SHORT SOLUTIONS FOR 18.102 FINAL EXAM, SPRING 2015

Problem 1

Consider the subspace $H \subset C[0, 2\pi]$ consisting of those continuous functions on $[0, 2\pi]$ which satisfy

(1)
$$u(x) = \int_0^x U, \ \forall \ x \in [0, 2\pi]$$

for some $U \in L^2(0, 2\pi)$ (depending on u of course). Show that the function U is determined by u (given that it exists) and that

(2)
$$||u||_{H}^{2} = \int_{(0,2\pi)} |U|^{2}$$

turns H into a Hilbert space.

Solution: If $U \in L^2([0, 2\pi]$ then the integral (1) defines a continuous function since

$$|u(x) - u(y)| \le \int_{y}^{x} |U| \le |x - y|^{\frac{1}{2}} ||U||_{L^{2}}, \ \sup |u| \le (2\pi)^{\frac{1}{2}} ||U||_{L^{2}}$$

so in fact $I : L^2[0, 2\pi] \longrightarrow C([0, 2\pi])$ is a bounded linear map. To say that U, if it exists, is determined by u is to say that this map in injective. The vanishing of u means precisely that $\langle \chi_{[0,x]}, U \rangle_{L^2} = 0$. Taking linear combination, this means that U is orthogonal to all step functions. However the step functions are dense in $C([0, 2\pi])$ in the supremum norm and hence in $L^2[0, 2\pi]$, so this imples U = 0 in L^2 . Since I is injective, it is a bijection onto its range, H and this gives a bijection to $L^2[0, 2\pi]$, making H into a Hilbert space.

Other arguments that work include computing the Fourier coefficients of U to shows that they are determined by u. In general a measurable set (where U > 0 for instance) does not contain a close measurable set of positive measure, so that sort of approach is hard.

Problem 2

Consider the space of those complex-valued functions on [0, 1] for which there is a constant $C \ge 0$ (depending on the function) such that

(3)
$$|u(x) - u(y)| \le C|x - y|^{\frac{1}{2}} \quad \forall x, y \in [0, 1].$$

Show that this is a Banach space with norm

(4)
$$||u||_{\frac{1}{2}} = \sup_{[0,1]} |u(x)| + \inf_{(3) \text{ holds}} C.$$

Solution: These are the Hölder- $\frac{1}{2}$ functions, $C^{\frac{1}{2}}[0,1]$. If (3) holds for some constant $C \ge 0$ then

$$||u||' = \sup_{x \neq y \in [0,1]} \frac{|u(x) - u(y)|}{|x - y|^{\frac{1}{2}}} < \infty$$

is the smallest such constant and the putative norm is

$$\|u\|_{\frac{1}{2}} = \sup_{[0,1]} |u(x)| + \|u\|'$$

I expected you to quickly check that this is a norm and that the space of functions $C^{\frac{1}{2}}[0,1]$ is linear. The inequality (3) implies that the elements of $C^{\frac{1}{2}}$ are continuous and if u_n is a Cauchy sequence it follows that it is Cauchy with respect to the supremum norm, $\|u\|_{\infty} \leq \|u\|_{\frac{1}{2}}$ by definition. Since this space is complete, $u_n \to u$ uniformly with $u : [0,1] \longrightarrow \mathbb{C}$ continuous. A Cauchy sequence is bounded in norm so

$$|u_n(x) - u_n(y)| \le C|x - y|^{\frac{1}{2}}$$

with C independent of n. Passing to the limit $n \to \infty$ shows that $u \in C^{\frac{1}{2}}$. The Cauchy condition itself implies that given $\epsilon > 0$ there exists N such that

$$|(u_n(x) - u_m(x)) - (u_n(y) - u_m(y))| \le C\epsilon |x - y|^{\frac{1}{2}} \,\, \forall \,\, n, m > N$$

Taking $m \to \infty$ and using the convergence in supremum norm it follows that $\|u - u_n\|_{\frac{1}{2}} \to 0.$

Generally well done.

Problem 3

Let $A_j \subset \mathbb{R}$ be a sequence of subsets with the property that the characteristic function, χ_j of A_j , is integrable for each j. Show that the characteristic function of $\mathbb{R} \setminus A$, where $A = \bigcup_j A_j$ is locally integrable.

Solution: Since for each $j, \chi_j \in L^1(\mathbb{R})$ are real functions it follows that $\chi_{[k]}$, the characteristic function of $\bigcup_{j \leq k} A_j$ is in $L^1(\mathbb{R})$ as the supremum of a finite number of L^1 functions and so is $\chi_{[-R,R]}\chi_{[k]}$ for each R > 0. The L^1 integral of this increasing sequence if bounded by 4R so by Monotone Convergence, $\chi_{[-R,R]}\chi_A \in L^1(\mathbb{R})$ where χ_A is the characteristic function of $A = \bigcup_j A_j$. The difference $\chi_{[-R,R]}(1 - \chi_{[\infty]})$ is therefore also integrable and this is $\chi_{[-R,R]}\chi_B$ where $B = \mathbb{R} \setminus A$, so χ_B is locally integrable.

Problem 4

Let A be a Hilbert-Schmidt operator on a separable Hilbert space H, which means that for some orthonormal basis $\{e_i\}$

(5)
$$||A||_{\text{HS}}^2 = \sum_i ||Ae_i||^2 < \infty.$$

Using Bessel's identity to expand $||Ae_i||^2$ with respect to another orthonormal basis $\{f_j\}$ show that $\sum_j ||A^*f_j||^2 = \sum_i ||Ae_i||^2$. Conclude that the sum in (5) is independent of the othornormal basis used to define it and that the Hilbert-Schmidt operators form a Hilbert space.

Solution: Everyone got the proof that the Hilbert-Schmidt norm is independent of the onb. I expected you to quickly check linearity and the norm properties.

Taking a unit vector u and an orthonormal basis e_i and orthonormalizing the sequence $u, e_1 \ldots$, gives an orthonormal sequence with first element u. Thus

$$||Au|| \le ||A||_{\rm HS} \Longrightarrow ||A|| \le ||A||_{\rm HS}$$

So, if A_n is Cauchy with respect to the Hilbert-Schmidt norm it is Cauchy in the norm on \mathcal{B} , which is complete, so $A_n \to A$ in norm. A Cauchy sequence is bounded in norm so for any finite M it follows that

$$\sum_{i < M} \|A_n e_i\|^2 \le \sup \|A_n\|_{\mathrm{HS}} \le C < \infty.$$

Passing to the limit as $n \to \infty$ using norm convergence and then letting $M \to \infty$ it follows that A is Hilbert-Schmidt and then the Cauchy condition shows that given $\epsilon > 0$ there exists N such that n, m > N implies

$$\sum_{i < M} \|A_n e_i - A_m e_i\|^2 \le \epsilon^2 \ \forall \ M.$$

Taking $m \to \infty$ then $M \to \infty$ it follows that $A_n \to A$ in the Hilbert-Schmidt norm.

Problem 5

Let A be a compact self-adjoint operator on a separable Hilbert space and suppose that for *every* orthonormal basis

(6)
$$\sum_{i} |(Ae_i, e_i)| < \infty.$$

Show that the eigenvalues of A, if infinite in number, form a sequence in l^1 . Solution:

Every compact self-adjoint operator has an orthonormal basis of eigenvectors so if the eigenvalues are listed with multiplicity then

$$\sum_{i} |\lambda_{i}| = \sum_{i} |\langle Ae_{i}, e_{i} \rangle| < \infty$$

from (6). If the eigenvalues are listed without multiplicity, the sum is smaller so still in l^1 . [Either interpretation is acceptable.]

Problem 6

For $u \in L^2(0,1)$ show that

$$Iu(x) = \int_0^x u(t)dt, \ x \in (0,1)$$

is a bounded linear operator on $L^2(0,1)$. If $V \in \mathcal{C}([0,1])$, is real-valued and $V \ge 0$, show that there is a bounded linear operator B on $L^2(0,1)$ such that

(7)
$$B^2 u = u + I^* M_V I u \ \forall \ u \in L^2(0,1)$$

where M_V denotes multiplication by V.

Solution: Iu is continuous if $u \in L^2(0, 1)$ (see Problem 1 ...) since

$$|u(x) - u(y)| \le \int_{x}^{y} |u| \le |x - y|^{\frac{1}{2}} ||u||_{L^{2}}$$

by Cauchy-Schwartz. By the linearity of the integral, this is a linear may from $L^2(0,1)$ to $\mathcal{C}([0,1])$ and

$$||Iu||_{L^2} \le \sup |u| \le ||u||_{L^2}$$

so it is bounded on L^2 . The image of the unit ball in $L^2(0, 1)$ is a uniformly bounded and equicontinuous set in $\mathcal{C}(0, 1)$ so has compact closure by Arscoli-Arzela. The image under the inclusion into $L^2(0, 1)$ is therefore also precompact and hence I is a compact operator.

Multiplication by a continuous function $V \ge 0$ gives a bounded and self-adjoint operator on $L^2(0, 1)$,

$$\|M_V\| \le \sup V, \langle M_v u, v \rangle = \int V u \overline{v} = \langle u, M_V v \rangle$$

so $I^*M_V I$ is compact (since the compact operators form a *-ideal) and self-adjoint, since $(ABC)^* = C^*B^*A^*$. It follows that $L^2(0,1)$ has an orthornomal basis of eigenfunctions e_i for $I^*M_V I$ with eigenvalues

$$\lambda_i = \langle I^* M_V I e_i, e_i \rangle = \langle M_V I e_i, I e_i \rangle \ge 0$$

by the positivity of V. So

$$Be_i = (1+\lambda_i)^{\frac{1}{2}}e_i$$

defines, by continuous extension, a bounded operator on $L^2(0,1)$ such that

$$B^2 = \mathrm{Id} + I^* M_V I.$$

Or, without the compactness of I (which can also be proved by checking tails in the Fourier basis) one needs to show that the spectrum of $A = \text{Id} + I^* M_V I$ is contained in [0, ||A||]. This is not quite obvious, but follows from the positivity. Namely the operator $A - \frac{1}{2} ||A||$ Id satisfies

$$\frac{1}{2}\|A\|\|u\| \geq \langle (A-\frac{1}{2}\|A\|\operatorname{Id})u,u\rangle \geq -\frac{1}{2}\|A\|$$

so its spectrum is contained in $\left[-\frac{1}{2}\|A\|, \frac{1}{2}\|A\|\right]$. Then B is well-defined by the functional calculus.