterval for Fn. Since f can
varying by no more than 2−n on each of the intervals for Fn it follows
that

(5.177) |fn(x)| = |Fn+1(x)− Fn(x)| ≤ 2−n ∀ n > 1.

Thus
∫
|fn| ≤ 2−n and so the series is absolutely summable. Moreover, it

actually converges everywhere on [0, 1) and uniformly to f by (5.175).
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(3) Hence f is Lebesgue integrable.
(4) For some reason I did not ask you to check that

(5.178)

∫
f =

∫ 1

0

f(x)dx

where on the right is the Riemann integral. However this follows from the
fact that

(5.179)

∫
f = lim

n→∞

∫
Fn

and the integral of the step function is between the Riemann upper and
lower sums for the corresponding partition of [0, 1].

�

Solution 5.20. If f and g ∈ L1(R) are Lebesgue integrable functions on the
line show that

(1) If f(x) ≥ 0 a.e. then
∫
f ≥ 0.

(2) If f(x) ≤ g(x) a.e. then
∫
f ≤

∫
g.

(3) If f is complex valued then its real part, Re f, is Lebesgue integrable and
|
∫

Re f | ≤
∫
|f |.

(4) For a general complex-valued Lebesgue integrable function

(5.180) |
∫
f | ≤

∫
|f |.

Hint: You can look up a proof of this easily enough, but the usual trick
is to choose θ ∈ [0, 2π) so that eiθ

∫
f =

∫
(eiθf) ≥ 0. Then apply the

preceeding estimate to g = eiθf.
(5) Show that the integral is a continuous linear functional

(5.181)

∫
: L1(R) −→ C.

Solution. (1) If f is real and fn is a real-valued absolutely summable
series of step functions converging to f where it is absolutely convergent
(if we only have a complex-valued sequence use part (3)). Then we know
that

(5.182) g1 = |f1|, gj = |fj | − |fj−1|, f ≥ 1

is an absolutely convergent sequence converging to |f | almost everywhere.
It follows that f+ = 1

2 (|f |+f) = f, if f ≥ 0, is the limit almost everywhere

of the series obtained by interlacing 1
2gj and 1

2fj :

(5.183) hn =

{
1
2gk n = 2k − 1

fk n = 2k.

Thus f+ is Lebesgue integrable. Moreover we know that

(5.184)

∫
f+ = lim

k→∞

∑
n≤2k

∫
hk = lim

k→∞

∫ | k∑
j=1

fj |+
k∑
j=1

fj


where each term is a non-negative step function, so

∫
f+ ≥ 0.
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(2) Apply the preceeding result to g − f which is integrable and satisfies

(5.185)

∫
g −

∫
f =

∫
(g − f) ≥ 0.

(3) Arguing from first principles again, if fn is now complex valued and an
absolutely summable series of step functions converging a .e . to f then
define

(5.186) hn =


Re fk n = 3k − 2

Im fk n = 3k − 1

− Im fk n = 3k.

This series of step functions is absolutely summable and

(5.187)
∑
n

|hn(x)| <∞⇐⇒
∑
n

|fn(x)| <∞ =⇒
∑
n

hn(x) = Re f.

Thus Re f is integrable. Since ±Re f ≤ |f |

(5.188) ±
∫

Re f ≤
∫
|f | =⇒ |

∫
Re f | ≤

∫
|f |.

(4) For a complex-valued f proceed as suggested. Choose z ∈ C with |z| = 1
such that z

∫
f ∈ [0,∞) which is possible by the properties of complex

numbers. Then by the linearity of the integral
(5.189)

z

∫
f =

∫
(zf) =

∫
Re(zf) ≤

∫
|zRe f | ≤

∫
|f | =⇒ |

∫
f | = z

∫
f ≤

∫
|f |.

(where the second equality follows from the fact that the integral is equal
to its real part).

(5) We know that the integral defines a linear map

(5.190) I : L1(R) 3 [f ] 7−→
∫
f ∈ C

since
∫
f =

∫
g if f = g a.e. are two representatives of the same class in

L1(R). To say this is continuous is equivalent to it being bounded, which
follows from the preceeding estimate

(5.191) |I([f ])| = |
∫
f | ≤

∫
|f | = ‖[f ]‖L1

(Note that writing [f ] instead of f ∈ L1(R) is correct but would normally
be considered pedantic – at least after you are used to it!)

(6) I should have asked – and might do on the test: What is the norm of I
as an element of the dual space of L1(R). It is 1 – better make sure that
you can prove this.

�

Problem 3.2 If I ⊂ R is an interval, including possibly (−∞, a) or (a,∞),
we define Lebesgue integrability of a function f : I −→ C to mean the Lebesgue
integrability of

(5.192) f̃ : R −→ C, f̃(x) =

{
f(x) x ∈ I
0 x ∈ R \ I.
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The integral of f on I is then defined to be

(5.193)

∫
I

f =

∫
f̃ .

(1) Show that the space of such integrable functions on I is linear, denote it
L1(I).

(2) Show that is f is integrable on I then so is |f |.
(3) Show that if f is integrable on I and

∫
I
|f | = 0 then f = 0 a.e. in the

sense that f(x) = 0 for all x ∈ I \ E where E ⊂ I is of measure zero as a
subset of R.

(4) Show that the set of null functions as in the preceeding question is a linear
space, denote it N (I).

(5) Show that
∫
I
|f | defines a norm on L1(I) = L1(I)/N (I).

(6) Show that if f ∈ L1(R) then

(5.194) g : I −→ C, g(x) =

{
f(x) x ∈ I
0 x ∈ R \ I

is in L1(R) an hence that f is integrable on I.
(7) Show that the preceeding construction gives a surjective and continuous

linear map ‘restriction to I’

(5.195) L1(R) −→ L1(I).

(Notice that these are the quotient spaces of integrable functions modulo
equality a.e.)

Solution:

(1) If f and g are both integrable on I then setting h = f + g, h̃ = f̃ + g̃,
directly from the definitions, so f + g is integrable on I if f and g are by
the linearity of L1(R). Similarly if h = cf then h̃ = cf̃ is integrable for

any constant c if f̃ is integrable. Thus L1(I) is linear.

(2) Again from the definition, |f̃ | = h̃ if h = |f |. Thus f integrable on I

implies f̃ ∈ L1(R), which, as we know, implies that |f̃ | ∈ L1(R). So in

turn h̃ ∈ L1(R) where h = |f |, so |f | ∈ L1(I).

(3) If f ∈ L1(I) and
∫
I
|f | = 0 then

∫
R |f̃ | = 0 which implies that f̃ = 0 on

R \ E where E ⊂ R is of measure zero. Now, EI = E ∩ I ⊂ E is also of
measure zero (as a subset of a set of measure zero) and f vanishes outside
EI .

(4) If f, g : I −→ C are both of measure zero in this sense then f +g vanishes
on I \ (Ef ∪ Eg) where Ef ⊂ I and Ef ⊂ I are of measure zero. The
union of two sets of measure zero (in R) is of measure zero so this shows
f + g is null. The same is true of cf + dg for constant c and d, so N (I)
is a linear space.

(5) If f ∈ L1(I) and g ∈ N (I) then |f + g| − |f | ∈ N (I), since it vanishes
where g vanishes. Thus

(5.196)

∫
I

|f + g| =
∫
I

|f | ∀ f ∈ L1(I), g ∈ N (I).

Thus

(5.197) ‖[f ]‖I =

∫
I

|f |
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is a well-defined function on L1(I) = L1(R)/N (I) since it is constant
on equivalence classes. Now, the norm properties follow from the same
properties on the whole of R.

(6) Suppose f ∈ L1(R) and g is defined in (5.194) above by restriction to I.
We need to show that g ∈ L1(R). If fn is an absolutely summable series
of step functions converging to f wherever, on R, it converges absolutely
consider

(5.198) gn(x) =

{
fn(x) on Ĩ

0 on R \ Ĩ

where Ĩ is I made half-open if it isn’t already – by adding the lower
end-point (if there is one) and removing the upper end-point (if there is

one). Then gn is a step function (which is why we need Ĩ). Moreover,∫
|gn| ≤

∫
|fn| so the series gn is absolutely summable and converges

to gn outside I and at all points inside I where the series is absolutely
convergent (since it is then the same as fn). Thus g is integrable, and since

f̃ differs from g by its values at two points, at most, it too is integrable
so f is integrable on I by definition.

(7) First we check we do have a map. Namely if f ∈ N (R) then g in (5.194)
is certainly an element of N (I). We have already seen that ‘restriction
to I’ maps L1(R) into L1(I) and since this is clearly a linear map it
defines (5.195) – the image only depends on the equivalence class of f. It
is clearly linear and to see that it is surjective observe that if g ∈ L1(I)
then extending it as zero outside I gives an element of L1(R) and the class
of this function maps to [g] under (5.195).

Problem 3.3 Really continuing the previous one.

(1) Show that if I = [a, b) and f ∈ L1(I) then the restriction of f to Ix = [x, b)
is an element of L1(Ix) for all a ≤ x < b.

(2) Show that the function

(5.199) F (x) =

∫
Ix

f : [a, b) −→ C

is continuous.
(3) Prove that the function x−1 cos(1/x) is not Lebesgue integrable on the

interval (0, 1]. Hint: Think about it a bit and use what you have shown
above.

Solution:

(1) This follows from the previous question. If f ∈ L1([a, b)) with f ′ a repre-
sentative then extending f ′ as zero outside the interval gives an element of
L1(R), by defintion. As an element of L1(R) this does not depend on the
choice of f ′ and then (5.195) gives the restriction to [x, b) as an element
of L1([x, b)). This is a linear map.

(2) Using the discussion in the preceeding question, we now that if fn is an
absolutely summable series converging to f ′ (a representative of f) where
it converges absolutely, then for any a ≤ x ≤ b, we can define

(5.200) f ′n = χ([a, x))fn, f
′′
n = χ([x, b))fn
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where χ([a, b)) is the characteristic function of the interval. It follows
that f ′n converges to fχ([a, x)) and f ′′n to fχ([x, b)) where they converge
absolutely. Thus

(5.201)

∫
[x,b)

f =

∫
fχ([x, b)) =

∑
n

∫
f ′′n ,

∫
[a,x)

f =

∫
fχ([a, x)) =

∑
n

∫
f ′n.

Now, for step functions, we know that
∫
fn =

∫
f ′n +

∫
f ′′n so

(5.202)

∫
[a,b)

f =

∫
[a,x)

f +

∫
[x,b)

f

as we have every right to expect. Thus it suffices to show (by moving the
end point from a to a general point) that

(5.203) lim
x→a

∫
[a,x)

f = 0

for any f integrable on [a, b). Thus can be seen in terms of a defining
absolutely summable sequence of step functions using the usual estimate
that

(5.204) |
∫

[a,x)

f | ≤
∫

[a,x)

|
∑
n≤N

fn|+
∑
n>N

∫
[a,x)

|fn|.

The last sum can be made small, independent of x, by choosing N large
enough. On the other hand as x→ a the first integral, for fixed N, tends
to zero by the definition for step functions. This proves (5.204) and hence
the continuity of F.

(3) If the function x−1 cos(1/x) were Lebesgue integrable on the interval (0, 1]
(on which it is defined) then it would be integrable on [0, 1) if we define
it arbitrarily, say to be 0, at 0. The same would be true of the absolute
value and Riemann integration shows us easily that

(5.205) lim
t↓0

∫ 1

t

x| cos(1/x)|dx =∞.

This is contrary to the continuity of the integral as a function of the limits
just shown.

Problem 3.4 [Harder but still doable] Suppose f ∈ L1(R).

(1) Show that for each t ∈ R the translates

(5.206) ft(x) = f(x− t) : R −→ C
are elements of L1(R).

(2) Show that

(5.207) lim
t→0

∫
|ft − f | = 0.

This is called ‘Continuity in the mean for integrable functions’. Hint: I
will add one!

(3) Conclude that for each f ∈ L1(R) the map (it is a ‘curve’)

(5.208) R 3 t 7−→ [ft] ∈ L1(R)

is continuous.

Solution:
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(1) If fn is an absolutely summable series of step functions converging to f
where it converges absolutely then fn(· − t) is such a series converging to
f(· − t) for each t ∈ R. Thus, each of the f(x− t) is Lebesgue integrable,
i.e. are elements of L1(R)

(2) Now, we know that if fn is a series converging to f as above then

(5.209)

∫
|f | ≤

∑
n

∫
|fn|.

We can sum the first terms and then start the series again and so it follows
that for any N,

(5.210)

∫
|f | ≤

∫
|
∑
n≤N

fn|+
∑
n>N

∫
|fn|.

Applying this to the series fn(· − t)− fn(·) we find that

(5.211)

∫
|ft − f | ≤

∫
|
∑
n≤N

fn(· − t)− fn(·)|+
∑
n>N

∫
|fn(· − t)− fn(·)|

The second sum here is bounded by 2
∑
n>N

∫
|fn|. Given δ > 0 we can

choose N so large that this sum is bounded by δ/2, by the absolute con-
vergence. So the result is reduce to proving that if |t| is small enough
then

(5.212)

∫
|
∑
n≤N

fn(· − t)− fn(·)| ≤ δ/2.

This however is a finite sum of step functions. So it suffices to show that

(5.213) |
∫
g(· − t)− g(·)| → 0 as t→ 0

for each component, i.e. a constant, c, times the characteristic function
of an interval [a, b) where it is bounded by 2|c||t|.

(3) For the ‘curve’ ft which is a map

(5.214) R 3 t 7−→ ft ∈ L1(R)

it follows that ft+s = (ft)s so we can apply the argument above to show
that for each s,

(5.215) lim
t→s

∫
|ft − fs| = 0 =⇒ lim

t→s
‖[ft]− [fs]‖L1 = 0

which proves continuity of the map (5.214).

Problem 3.5 In the last problem set you showed that a continuous function
on a compact interval, extended to be zero outside, is Lebesgue integrable. Using
this, and the fact that step functions are dense in L1(R) show that the linear space
of continuous functions on R each of which vanishes outside a compact set (which
depends on the function) form a dense subset of L1(R).

Solution: Since we know that step functions (really of course the equivalence
classes of step functions) are dense in L1(R) we only need to show that any step
function is the limit of a sequence of continuous functions each vanishing outside a
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compact set, with respect to L1. So, it suffices to prove this for the charactertistic
function of an interval [a, b) and then multiply by constants and add. The sequence

(5.216) gn(x) =



0 x < a− 1/n

n(x− a+ 1/n) a− 1/n ≤ x ≤ a
0 a < x < b

n(b+ 1/n− x) b ≤ x ≤ b+ 1/n

0 x > b+ 1/n

is clearly continuous and vanishes outside a compact set. Since

(5.217)

∫
|gn − χ([a, b))| =

∫ 1

a−1/n

gn +

∫ b+1/n

b

gn ≤ 2/n

it follows that [gn] → [χ([a, b))] in L1(R). This proves the density of continuous
functions with compact support in L1(R).

Problem 3.6

(1) If g : R −→ C is bounded and continuous and f ∈ L1(R) show that
gf ∈ L1(R) and that

(5.218)

∫
|gf | ≤ sup

R
|g| ·

∫
|f |.

(2) Suppose now that G ∈ C([0, 1]×[0, 1]) is a continuous function (I use C(K)
to denote the continuous functions on a compact metric space). Recall
from the preceeding discussion that we have defined L1([0, 1]). Now, using
the first part show that if f ∈ L1([0, 1]) then

(5.219) F (x) =

∫
[0,1]

G(x, ·)f(·) ∈ C

(where · is the variable in which the integral is taken) is well-defined for
each x ∈ [0, 1].

(3) Show that for each f ∈ L1([0, 1]), F is a continuous function on [0, 1].
(4) Show that

(5.220) L1([0, 1]) 3 f 7−→ F ∈ C([0, 1])

is a bounded (i.e. continuous) linear map into the Banach space of con-
tinuous functions, with supremum norm, on [0, 1].

Solution:

(1) Let’s first assume that f = 0 outside [−1, 1]. Applying a result form Prob-
lem set there exists a sequence of step functions gn such that for any R,
gn → g uniformly on [0, 1). By passing to a subsequence we can arrange
that sup[−1,1] |gn(x)− gn−1(x)| < 2−n. If fn is an absolutly summable se-

ries of step functions converging a .e . to f we can replace it by fnχ([−1, 1])
as discussed above, and still have the same conclusion. Thus, from the
uniform convergence of gn,

(5.221) gn(x)

n∑
k=1

fk(x)→ g(x)f(x) a.e. on R.
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So define h1 = g1f1, hn = gn(x)
n∑
k=1

fk(x)− gn−1(x)
n−1∑
k=1

fk(x). This series

of step functions converges to gf(x) almost everywhere and since
(5.222)

|hn| ≤ A|fn(x)|+ 2−n
∑
k<n

|fk(x)|,
∑
n

∫
|hn| ≤ A

∑
n

∫
|fn|+ 2

∑
n

∫
|fn| <∞

it is absolutely summable. Here A is a bound for |gn| independent of n.
Thus gf ∈ L1(R) under the assumption that f = 0 outside [0, 1) and

(5.223)

∫
|gf | ≤ sup |g|

∫
|f |

follows from the limiting argument. Now we can apply this argument to
fp which is the restriction of p to the interval [p, p + 1), for each p ∈ Z.
Then we get gf as the limit a .e . of the absolutely summable series gfp
where (5.223) provides the absolute summablitly since

(5.224)
∑
p

∫
|gfp| ≤ sup |g|

∑
p

∫
[p,p+1)

|f | <∞.

Thus, gf ∈ L1(R) by a theorem in class and

(5.225)

∫
|gf | ≤ sup |g|

∫
|f |.

(2) If f ∈ L1[(0, 1]) has a representative f ′ then G(x, ·)f ′(·) ∈ L1([0, 1)) so

(5.226) F (x) =

∫
[0,1]

G(x, ·)f(·) ∈ C

is well-defined, since it is indpendent of the choice of f ′, changing by a
null function if f ′ is changed by a null function.

(3) Now by the uniform continuity of continuous functions on a compact met-
ric space such as S = [0, 1]× [0, 1] given δ > 0 there exist ε > 0 such that

(5.227) sup
y∈[0,1]

|G(x, y)−G(x′, y)| < δ if |x− x′| < ε.

Then if |x− x′| < ε,

(5.228) |F (x)− F (x′)| = |
∫

[0,1]

(G(x, ·)−G(x′, ·))f(·)| ≤ δ
∫
|f |.

Thus F ∈ C([0, 1]) is a continuous function on [0, 1]. Moreover the map
f 7−→ F is linear and

(5.229) sup
[0,1]

|F | ≤ sup
S
|G|
∫

[0,1]

||f |

which is the desired boundedness, or continuity, of the map

(5.230) I : L1([0, 1]) −→ C([0, 1]), F (f)(x) =

∫
G(x, ·)f(·),

‖I(f)‖sup ≤ sup |G|‖f‖L1 .
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You should be thinking about using Lebesgue’s dominated convergence at sev-
eral points below.

Problem 5.1
Let f : R −→ C be an element of L1(R). Define

(5.231) fL(x) =

{
f(x) x ∈ [−L,L]

0 otherwise.

Show that fL ∈ L1(R) and that
∫
|fL − f | → 0 as L→∞.

Solution. If χL is the characteristic function of [−N,N ] then fL = fχL. If
fn is an absolutely summable series of step functions converging a.e. to f then
fnχL is absolutely summable, since

∫
|fnχL| ≤

∫
|fn| and converges a.e. to fL, so

fL
∫
L1(R). Certainly |fL(x)−f(x)| → 0 for each x as L→∞ and |fL(x)−f(x)| ≤

|fl(x)|+ |f(x)| ≤ 2|f(x)| so by Lebesgue’s dominated convergence,
∫
|f − fL| → 0.

Problem 5.2 Consider a real-valued function f : R −→ R which is locally
integrable in the sense that

(5.232) gL(x) =

{
f(x) x ∈ [−L,L]

0 x ∈ R \ [−L,L]

is Lebesgue integrable of each L ∈ N.
(1) Show that for each fixed L the function

(5.233) g
(N)
L (x) =


gL(x) if gL(x) ∈ [−N,N ]

N if gL(x) > N

−N if gL(x) < −N

is Lebesgue integrable.

(2) Show that
∫
|g(N)
L − gL| → 0 as N →∞.

(3) Show that there is a sequence, hn, of step functions such that

(5.234) hn(x)→ f(x) a.e. in R.

(4) Defining

(5.235) h
(N)
n,L =


0 x 6∈ [−L,L]

hn(x) if hn(x) ∈ [−N,N ], x ∈ [−L,L]

N if hn(x) > N, x ∈ [−L,L]

−N if hn(x) < −N, x ∈ [−L,L]

.

Show that
∫
|h(N)
n,L − g

(N)
L | → 0 as n→∞.

Solution:

(1) By definition g
(N)
L = max(−NχL,min(NχL, gL)) where χL is the charac-

teristic funciton of −[L,L], thus it is in L1(R).

(2) Clearly g
(N)
L (x) → gL(x) for every x and |g(N)

L (x)| ≤ |gL(x)| so by Dom-

inated Convergence, g
(N)
L → gL in L1, i.e.

∫
|g(N)
L − gL| → 0 as N → ∞

since the sequence converges to 0 pointwise and is bounded by 2|g(x)|.
(3) Let SL,n be a sequence of step functions converging a.e. to gL – for ex-

ample the sequence of partial sums of an absolutely summable series of
step functions converging to gL which exists by the assumed integrability.
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Then replacing SL,n by SL,nχL we can assume that the elements all van-
ish outside [−N,N ] but still have convergence a.e. to gL. Now take the
sequence

(5.236) hn(x) =

{
Sk,n−k on [k,−k] \ [(k − 1),−(k − 1)], 1 ≤ k ≤ n,
0 on R \ [−n, n].

This is certainly a sequence of step functions – since it is a finite sum of
step functions for each n – and on [−L,L] \ [−(L − 1), (L − 1)] for large
integral L is just SL,n−L → gL. Thus hn(x) → f(x) outside a countable
union of sets of measure zero, so also almost everywhere.

(4) This is repetition of the first problem, h
(N)
n,L(x)→ g

(N)
L almost everywhere

and |h(N)
n,L | ≤ NχL so g

(N)
L ∈ L1(R) and

∫
|h(N)
n,L − g

(N)
L | → 0 as n→∞.

Problem 5.3 Show that L2(R) is a Hilbert space – since it is rather central to
the course I wanted you to go through the details carefully!

First working with real functions, define L2(R) as the set of functions f : R −→
R which are locally integrable and such that |f |2 is integrable.

(1) For such f choose hn and define gL, g
(N)
L and h

(N)
n by (5.232), (5.233) and

(5.235).

(2) Show using the sequence h
(N)
n,L for fixed N and L that g

(N)
L and (g

(N)
L )2

are in L1(R) and that
∫
|(h(N)

n,L)2 − (g
(N)
L )2| → 0 as n→∞.

(3) Show that (gL)2 ∈ L1(R) and that
∫
|(g(N)

L )2 − (gL)2| → 0 as N →∞.
(4) Show that

∫
|(gL)2 − f2| → 0 as L→∞.

(5) Show that f, g ∈ L2(R) then fg ∈ L1(R) and that

(5.237) |
∫
fg| ≤

∫
|fg| ≤ ‖f‖L2‖g‖L2 , ‖f‖2L2 =

∫
|f |2.

(6) Use these constructions to show that L2(R) is a linear space.
(7) Conclude that the quotient space L2(R) = L2(R)/N , whereN is the space

of null functions, is a real Hilbert space.
(8) Extend the arguments to the case of complex-valued functions.

Solution:

(1) Done. I think it should have been h
(N)
n,L .

(2) We already checked that g
(N)
L ∈ L1(R) and the same argument applies to

(g
(N)
L ), namely (h

(N)
n,L)2 → g

(N)
L almost everywhere and both are bounded

by N2χL so by dominated convergence

(5.238)

(h
(N)
n,L)2 → g

(N)
L )2 ≤ N2χL a.e. =⇒ g

(N)
L )2 ∈ L1(R) and

|h(N)
n,L)2 − g(N)

L )2| → 0 a.e. ,

|h(N)
n,L)2 − g(N)

L )2| ≤ 2N2χL =⇒
∫
|h(N)
n,L)2 − g(N)

L )2| → 0.

(3) Now, as N → ∞, (g
(N)
L )2 → (gL)2 a .e . and (g

(N)
L )2 → (gL)2 ≤ f2 so

by dominated convergence, (gL)2 ∈ L1 and
∫
|(g(N)

L )2 − (gL)2| → 0 as
N →∞.

(4) The same argument of dominated convergence shows now that g2
L → f2

and
∫
|g2
L − f2| → 0 using the bound by f2 ∈ L1(R).
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(5) What this is all for is to show that fg ∈ L1(R) if f, F = g ∈ L2(R) (for
easier notation). Approximate each of them by sequences of step functions

as above, h
(N)
n,L for f and H

(N)
n,L for g. Then the product sequence is in L1

– being a sequence of step functions – and

(5.239) h
(N)
n,L(x)H

(N)
n,L (x)→ g

(N)
L (x)G

(N)
L (x)

almost everywhere and with absolute value bounded by N2χL. Thus

by dominated convergence g
(N)
L G

(N)
L ∈ L1(R). Now, let N → ∞; this

sequence converges almost everywhere to gL(x)GL(x) and we have the
bound

(5.240) |g(N)
L (x)G

(N)
L (x)| ≤ |f(x)F (x)|1

2
(f2 + F 2)

so as always by dominated convergence, the limit gLGL ∈ L1. Finally,
letting L → ∞ the same argument shows that fF ∈ L1(R). Moreover,
|fF | ∈ L1(R) and

(5.241) |
∫
fF | ≤

∫
|fF | ≤ ‖f‖L2‖F‖L2

where the last inequality follows from Cauchy’s inequality – if you wish,
first for the approximating sequences and then taking limits.

(6) So if f, g ∈ L2(R) are real-value, f + g is certainly locally integrable and

(5.242) (f + g)2 = f2 + 2fg + g2 ∈ L1(R)

by the discussion above. For constants f ∈ L2(R) implies cf ∈ L2(R) is
directly true.

(7) The argument is the same as for L1 versus L1. Namely
∫
f2 = 0 implies

that f2 = 0 almost everywhere which is equivalent to f = 0 a@ė. Then
the norm is the same for all f + h where h is a null function since fh and
h2 are null so (f + h)2 = f2 + 2fh + h2. The same is true for the inner
product so it follows that the quotient by null functions

(5.243) L2(R) = L2(R)/N

is a preHilbert space.
However, it remains to show completeness. Suppose {[fn]} is an ab-

solutely summable series in L2(R) which means that
∑
n
‖fn‖L2 < ∞. It

follows that the cut-off series fnχL is absolutely summable in the L1 sense
since

(5.244)

∫
|fnχL| ≤ L

1
2 (

∫
f2
n)

1
2

by Cauchy’s inequality. Thus if we set Fn =
n∑
k−1

fk then Fn(x)χL con-

verges almost everywhere for each L so in fact

(5.245) Fn(x)→ f(x) converges almost everywhere.

We want to show that f ∈ L2(R) where it follows already that f is locally
integrable by the completeness of L1. Now consider the series

(5.246) g1 = F 2
1 , gn = F 2

n − F 2
n−1.
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The elements are in L1(R) and by Cauchy’s inequality for n > 1,

(5.247)

∫
|gn| =

∫
|F 2
n − Fn−1|2 ≤ ‖Fn − Fn−1‖L2‖Fn + Fn−1‖L2

≤ ‖fn‖L22
∑
k

‖fk‖L2

where the triangle inequality has been used. Thus in fact the series gn is
absolutely summable in L1

(5.248)
∑
n

∫
|gn| ≤ 2(

∑
n

‖fn‖L2)2.

So indeed the sequence of partial sums, the F 2
n converge to f2 ∈ L1(R).

Thus f ∈ L2(R) and moroever

(5.249)

∫
(Fn − f)2 =

∫
F 2
n +

∫
f2 − 2

∫
Fnf → 0 as n→∞.

Indeed the first term converges to
∫
f2 and, by Cauchys inequality, the

series of products fnf is absulutely summable in L1 with limit f2 so the
third term converges to −2

∫
f2. Thus in fact [Fn]→ [f ] in L2(R) and we

have proved completeness.
(8) For the complex case we need to check linearity, assuming f is locally

integrable and |f |2 ∈ L1(R). The real part of f is locally integrable and the

approximation F
(N)
L discussed above is square integrable with (F

(N)
L )2 ≤

|f |2 so by dominated convergence, letting first N →∞ and then L→∞
the real part is in L2(R). Now linearity and completeness follow from the
real case.

Problem 5.4
Consider the sequence space

(5.250) h2,1 =

c : N 3 j 7−→ cj ∈ C;
∑
j

(1 + j2)|cj |2 <∞

 .

(1) Show that

(5.251) h2,1 × h2,1 3 (c, d) 7−→ 〈c, d〉 =
∑
j

(1 + j2)cjdj

is an Hermitian inner form which turns h2,1 into a Hilbert space.
(2) Denoting the norm on this space by ‖ · ‖2,1 and the norm on l2 by ‖ · ‖2,

show that

(5.252) h2,1 ⊂ l2, ‖c‖2 ≤ ‖c‖2,1 ∀ c ∈ h2,1.

Solution:

(1) The inner product is well defined since the series defining it converges
absolutely by Cauchy’s inequality:

(5.253)

〈c, d〉 =
∑
j

(1 + j2)
1
2 cj(1 + j2)

1
2 dj ,∑

j

|(1 + j2)
1
2 cj(1 + j2)

1
2 dj | ≤ (

∑
j

(1 + j2)|cj |2)
1
2 (
∑
j

(1 + j2)|dj |2)
1
2 .
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It is sesquilinear and positive definite since

(5.254) ‖c‖2,1 = (
∑
j

(1 + j2)|cj |2)
1
2

only vanishes if all cj vanish. Completeness follows as for l2 – if c(n) is a

Cauchy sequence then each component c
(n)
j converges, since (1 + j)

1
2 c

(n)
j

is Cauchy. The limits cj define an element of h2,1 since the sequence is
bounded and

(5.255)

N∑
j=1

(1 + j2)
1
2 |cj |2 = lim

n→∞

N∑
j=1

(1 + j2)|c(n)
j |

2 ≤ A

where A is a bound on the norms. Then from the Cauchy condition
c(n) → c in h2,1 by passing to the limit as m→∞ in ‖c(n)− c(m)‖2,1 ≤ ε.

(2) Clearly h2,2 ⊂ l2 since for any finite N

(5.256)

N∑
j=1

|cj |2
N∑
j=1

(1 + j)2|cj |2 ≤ ‖c‖22,1

and we may pass to the limit as N →∞ to see that

(5.257) ‖c‖l2 ≤ ‖c‖2,1.
Problem 5.5 In the separable case, prove Riesz Representation Theorem di-

rectly.
Choose an orthonormal basis {ei} of the separable Hilbert space H. Suppose

T : H −→ C is a bounded linear functional. Define a sequence

(5.258) wi = T (ei), i ∈ N.
(1) Now, recall that |Tu| ≤ C‖u‖H for some constant C. Show that for every

finite N,

(5.259)

N∑
j=1

|wi|2 ≤ C2.

(2) Conclude that {wi} ∈ l2 and that

(5.260) w =
∑
i

wiei ∈ H.

(3) Show that

(5.261) T (u) = 〈u,w〉H ∀ u ∈ H and ‖T‖ = ‖w‖H .
Solution:

(1) The finite sum wN =
N∑
i=1

wiei is an element of the Hilbert space with norm

‖wN‖2N =
N∑
i=1

|wi|2 by Bessel’s identity. Expanding out

(5.262) T (wN ) = T (

N∑
i=1

wiei) =

n∑
i=1

wiT (ei) =

N∑
i=1

|wi|2

and from the continuity of T,

(5.263) |T (wN )| ≤ C‖wN‖H =⇒ ‖wN‖2H ≤ C‖wN‖H =⇒ ‖wN‖2 ≤ C2
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which is the desired inequality.
(2) Letting N →∞ it follows that the infinite sum converges and

(5.264)
∑
i

|wi|2 ≤ C2 =⇒ w =
∑
i

wiei ∈ H

since ‖wN − w‖ ≤
∑
j>N

|wi|2 tends to zero with N.

(3) For any u ∈ H uN =
N∑
i=1

〈u, ei〉ei by the completness of the {ei} so from

the continuity of T

(5.265) T (u) = lim
N→∞

T (uN ) = lim
N→∞

N∑
i=1

〈u, ei〉T (ei)

= lim
N→∞

N∑
i=1

〈u,wiei〉 = lim
N→∞

〈u,wN 〉 = 〈u,w〉

where the continuity of the inner product has been used. From this and
Cauchy’s inequality it follows that ‖T‖ = sup‖u‖H=1 |T (u)| ≤ ‖w‖. The

converse follows from the fact that T (w) = ‖w‖2H .

Solution 5.21. If f ∈ L1(Rk × Rp) show that there exists a set of measure
zero E ⊂ Rk such that

(5.266) x ∈ Rk \ E =⇒ gx(y) = f(x, y) defines gx ∈ L1(Rp),

that F (x) =
∫
gx defines an element F ∈ L1(Rk) and that

(5.267)

∫
Rk
F =

∫
Rk×Rp

f.

Note: These identities are usually written out as an equality of an iterated
integral and a ‘regular’ integral:

(5.268)

∫
Rk

∫
Rp
f(x, y) =

∫
f.

It is often used to ‘exchange the order of integration’ since the hypotheses are
the same if we exchange the variables.

Solution. This is not hard but is a little tricky (I believe Fubini never under-
stood what the fuss was about).

Certainly this result holds for step functions, since ultimately it reduces to the
case of the characterisitic function for a ‘rectrangle’.

In the general case we can take an absolutely summable sequence fj of step
functions summing to f

(5.269) f(x, y) =
∑
j

fj(x, y) whenever
∑
j

|fj(x, y)| <∞.

This, after all, is our definition of integrability.
Now, consider the functions

(5.270) hj(x) =

∫
Rp
|fj(x, ·)|
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which are step functions. Moreover this series is absolutely summable since

(5.271)
∑
j

∫
Rk
|hj | =

∑
j

∫
Rk×Rp

|fj |.

Thus the series
∑
j

hj(x) converges (absolutely) on the complement of a set E ⊂ Rk

of measure zero. It follows that the series of step functions

(5.272) Fj(x) =

∫
Rp
fj(x, ·)

converges absolutely on Rk \ E since |fj(x)| ≤ hj(x). Thus,

(5.273) F (x) =
∑
j

Fj(x) converges absolutely on Rk \ E

defines F ∈ L1(Rk) with

(5.274)

∫
Rk
F =

∑
j

∫
Rk
Fj =

∑
j

∫
Rk×Rp

fj =

∫
Rk×Rp

f.

The absolute convergence of
∑
j

hj(x) for a given x is precisely the absolutely

summability of fk(x, y) as a series of functions of y,

(5.275)
∑
j

∫
Rp
|fj(x, ·)| =

∑
j

hj(x).

Thus for each x /∈ E the series
∑
j

fk(x, y) must converge absolutely for y ∈ (Rp\Ex)

where Ex is a set of measure zero. But (5.269) shows that the sum is gx(y) = f(x, y)
at all such points, so for x /∈ E, f(x, ·) ∈ L1(Rp) (as the limit of an absolutely
summable series) and

(5.276) F (x) =

∫
Rp
gx.

With (5.274) this is what we wanted to show. �

Problem 4.1
Let H be a normed space in which the norm satisfies the parallelogram law:

(5.277) ‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2) ∀ u, v ∈ H.
Show that the norm comes from a positive definite sesquilinear (i.e. Hermitian)
inner product. Big Hint:- Try

(5.278) (u, v) =
1

4

(
‖u+ v‖2 − ‖u− v‖2 + i‖u+ iv‖2 − i‖u− iv‖2

)
!

Solution: Setting u = v, even without the parallelogram law,

(5.279) (u, u) =
1

4

∥∥2u‖2 + i‖(1 + i)u‖2 − i‖(1− i)u‖2
)

= ‖u‖2.

So the point is that the parallelogram law shows that (u, v) is indeed an Hermitian
inner product. Taking complex conjugates and using properties of the norm, ‖u+
iv‖ = ‖v − iu‖ etc

(5.280) (u, v) =
1

4

(
‖v + u‖2 − ‖v − u‖2 − i‖v − iu‖2 + i‖v + iu‖2

)
= (v, u).
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Thus we only need check the linearity in the first variable. This is a little tricky!
First compute away. Directly from the identity (u,−v) = −(u, v) so (−u, v) =
−(u, v) using (5.280). Now,
(5.281)

(2u, v) =
1

4

(
‖u+ (u+ v)‖2 − ‖u+ (u− v)‖2

+ i‖u+ (u+ iv)‖2 − i‖u+ (u− iv)‖2
)

=
1

2

(
‖u+ v‖2 + ‖u‖2 − ‖u− v‖2 − ‖u‖2

+ i‖(u+ iv)‖2 + i‖u‖2 − i‖u− iv‖2 − i‖u‖2
)

− 1

4

(
‖u− (u+ v)‖2 − ‖u− (u− v)‖2 + i‖u− (u+ iv)‖2 − i‖u− (u− iv)‖2

)
=2(u, v).

Using this and (5.280), for any u, u′ and v,

(5.282)

(u+ u′, v) =
1

2
(u+ u′, 2v)

=
1

2

1

4

(
‖(u+ v) + (u′ + v)‖2 − ‖(u− v) + (u′ − v)‖2

+ i‖(u+ iv) + (u− iv)‖2 − i‖(u− iv) + (u′ − iv)‖2
)

=
1

4

(
‖u+ v‖+ ‖u′ + v‖2 − ‖u− v‖ − ‖u′ − v‖2

+ i‖(u+ iv)‖2 + i‖u− iv‖2 − i‖u− iv‖ − i‖u′ − iv‖2
)

− 1

2

1

4

(
‖(u+ v)− (u′ + v)‖2 − ‖(u− v)− (u′ − v)‖2

+ i‖(u+ iv)− (u− iv)‖2 − i‖(u− iv) = (u′ − iv)‖2
)

= (u, v) + (u′, v).

Using the second identity to iterate the first it follows that (ku, v) = k(u, v) for any
u and v and any positive integer k. Then setting nu′ = u for any other positive
integer and r = k/n, it follows that

(5.283) (ru, v) = (ku′, v) = k(u′, v) = rn(u′, v) = r(u, v)

where the identity is reversed. Thus it follows that (ru, v) = r(u, v) for any rational
r. Now, from the definition both sides are continuous in the first element, with
respect to the norm, so we can pass to the limit as r → x in R. Also directly from
the definition,

(5.284) (iu, v) =
1

4

(
‖iu+ v‖2 − ‖iu− v‖2 + i‖iu+ iv‖2 − i‖iu− iv‖2

)
= i(u, v)

so now full linearity in the first variable follows and that is all we need.
Problem 4.2
Let H be a finite dimensional (pre)Hilbert space. So, by definition H has a

basis {vi}ni=1, meaning that any element of H can be written

(5.285) v =
∑
i

civi
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and there is no dependence relation between the vi’s – the presentation of v = 0 in
the form (5.285) is unique. Show that H has an orthonormal basis, {ei}ni=1 satis-
fying (ei, ej) = δij (= 1 if i = j and 0 otherwise). Check that for the orthonormal
basis the coefficients in (5.285) are ci = (v, ei) and that the map

(5.286) T : H 3 v 7−→ ((v, ei)) ∈ Cn

is a linear isomorphism with the properties

(5.287) (u, v) =
∑
i

(Tu)i(Tv)i, ‖u‖H = ‖Tu‖Cn ∀ u, v ∈ H.

Why is a finite dimensional preHilbert space a Hilbert space?
Solution: Since H is assumed to be finite dimensional, it has a basis vi, i =

1, . . . , n. This basis can be replaced by an orthonormal basis in n steps. First
replace v1 by e1 = v1/‖v1‖ where ‖v1‖ 6= 0 by the linear indepedence of the basis.
Then replace v2 by

(5.288) e2 = w2/‖w2‖, w2 = v2 − (v2, e1)e1.

Here w2 ⊥ e1 as follows by taking inner products; w2 cannot vanish since v2 and e1

must be linearly independent. Proceeding by finite induction we may assume that
we have replaced v1, v2, . . . , vk, k < n, by e1, e2, . . . , ek which are orthonormal
and span the same subspace as the vi’s i = 1, . . . , k. Then replace vk+1 by

(5.289) ek+1 = wk+1/‖wk+1‖, wk+1 = vk+1 −
k∑
i=1

(vk+1, ei)ei.

By taking inner products, wk+1 ⊥ ei, i = 1, . . . , k and wk+1 6= 0 by the linear
independence of the vi’s. Thus the orthonormal set has been increased by one
element preserving the same properties and hence the basis can be orthonormalized.

Now, for each u ∈ H set

(5.290) ci = (u, ei).

It follows that U = u−
n∑
i=1

ciei is orthogonal to all the ei since

(5.291) (u, ej) = (u, ej)−
∑
i

ci(ei, ej) = (u.ej)− cj = 0.

This implies that U = 0 since writing U =
∑
i

diei it follows that di = (U, ei) = 0.

Now, consider the map (5.286). We have just shown that this map is injective,
since Tu = 0 implies ci = 0 for all i and hence u = 0. It is linear since the ci depend
linearly on u by the linearity of the inner product in the first variable. Moreover
it is surjective, since for any ci ∈ C, u =

∑
i

ciei reproduces the ci through (5.290).

Thus T is a linear isomorphism and the first identity in (5.287) follows by direct
computation:-

(5.292)

n∑
i=1

(Tu)i(Tv)i =
∑
i

(u, ei)

= (u,
∑
i

(v, ei)ei)

= (u, v).
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Setting u = v shows that ‖Tu‖Cn = ‖u‖H .
Now, we know that Cn is complete with its standard norm. Since T is an

isomorphism, it carries Cauchy sequences in H to Cauchy sequences in Cn and T−1

carries convergent sequences in Cn to convergent sequences in H, so every Cauchy
sequence in H is convergent. Thus H is complete.

Hint: Don’t pay too much attention to my hints, sometimes they are a little off-
the-cuff and may not be very helpfult. An example being the old hint for Problem
6.2!

Problem 6.1 Let H be a separable Hilbert space. Show that K ⊂ H is compact
if and only if it is closed, bounded and has the property that any sequence in K
which is weakly convergent sequence in H is (strongly) convergent.

Hint:- In one direction use the result from class that any bounded sequence has
a weakly convergent subsequence.

Problem 6.2 Show that, in a separable Hilbert space, a weakly convergent
sequence {vn}, is (strongly) convergent if and only if the weak limit, v satisfies

(5.293) ‖v‖H = lim
n→∞

‖vn‖H .

Hint:- To show that this condition is sufficient, expand

(5.294) (vn − v, vn − v) = ‖vn‖2 − 2 Re(vn, v) + ‖v‖2.

Problem 6.3 Show that a subset of a separable Hilbert space is compact if
and only if it is closed and bounded and has the property of ‘finite dimensional
approximation’ meaning that for any ε > 0 there exists a linear subspace DN ⊂ H
of finite dimension such that

(5.295) d(K,DN ) = sup
u∈K

inf
v∈DN

{d(u, v)} ≤ ε.

Hint:- To prove necessity of this condition use the ‘equi-small tails’ property of
compact sets with respect to an orthonormal basis. To use the finite dimensional
approximation condition to show that any weakly convergent sequence in K is
strongly convergent, use the convexity result from class to define the sequence {v′n}
in DN where v′n is the closest point in DN to vn. Show that v′n is weakly, hence
strongly, convergent and hence deduce that {vn} is Cauchy.

Problem 6.4 Suppose that A : H −→ H is a bounded linear operator with the
property that A(H) ⊂ H is finite dimensional. Show that if vn is weakly convergent
in H then Avn is strongly convergent in H.

Problem 6.5 Suppose that H1 and H2 are two different Hilbert spaces and
A : H1 −→ H2 is a bounded linear operator. Show that there is a unique bounded
linear operator (the adjoint) A∗ : H2 −→ H1 with the property

(5.296) (Au1, u2)H2
= (u1, A

∗u2)H1
∀ u1 ∈ H1, u2 ∈ H2.

Problem 8.1 Show that a continuous function K : [0, 1] −→ L2(0, 2π) has
the property that the Fourier series of K(x) ∈ L2(0, 2π), for x ∈ [0, 1], converges
uniformly in the sense that if Kn(x) is the sum of the Fourier series over |k| ≤ n
then Kn : [0, 1] −→ L2(0, 2π) is also continuous and

(5.297) sup
x∈[0,1]

‖K(x)−Kn(x)‖L2(0,2π) → 0.

Hint. Use one of the properties of compactness in a Hilbert space that you
proved earlier.
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Problem 8.2
Consider an integral operator acting on L2(0, 1) with a kernel which is contin-

uous – K ∈ C([0, 1]2). Thus, the operator is

(5.298) Tu(x) =

∫
(0,1)

K(x, y)u(y).

Show that T is bounded on L2 (I think we did this before) and that it is in the
norm closure of the finite rank operators.

Hint. Use the previous problem! Show that a continuous function such as K in
this Problem defines a continuous map [0, 1] 3 x 7−→ K(x, ·) ∈ C([0, 1]) and hence
a continuous function K : [0, 1] −→ L2(0, 1) then apply the previous problem with
the interval rescaled.

Here is an even more expanded version of the hint: You can think of K(x, y) as
a continuous function of x with values in L2(0, 1). Let Kn(x, y) be the continuous
function of x and y given by the previous problem, by truncating the Fourier series
(in y) at some point n. Check that this defines a finite rank operator on L2(0, 1)
– yes it maps into continuous functions but that is fine, they are Lebesgue square
integrable. Now, the idea is the difference K−Kn defines a bounded operator with
small norm as n becomes large. It might actually be clearer to do this the other
way round, exchanging the roles of x and y.

Problem 8.3 Although we have concentrated on the Lebesgue integral in one
variable, you proved at some point the covering lemma in dimension 2 and that is
pretty much all that was needed to extend the discussion to 2 dimensions. Let’s just
assume you have assiduously checked everything and so you know that L2((0, 2π)2)
is a Hilbert space. Sketch a proof – noting anything that you are not sure of – that
the functions exp(ikx+ ily)/2π, k, l ∈ Z, form a complete orthonormal basis.

P9.1: Periodic functions
Let S be the circle of radius 1 in the complex plane, centered at the origin,

S = {z; |z| = 1}.
(1) Show that there is a 1-1 correspondence

(5.299) C0(S) = {u : S −→ C, continuous} −→
{u : R −→ C; continuous and satisfying u(x+ 2π) = u(x) ∀ x ∈ R}.

Solution: The map E : R 3 θ 7−→ e2πiθ ∈ S is continuous, surjective
and 2π-periodic and the inverse image of any point of the circle is precisly
of the form θ + 2πZ for some θ ∈ R. Thus composition defines a map

(5.300) E∗ : C0(S) −→ C0(R), E∗f = f ◦ E.
This map is a linear bijection.

(2) Show that there is a 1-1 correspondence

(5.301) L2(0, 2π)←→ {u ∈ L1
loc(R);u

∣∣
(0,2π)

∈ L2(0, 2π)

and u(x+ 2π) = u(x) ∀ x ∈ R}/NP
where NP is the space of null functions on R satisfying u(x+ 2π) = u(x)
for all x ∈ R.

Solution: Our original definition of L2(0, 2π) is as functions on R
which are square-integrable and vanish outside (0, 2π). Given such a func-
tion u we can define an element of the right side of (5.301) by assigning a
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value at 0 and then extending by periodicity

(5.302) ũ(x) = u(x− 2nπ), n ∈ Z

where for each x ∈ R there is a unique integer n so that x−2nπ ∈ [0, 2π).
Null functions are mapped to null functions his way and changing the
choice of value at 0 changes ũ by a null function. This gives a map as in
(5.301) and restriction to (0, 2π) is a 2-sided invese.

(3) If we denote by L2(S) the space on the left in (5.301) show that there is
a dense inclusion

(5.303) C0(S) −→ L2(S).

Solution: Combining the first map and the inverse of the second gives
an inclusion. We know that continuous functions vanishing near the end-
points of (0, 2π) are dense in L2(0, 2π) so density follows.

So, the idea is that we can freely think of functions on S as 2π-periodic functions
on R and conversely.

P9.2: Schrödinger’s operator
Since that is what it is, or at least it is an example thereof:

(5.304) −d
2u(x)

dx2
+ V (x)u(x) = f(x), x ∈ R,

(1) First we will consider the special case V = 1. Why not V = 0? – Don’t
try to answer this until the end!

Solution: The reason we take V = 1, or at least some other positive
constant is that there is 1-d space of periodic solutions to d2u/dx2 = 0,
namely the constants.

(2) Recall how to solve the differential equation

(5.305) −d
2u(x)

dx2
+ u(x) = f(x), x ∈ R,

where f(x) ∈ C0(S) is a continuous, 2π-periodic function on the line. Show
that there is a unique 2π-periodic and twice continuously differentiable
function, u, on R satisfying (5.305) and that this solution can be written
in the form

(5.306) u(x) = (Sf)(x) =

∫
0,2π

A(x, y)f(y)

where A(x, y) ∈ C0(R2) satisfies A(x+2π, y+2π) = A(x, y) for all (x, y) ∈
R.

Extended hint: In case you managed to avoid a course on differential
equations! First try to find a solution, igonoring the periodicity issue. To
do so one can (for example, there are other ways) factorize the differential
operator involved, checking that

(5.307) −d
2u(x)

dx2
+ u(x) = −(

dv

dx
+ v) if v =

du

dx
− u
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since the cross terms cancel. Then recall the idea of integrating factors to
see that

(5.308)

du

dx
− u = ex

dφ

dx
, φ = e−xu,

dv

dx
+ v = e−x

dψ

dx
, ψ = exv.

Now, solve the problem by integrating twice from the origin (say) and
hence get a solution to the differential equation (5.305). Write this out
explicitly as a double integral, and then change the order of integration
to write the solution as

(5.309) u′(x) =

∫
0,2π

A′(x, y)f(y)dy

where A′ is continuous on R×[0, 2π]. Compute the difference u′(2π)−u′(0)

and du′

dx (2π)− du′

dx (0) as integrals involving f. Now, add to u′ as solution
to the homogeneous equation, for f = 0, namely c1e

x + c2e
−x, so that the

new solution to (5.305) satisfies u(2π) = u(0) and du
dx (2π) = du

dx (0). Now,
check that u is given by an integral of the form (5.306) with A as stated.

Solution: Integrating once we find that if v = du
dx − u then

(5.310) v(x) = −e−x
∫ x

0

esf(s)ds, u′(x) = ex
∫ x

0

e−tv(t)dt

gives a solution of the equation −d
2u′

dx2 +u′(x) = f(x) so combinging these
two and changing the order of integration

(5.311)

u′(x) =

∫ x

0

Ã(x, y)f(y)dy, Ã(x, y) =
1

2

(
ey−x − ex−y

)
u′(x) =

∫
(0,2π)

A′(x, y)f(y)dy, A′(x, y) =

{
1
2 (ey−x − ex−y) x ≥ y
0 x ≤ y.

Here A′ is continuous since Ã vanishes at x = y where there might other-
wise be a discontinuity. This is the only solution which vanishes with its
derivative at 0. If it is to extend to be periodic we need to add a solution
of the homogeneous equation and arrange that

(5.312) u = u′ + u′′, u′′ = cex + de−x, u(0) = u(2π),
du

dx
(0) =

du

dx
(2π).

So, computing away we see that
(5.313)

u′(2π) =

∫ 2π

0

1

2

(
ey−2π − e2π−y) f(y),

du′

dx
(2π) = −

∫ 2π

0

1

2

(
ey−2π + e2π−y) f(y).

Thus there is a unique solution to (5.312) which must satify
(5.314)

c(e2π − 1) + d(e−2π − 1) = −u′(2π), c(e2π − 1)− d(e−2π − 1) = −du
′

dx
(2π)

(e2π − 1)c =
1

2

∫ 2π

0

(
e2π−y) f(y), (e−2π − 1)d = −1

2

∫ 2π

0

(
ey−2π

)
f(y).
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Putting this together we get the solution in the desired form:
(5.315)

u(x) =

∫
(0.2π)

A(x, y)f(y), A(x, y) = A′(x, y) +
1

2

e2π−y+x

e2π − 1
− 1

2

e−2π+y−x

e−2π − 1
=⇒

A(x, y) =
cosh(|x− y| − π)

eπ − e−π
.

(3) Check, either directly or indirectly, that A(y, x) = A(x, y) and that A is
real.

Solution: Clear from (5.315).
(4) Conclude that the operator S extends by continuity to a bounded operator

on L2(S).

Solution. We know that ‖S‖ ≤
√

2π sup |A|.
(5) Check, probably indirectly rather than directly, that

(5.316) S(eikx) = (k2 + 1)−1eikx, k ∈ Z.
Solution. We know that Sf is the unique solution with periodic

boundary conditions and eikx satisfies the boundary conditions and the
equation with f = (k2 + 1)eikx.

(6) Conclude, either from the previous result or otherwise that S is a compact
self-adjoint operator on L2(S).

Soluion: Self-adjointness and compactness follows from (5.316) since

we know that the eikx/
√

2π form an orthonormal basis, so the eigenvalues
of S tend to 0. (Myabe better to say it is approximable by finite rank
operators by truncating the sum).

(7) Show that if g ∈ C0(S)) then Sg is twice continuously differentiable. Hint:
Proceed directly by differentiating the integral.

Solution: Clearly Sf is continuous. Going back to the formula in
terms of u′ + u′′ we see that both terms are twice continuously differen-
tiable.

(8) From (5.316) conclude that S = F 2 where F is also a compact self-adjoint

operator on L2(S) with eigenvalues (k2 + 1)−
1
2 .

Solution: Define F (eikx) = (k2 + 1)−
1
2 eikx. Same argument as above

applies to show this is compact and self-adjoint.
(9) Show that F : L2(S) −→ C0(S).

Solution. The series for Sf

(5.317) Sf(x) =
1

2π

∑
k

(2k2 + 1)−
1
2 (f, eikx)eikx

converges absolutely and uniformly, using Cauchy’s inequality – for in-
stance it is Cauchy in the supremum norm:

(5.318) ‖
∑
|k|>p

(2k2 + 1)−
1
2 (f, eikx)eikx| ≤ ε‖f‖L2

for p large since the sum of the squares of the eigenvalues is finite.
(10) Now, going back to the real equation (5.304), we assume that V is contin-

uous, real-valued and 2π-periodic. Show that if u is a twice-differentiable
2π-periodic function satisfying (5.304) for a given f ∈ C0(S) then

(5.319) u+ S((V − 1)u) = Sf and hence u = −F 2((V − 1)u) + F 2f
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and hence conclude that

(5.320) u = Fv where v ∈ L2(S) satisfies v + (F (V − 1)F )v = Ff

where V − 1 is the operator defined by multiplication by V − 1.
Solution: If u satisfies (5.304) then

(5.321) −d
2u(x)

dx2
+ u(x) = −(V (x)− 1)u(x) + f(x)

so by the uniqueness of the solution with periodic boundary conditions,
u = −S(V − 1)u+ Sf so u = F (−F (V − 1)u+Ff). Thus indeed u = Fv
with v = −F (V − 1)u+ Ff which means that v satisfies

(5.322) v + F (V − 1)Fv = Ff.

(11) Show the converse, that if v ∈ L2(S) satisfies

(5.323) v + (F (V − 1)F )v = Ff, f ∈ C0(S)

then u = Fv is 2π-periodic and twice-differentiable on R and satisfies
(5.304).

Solution. If v ∈ L2(0, 2π) satisfies (5.323) then u = Fv ∈ C0(S)
satisfies u + F 2(V − 1)u = F 2f and since F 2 = S maps C0(S) into twice
continuously differentiable functions it follows that u satisfies (5.304).

(12) Apply the Spectral theorem to F (V − 1)F (including why it applies) and
show that there is a sequence λj in R \ {0} with |λj | → 0 such that for all
λ ∈ C \ {0}, the equation

(5.324) λv + (F (V − 1)F )v = g, g ∈ L2(S)

has a unique solution for every g ∈ L2(S) if and only if λ 6= λj for any j.
Solution: We know that F (V − 1)F is self-adjoint and compact so

L2(0.2π) has an orthonormal basis of eigenfunctions of −F (V − 1)F with
eigenvalues λj . This sequence tends to zero and (5.324), for given λ ∈
C \ {0}, if and only if has a solution if and only if it is an isomorphism,
meaning λ 6= λj is not an eigenvalue of −F (V − 1)F.

(13) Show that for the λj the solutions of

(5.325) λjv + (F (V − 1)F )v = 0, v ∈ L2(S),

are all continuous 2π-periodic functions on R.
Solution: If v satisfies (5.325) with λj 6= 0 then v = −F (V −1)F/λj ∈

C0(S).
(14) Show that the corresponding functions u = Fv where v satisfies (5.325) are

all twice continuously differentiable, 2π-periodic functions on R satisfying

(5.326) −d
2u

dx2
+ (1− sj + sjV (x))u(x) = 0, sj = 1/λj .

Solution: Then u = Fv satisfies u = −S(V − 1)u/λj so is twice
continuously differentiable and satisfies (5.326).

(15) Conversely, show that if u is a twice continuously differentiable and 2π-
periodic function satisfying

(5.327) −d
2u

dx2
+ (1− s+ sV (x))u(x) = 0, s ∈ C,

and u is not identically 0 then s = sj for some j.
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Solution: From the uniquess of periodic solutions u = −S(V −1)u/λj
as before.

(16) Finally, conclude that Fredholm’s alternative holds for the equation in
(5.304)

Theorem 24. For a given real-valued, continuous 2π-periodic func-
tion V on R, either (5.304) has a unique twice continuously differentiable,
2π-periodic, solution for each f which is continuous and 2π-periodic or
else there exists a finite, but positive, dimensional space of twice continu-
ously differentiable 2π-periodic solutions to the homogeneous equation

(5.328) −d
2w(x)

dx2
+ V (x)w(x) = 0, x ∈ R,

and (5.304) has a solution if and only if
∫

(0,2π)
fw = 0 for every 2π-

periodic solution, w, to (5.328).

Solution: This corresponds to the special case λj = 1 above. If λj is not an
eigenvalue of −F (V − 1)F then

(5.329) v + F (V − 1)Fv = Ff

has a unque solution for all f, otherwise the necessary and sufficient condition is
that (v, Ff) = 0 for all v′ satisfying v′ + F (V − 1)Fv′ = 0. Correspondingly either
(5.304) has a unique solution for all f or the necessary and sufficient condition is
that (Fv′, f) = 0 for all w = Fv′ (remember that F is injetive) satisfying (5.328).

Problem P10.1 Let H be a separable, infinite dimensional Hilbert space. Show
that the direct sum of two copies of H is a Hilbert space with the norm

(5.330) H ⊕H 3 (u1, u2) 7−→ (‖u1‖2H + ‖u2‖2H)
1
2

either by constructing an isometric isomorphism

(5.331) T : H −→ H ⊕H, 1-1 and onto, ‖u‖H = ‖Tu‖H⊕H
or otherwise. In any case, construct a map as in (5.331).

Solution: Let {ei}i∈N be an orthonormal basis of H, which exists by virtue of
the fact that it is an infinite-dimensional but separable Hilbert space. Define the
map

(5.332) T : H 3 u −→ (

∞∑
i=1

(u, e2i−1)ei,

∞∑
i=1

(u, e2i)ei) ∈ H ⊕H

The convergence of the Fourier Bessel series shows that this map is well-defined
and linear. Injectivity similarly follows from the fact that Tu = 0 in the image
implies that (u, ei) = 0 for all i and hence u = 0. Surjectivity is also clear from the
fact that

(5.333) S : H ⊕H 3 (u1, u2) 7−→
∞∑
i=1

((u1, ei)e2i−1 + (u2, ei)e2i) ∈ H

is a 2-sided inverse and Bessel’s identity implies isometry since ‖S(u1, u2)‖2 =
‖u1‖2 + ‖u2‖2

Problem P10.2 One can repeat the preceding construction any finite number
of times. Show that it can be done ‘countably often’ in the sense that if H is a
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separable, infinite dimensional, Hilbert space then

(5.334) l2(H) = {u : N −→ H; ‖u‖2l2(H) =
∑
i

‖ui‖2H <∞}

has a Hilbert space structure and construct an explicit isometric isomorphism from
l2(H) to H.

Solution: A similar argument as in the previous problem works. Take an
orthormal basis ei for H. Then the elements Ei,j ∈ l2(H), which for each i, i consist
of the sequences with 0 entries except the jth, which is ei, given an orthonromal
basis for l2(H). Orthormality is clear, since with the inner product is

(5.335) (u, v)l2(H) =
∑
j

(uj , vj)H .

Completeness follows from completeness of the orthonormal basis of H since if
v = {vj} (v,Ej,i) = 0 for all j implies vj = 0 in H. Now, to construct an isometric
isomorphism just choose an isomorphism m : N2 −→ N then

(5.336) Tu = v, vj =
∑
i

(u, em(i,j))ei ∈ H.

I would expect you to go through the argument to check injectivity, surjectivity
and that the map is isometric.

Problem P10.3 Recall, or perhaps learn about, the winding number of a closed
curve with values in C∗ = C \ {0}. We take as given the following fact:3 If Q =
[0, 1]N and f : Q −→ C∗ is continuous then for each choice of b ∈ C satisfying
exp(2πib) = f(0), there exists a unique continuous function F : Q −→ C satisfying

(5.337) exp(2πiF (q)) = f(q), ∀ q ∈ Q and F (0) = b.

Of course, you are free to change b to b + n for any n ∈ Z but then F changes to
F + n, just shifting by the same integer.

(1) Now, suppose c : [0, 1] −→ C∗ is a closed curve – meaning it is continuous
and c(1) = c(0). Let C : [0, 1] −→ C be a choice of F for N = 1 and
f = c. Show that the winding number of the closed curve c may be defined
unambiguously as

(5.338) wn(c) = C(1)− C(0) ∈ Z.

Solution: Let C ′, be another choice of F in this case. Now, g(t) =
C ′(t) − C(t) is continuous and satisfies exp(2πg(t)) = 1 for all t ∈ [0, 1]
so by the uniqueness must be constant, thus C ′(1)−C ′(0) = C(1)−C(0)
and the winding number is well-defined.

(2) Show that wn(c) is constant under homotopy. That is if ci : [0, 1] −→ C∗,
i = 1, 2, are two closed curves so ci(1) = ci(0), i = 1, 2, which are homo-
topic through closed curves in the sense that there exists f : [0, 1]2 −→ C∗
continuous and such that f(0, x) = c1(x), f(1, x) = c2(x) for all x ∈ [0, 1]
and f(y, 0) = f(y, 1) for all y ∈ [0, 1], then wn(c1) = wn(c2).

Solution: Choose F using the ‘fact’ corresponding to this homotopy
f. Since f is periodic in the second variable – the two curves f(y, 0),
and f(y, 1) are the same – so by the uniquess F (y, 0) − F (y, 1) must be
constant, hence wn(c2) = F (1, 1)− F (1, 0) = F (0, 1)− F (0, 0) = wn(c1).

3Of course, you are free to give a proof – it is not hard.
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(3) Consider the closed curve Ln : [0, 1] 3 x 7−→ e2πix Idn×n of n×n matrices.
Using the standard properties of the determinant, show that this curve
is not homotopic to the identity through closed curves in the sense that
there does not exist a continuous map G : [0, 1]2 −→ GL(n), with values in
the invertible n×n matrices, such that G(0, x) = Ln(x), G(1, x) ≡ Idn×n
for all x ∈ [0, 1], G(y, 0) = G(y, 1) for all y ∈ [0, 1].

Solution: The determinant is a continuous (actually it is analytic)
map which vanishes precisely on non-invertible matrices. Moreover, it is
given by the product of the eigenvalues so

(5.339) det(Ln) = exp(2πixn).

This is a periodic curve with winding number n since it has the ‘lift’ xn.
Now, if there were to exist such an homotopy of periodic curves of matri-
ces, always invertible, then by the previous result the winding number of
the determinant would have to remain constant. Since the winding num-
ber for the constant curve with value the identity is 0 such an homotopy
cannot exist.

Problem P10.4 Consider the closed curve corresponding toLn above in the case
of a separable but now infinite dimensional Hilbert space:

(5.340) L : [0, 1] 3 x 7−→ e2πix IdH ∈ GL(H) ⊂ B(H)

taking values in the invertible operators on H. Show that after identifying H with
H ⊕H as above, there is a continuous map

(5.341) M : [0, 1]2 −→ GL(H ⊕H)

with values in the invertible operators and satisfying
(5.342)
M(0, x) = L(x), M(1, x)(u1, u2) = (e4πixu1, u2), M(y, 0) = M(y, 1), ∀ x, y ∈ [0, 1].

Hint: So, think of H ⊕H as being 2-vectors (u1, u2) with entries in H. This allows
one to think of ‘rotation’ between the two factors. Indeed, show that

(5.343) U(y)(u1, u2) = (cos(πy/2)u1 + sin(πy/2)u2,− sin(πy/2)u1 + cos(πy/2)u2)

defines a continuous map [0, 1] 3 y 7−→ U(y) ∈ GL(H ⊕H) such that U(0) = Id,
U(1)(u1, u2) = (u2,−u1). Now, consider the 2-parameter family of maps

(5.344) U−1(y)V2(x)U(y)V1(x)

where V1(x) and V2(x) are defined on H⊕H as multiplication by exp(2πix) on the
first and the second component respectively, leaving the other fixed.

Solution: Certainly U(y) is invertible since its inverse is U(−y) as follows in
the two dimensional case. Thus the map W (x, y) on [0, 1]2 in (5.344) consists
of invertible and bounded operators on H ⊕ H, meaning a continuous map W :
[0, 1]2 −→ GL(H ⊕H). When x = 0 or x = 1, both V1(x) and v2(x) reduce to the
identiy, and hence W (0, y) = W (1, y) for all y, so W is periodic in x. Moreove at
y = 0 W (x, 0) = V2(x)V1(x) is exactly L(x), a multiple of the identity. On the
other hand, at x = 1 we can track composite as

(5.345)

(
u1

u2

)
7−→

(
e2πixu1

u2

)
7−→

(
u2

−e2πxu1

)
7−→

(
u2

−e4πxu1

)
7−→

(
e4πxu1

u2

)
.

This is what is required of M in (5.342).
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Problem P10.5 Using a rotation similar to the one in the preceeding problem
(or otherwise) show that there is a continuous map

(5.346) G : [0, 1]2 −→ GL(H ⊕H)

such that

(5.347) G(0, x)(u1, u2) = (e2πixu1, e
−2πixu2),

G(1, x)(u1, u2) = (u1, u2), G(y, 0) = G(y, 1) ∀ x, y ∈ [0, 1].

Solution: We can take

(5.348) G(y, x) = U(−y)

(
Id 0
0 e−2πix

)
U(y)

(
e2πix 0

0 Id

)
.

By the same reasoning as above, this is an homotopy of closed curves of invertible
operators on H ⊕H which satisfies (5.347).

Problem P10.6 Now, think about combining the various constructions above
in the following way. Show that on l2(H) there is an homotopy like (5.346), G̃ :
[0, 1]2 −→ GL(l2(H)), (very like in fact) such that

(5.349) G̃(0, x) {uk}∞k=1 =
{

exp((−1)k2πix)uk
}∞
k=1

,

G̃(1, x) = Id, G̃(y, 0) = G̃(y, 1) ∀ x, y ∈ [0, 1].

Solution: We can divide l2(H) into its odd an even parts

(5.350) D : l2(H) 3 v 7−→ ({v2i−1}, {v2i}) ∈ l2(H)⊕ l2(H)←→ H ⊕H.

and then each copy of l2(H) on the right with H (using the same isometric isomor-
phism). Then the homotopy in the previous problem is such that

(5.351) G̃(x, y) = D−1G(y, x)D

accomplishes what we want.
Problem P10.7: Eilenberg’s swindle For any separable, infinite-dimensional,

Hilbert space, construct an homotopy – meaning a continuous map G : [0, 1]2 −→
GL(H) – with G(0, x) = L(x) in (5.340) and G(1, x) = Id and of course G(y, 0) =
G(y, 1) for all x, y ∈ [0, 1].

Hint: Just put things together – of course you can rescale the interval at the end
to make it all happen over [0, 1]. First ‘divide H into 2 copies of itself’ and deform
from L to M(1, x) in (5.342). Now, ‘divide the second H up into l2(H)’ and apply
an argument just like the preceding problem to turn the identity on this factor into
alternating terms multiplying by exp(±4πix) – starting with −. Now, you are on
H ⊕ l2(H), ‘renumbering’ allows you to regard this as l2(H) again and when you
do so your curve has become alternate multiplication by exp(±4πix) (with + first).
Finally then, apply the preceding problem again, to deform to the identity (always
of course through closed curves). Presto, Eilenberg’s swindle!

Solution: By rescaling the variables above, we now have three homotopies,
always through periodic families. On H ⊕ H between L(x) = e2πix Id and the
matrix

(5.352)

(
e4πix Id 0

0 Id

)
.
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Then on H ⊕ l2(H) we can deform from

(5.353)

(
e4πix Id 0

0 Id

)
to

(
e4πix Id 0

0 G̃(0, x)

)
with G̃(0, x) in (5.349). However we can then identify

(5.354) H ⊕ l2(H) = l2(H), (u, v) 7−→ w = {wj}, w1 = u, wj+1 = vj , j ≥ 1.

This turns the matrix of operators in (5.353) into G̃(0, x)−1. Now, we can apply
the same construction to deform this curve to the identity. Notice that this really
does ultimately give an homotopy, which we can renormalize to be on [0, 1] if you
insist, of curves of operators on H – at each stage we transfer the homotopy back
to H.
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