
SHORT SOLUTIONS FOR 18.102 FINAL EXAM, SPRING 2015

Problem 1

Consider the subspace H ⊂ C[0, 2π] consisting of those continuous functions on
[0, 2π] which satisfy

(1) u(x) =

∫ x

0

U, ∀ x ∈ [0, 2π]

for some U ∈ L2(0, 2π) (depending on u of course). Show that the function U is
determined by u (given that it exists) and that

(2) ‖u‖2H =

∫
(0,2π)

|U |2

turns H into a Hilbert space.

Solution: If U ∈ L2([0, 2π] then the integral (1) defines a continuous function
since

|u(x)− u(y)| ≤
∫ x

y

|U | ≤ |x− y| 12 ‖U‖L2 , sup |u| ≤ (2π)
1
2 ‖U‖L2

so in fact I : L2[0, 2π] −→ C([0, 2π]) is a bounded linear map. To say that U, if
it exists, is determined by u is to say that this map in injective. The vanishing
of u means precisely that 〈χ[0,x], U〉L2 = 0. Taking linear combination, this means
that U is orthogonal to all step functions. However the step functions are dense in
C([0, 2π]) in the supremum norm and hence in L2[0, 2π], so this imples U = 0 in
L2. Since I is injective, it is a bijection onto its range, H and this gives a bijection
to L2[0, 2π], making H into a Hilbert space.

Other arguments that work include computing the Fourier coefficients of U to
shows that they are determined by u. In general a measurable set (where U > 0 for
instance) does not contain a close measurable set of positive measure, so that sort
of approach is hard.

Problem 2

Consider the space of those complex-valued functions on [0, 1] for which there is
a constant C ≥ 0 (depending on the function) such that

(3) |u(x)− u(y)| ≤ C|x− y| 12 ∀ x, y ∈ [0, 1].

Show that this is a Banach space with norm

(4) ‖u‖ 1
2

= sup
[0,1]

|u(x)|+ inf
(3) holds

C.

1
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Solution: These are the Hölder- 12 functions, C 1
2 [0, 1]. If (3) holds for some con-

stant C ≥ 0 then

‖u‖′ = sup
x 6=y∈[0,1]

|u(x)− u(y)

|x− y| 12
<∞

is the smallest such constant and the putative norm is

‖u‖ 1
2

= sup
[0,1]

|u(x)|+ ‖u‖′.

I expected you to quickly check that this is a norm and that the space of functions
C 1

2 [0, 1] is linear. The inequality (3) implies that the elements of C 1
2 are continuous

and if un is a Cauchy sequence it follows that it is Cauchy with respect to the
supremum norm, ‖u‖∞ ≤ ‖u‖ 1

2
by definition. Since this space is complete, un → u

uniformly with u : [0, 1] −→ C continuous. A Cauchy sequence is bounded in norm
so

|un(x)− un(y)| ≤ C|x− y| 12

with C independent of n. Passing to the limit n → ∞ shows that u ∈ C 1
2 . The

Cauchy condition itself implies that given ε > 0 there exists N such that

|(un(x)− um(x))− (un(y)− um(y))| ≤ Cε|x− y| 12 ∀ n,m > N.

Taking m → ∞ and using the convergence in supremum norm it follows that
‖u− un‖ 1

2
→ 0.

Generally well done.

Problem 3

Let Aj ⊂ R be a sequence of subsets with the property that the characteristic
function, χj of Aj , is integrable for each j. Show that the characteristic function of
R \A, where A =

⋃
j Aj is locally integrable.

Solution: Since for each j, χj ∈ L1(R) are real functions it follows that χ[k], the

characteristic function of
⋃
j≤k Aj is in L1(R) as the supremum of a finite number of

L1 functions and so is χ[−R,R]χ[k] for each R > 0. The L1 integral of this increasing

sequence if bounded by 4R so by Monotone Convergence, χ[−R,R]χA ∈ L1(R) where
χA is the characteristic function of A =

⋃
j Aj . The difference χ[−R,R](1− χ[∞]) is

therefore also integrable and this is χ[−R,R]χB where B = R \ A, so χB is locally
integrable.

Problem 4

Let A be a Hilbert-Schmidt operator on a separable Hilbert space H, which
means that for some orthonormal basis {ei}

(5) ‖A‖2HS =
∑
i

‖Aei‖2 <∞.
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Using Bessel’s identity to expand ‖Aei‖2 with respect to another orthonormal ba-
sis {fj} show that

∑
j

‖A∗fj‖2 =
∑
i

‖Aei‖2. Conclude that the sum in (5) is inde-

pendent of the othornormal basis used to define it and that the Hilbert-Schmidt
operators form a Hilbert space.

Solution: Everyone got the proof that the Hilbert-Schmidt norm is independent
of the onb. I expected you to quickly check linearity and the norm properties.

Taking a unit vector u and an orthonormal basis ei and orthonormalizing the
sequence u, e1 . . . , gives an orthonormal sequence with first element u. Thus

‖Au‖ ≤ ‖A‖HS =⇒ ‖A‖ ≤ ‖A‖HS

So, if An is Cauchy with respect to the Hilbert-Schmidt norm it is Cauchy in the
norm on B, which is complete, so An → A in norm. A Cauchy sequence is bounded
in norm so for any finite M it follows that∑

i<M

‖Anei‖2 ≤ sup ‖An‖HS ≤ C <∞.

Passing to the limit as n→∞ using norm convergence and then letting M →∞ it
follows that A is Hilbert-Schmidt and then the Cauchy condition shows that given
ε > 0 there exists N such that n,m > N implies∑

i<M

‖Anei −Amei‖2 ≤ ε2 ∀ M.

Taking m→∞ then M →∞ it follows that An → A in the Hilbert-Schmidt norm.

Problem 5

Let A be a compact self-adjoint operator on a separable Hilbert space and sup-
pose that for every orthonormal basis

(6)
∑
i

|(Aei, ei)| <∞.

Show that the eigenvalues of A, if infinite in number, form a sequence in l1. Solution:

Every compact self-adjoint operator has an orthonormal basis of eigenvectors so if
the eigenvalues are listed with multiplicity then∑

i

|λi| =
∑
i

|〈Aei, ei〉| <∞

from (6). If the eigenvalues are listed without multiplicity, the sum is smaller so
still in l1. [Either interpretation is acceptable.]

Problem 6

For u ∈ L2(0, 1) show that

Iu(x) =

∫ x

0

u(t)dt, x ∈ (0, 1)
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is a bounded linear operator on L2(0, 1). If V ∈ C([0, 1]), is real-valued and V ≥ 0,
show that there is a bounded linear operator B on L2(0, 1) such that

(7) B2u = u+ I∗MV Iu ∀ u ∈ L2(0, 1)

where MV denotes multiplication by V.

Solution: Iu is continuous if u ∈ L2(0, 1) (see Problem 1 ...) since

|u(x)− u(y)| ≤
∫ y

x

|u| ≤ |x− y| 12 ‖u‖L2

by Cauchy-Schwartz. By the linearity of the integral, this is a linear may from
L2(0, 1) to C([0, 1]) and

‖Iu‖L2 ≤ sup |u| ≤ ‖u‖L2

so it is bounded on L2. The image of the unit ball in L2(0, 1) is a uniformly bounded
and equicontinuous set in C(0, 1) so has compact closure by Arscoli-Arzela. The
image under the inclusion into L2(0, 1) is therefore also precompact and hence I is
a compact operator.

Multiplication by a continuous function V ≥ 0 gives a bounded and self-adjoint
operator on L2(0, 1),

‖MV ‖ ≤ supV, 〈Mvu, v〉 =

∫
V uv = 〈u,MV v〉

so I∗MV I is compact (since the compact operators form a ∗-ideal) and self-adjoint,
since (ABC)∗ = C∗B∗A∗. It follows that L2(0, 1) has an orthornomal basis of
eigenfunctions ei for I∗MV I with eigenvalues

λi = 〈I∗MV Iei, ei〉 = 〈MV Iei, Iei〉 ≥ 0

by the positivity of V. So

Bei = (1 + λi)
1
2 ei

defines, by continuous extension, a bounded operator on L2(0, 1) such that

B2 = Id +I∗MV I.

Or, without the compactness of I (which can also be proved by checking tails
in the Fourier basis) one needs to show that the spectrum of A = Id +I∗MV I is
contained in [0, ‖A‖]. This is not quite obvious, but follows from the positivity.
Namely the operator A− 1

2‖A‖ Id satisfies

1

2
‖A‖‖u‖ ≥ 〈(A− 1

2
‖A‖ Id)u, u〉 ≥ −1

2
‖A‖

so its spectrum is contained in [− 1
2‖A‖,

1
2‖A‖]. Then B is well-defined by the func-

tional calculus.


