
CHAPTER 3

Hilbert spaces

There are really three ‘types’ of Hilbert spaces (over C). The finite dimensional
ones, essentially just Cn, with which you are pretty familiar and two infinite dimen-
sional cases corresponding to being separable (having a countable dense subset) or
not. As we shall see, there is really only one separable infinite-dimensional Hilbert
space and that is what we are mostly interested in. Nevertheless some proofs (usu-
ally the nicest ones) work in the non-separable case too.

I will first discuss the definition of pre-Hilbert and Hilbert spaces and prove
Cauchy’s inequality and the parallelogram law. This can be found in all the lecture
notes listed earlier and many other places so the discussion here will be kept suc-
cinct. Another nice source is the book of G.F. Simmons, “Introduction to topology
and modern analysis”. I like it – but I think it is out of print.

1. pre-Hilbert spaces

A pre-Hilbert space, H, is a vector space (usually over the complex numbers
but there is a real version as well) with a Hermitian inner product

(3.1)

(, ) : H ×H −→ C,
(λ1v1 + λ2v2, w) = λ1(v1, w) + λ2(v2, w),

(w, v) = (v, w)

for any v1, v2, v and w ∈ H and λ1, λ2 ∈ C which is positive-definite

(3.2) (v, v) ≥ 0, (v, v) = 0 =⇒ v = 0.

Note that the reality of (v, v) follows from the second condition in (3.1), the posi-
tivity is an additional assumption as is the positive-definiteness.

The combination of the two conditions in (3.1) implies ‘anti-linearity’ in the
second variable

(3.3) (v, λ1w1 + λ2w2) = λ1(v, w1) + λ2(v, w2)

which is used without comment below.
The notion of ‘definiteness’ for such an Hermitian inner product exists without

the need for positivity – it just means

(3.4) (u, v) = 0 ∀ v ∈ H =⇒ u = 0.

Lemma 21. If H is a pre-Hilbert space with Hermitian inner product (, ) then

(3.5) ‖u‖ = (u, u)
1
2

is a norm on H.
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Proof. The first condition on a norm follows from (3.2). Absolute homogene-
ity follows from (3.1) since

(3.6) ‖λu‖2 = (λu, λu) = |λ|2‖u‖2.
So, it is only the triangle inequality we need. This follows from the next lemma,
which is the Cauchy-Schwarz inequality in this setting – (3.8). Indeed, using the
‘sesqui-linearity’ to expand out the norm

(3.7) ‖u+ v‖2 = (u+ v, u+ v)

= ‖u‖2 + (u, v) + (v, u) + ‖v‖2 ≤ ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2

= (‖u‖+ ‖v‖)2.

�

Lemma 22. The Cauchy-Schwarz inequality,

(3.8) |(u, v)| ≤ ‖u‖‖v‖ ∀ u, v ∈ H
holds in any pre-Hilbert space.

Proof. For any non-zero u, v ∈ H and s ∈ R positivity of the norm shows
that

(3.9) 0 ≤ ‖u+ sv‖2 = ‖u‖2 + 2sRe(u, v) + s2‖v‖2.
This quadratic polynomial is non-zero for s large so can have only a single minimum
at which point the derivative vanishes, i.e. it is where

(3.10) 2s‖v‖2 + 2 Re(u, v) = 0.

Substituting this into (3.9) gives

(3.11) ‖u‖2 − (Re(u, v))2/‖v‖2 ≥ 0 =⇒ |Re(u, v)| ≤ ‖u‖‖v‖
which is what we want except that it is only the real part. However, we know that,
for some z ∈ C with |z| = 1, Re(zu, v) = Re z(u, v) = |(u, v)| and applying (3.11)
with u replaced by zu gives (3.8). �

2. Hilbert spaces

Definition 15. A Hilbert space H is a pre-Hilbert space which is complete
with respect to the norm induced by the inner product.

As examples we know that Cn with the usual inner product

(3.12) (z, z′) =

n∑
j=1

zjz′j

is a Hilbert space – since any finite dimensional normed space is complete. The
example we had from the beginning of the course is l2 with the extension of (3.12)

(3.13) (a, b) =

∞∑
j=1

ajbj , a, b ∈ l2.

Completeness was shown earlier.
The whole outing into Lebesgue integration was so that we could have the

‘standard example’ at our disposal, namely

(3.14) L2(R) = {u ∈ L1
loc(R); |u|2 ∈ L1(R)}/N
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where N is the space of null functions. and the inner product is

(3.15) (u, v) =

∫
uv.

Note that we showed that if u, v ∈ L2(R) then uv ∈ L1(R).

3. Orthonormal sets

Two elements of a pre-Hilbert space H are said to be orthogonal if

(3.16) (u, v) = 0⇐⇒ u ⊥ v.

A sequence of elements ei ∈ H, (finite or infinite) is said to be orthonormal if
‖ei‖ = 1 for all i and (ei, ej) = 0 for all i 6= j.

Proposition 20 (Bessel’s inequality). If ei, i ∈ N, is an orthonormal sequence
in a pre-Hilbert space H, then

(3.17)
∑
i

|(u, ei)|2 ≤ ‖u‖2 ∀ u ∈ H.

Proof. Start with the finite case, i = 1, . . . , N. Then, for any u ∈ H set

(3.18) v =

N∑
i=1

(u, ei)ei.

This is supposed to be ‘the projection of u onto the span of the ei’. Anyway,
computing away we see that

(3.19) (v, ej) =

N∑
i=1

(u, ei)(ei, ej) = (u, ej)

using orthonormality. Thus, u− v ⊥ ej for all j so u− v ⊥ v and hence

(3.20) 0 = (u− v, v) = (u, v)− ‖v‖2.

Thus ‖v‖2 = |(u, v)| and applying the Cauchy-Schwarz inequality we conclude that
‖v‖2 ≤ ‖v‖‖u‖ so either v = 0 or ‖v‖ ≤ ‖u‖. Expanding out the norm (and
observing that all cross-terms vanish)

‖v‖2 =

N∑
i=1

|(u, ei)|2 ≤ ‖u‖2

which is (3.17).
In case the sequence is infinite this argument applies to any finite subsequence,

ei, i = 1, . . . , N since it just uses orthonormality, so (3.17) follows by taking the
supremum over N. �

4. Gram-Schmidt procedure

Definition 16. An orthonormal sequence, {ei}, (finite or infinite) in a pre-
Hilbert space is said to be maximal if

(3.21) u ∈ H, (u, ei) = 0 ∀ i =⇒ u = 0.

Theorem 12. Every separable pre-Hilbert space contains a maximal orthonor-
mal set.
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Proof. Take a countable dense subset – which can be arranged as a sequence
{vj} and the existence of which is the definition of separability – and orthonormalize
it. Thus if v1 6= 0 set ei = v1/‖v1‖. Proceeding by induction we can suppose to
have found for a given integer n elements ei, i = 1, . . . ,m, where m ≤ n, which are
orthonormal and such that the linear span

(3.22) sp(e1, . . . , em) = sp(v1, . . . , vn).

To show the inductive step observe that if vn+1 is in the span(s) in (3.22) then the
same ei’s work for n+ 1. So we may as well assume that the next element, vn+1 is
not in the span in (3.22). It follows that

(3.23) w = vn+1 −
n∑
j=1

(vn+1, ej)ej 6= 0 so em+1 =
w

‖w‖

makes sense. By construction it is orthogonal to all the earlier ei’s so adding em+1

gives the equality of the spans for n+ 1.
Thus we may continue indefinitely, since in fact the only way the dense set

could be finite is if we were dealing with the space with one element, 0, in the first
place. There are only two possibilities, either we get a finite set of ei’s or an infinite
sequence. In either case this must be a maximal orthonormal sequence. That is,
we claim

(3.24) H 3 u ⊥ ej ∀ j =⇒ u = 0.

This uses the density of the vn’s. There must exist a sequence wj where each wj is
a vn, such that wj → u in H, assumed to satisfy (3.24). Now, each vn, and hence
each wj , is a finite linear combination of ek’s so, by Bessel’s inequality

(3.25) ‖wj‖2 =
∑
k

|(wj , ek)|2 =
∑
k

|(u− wj , ek)|2 ≤ ‖u− wj‖2

where (u, ej) = 0 for all j has been used. Thus ‖wj‖ → 0 and u = 0. �

Now, although a non-complete but separable pre-Hilbert space has maximal
orthonormal sets, these are not much use without completeness.

5. Complete orthonormal bases

Definition 17. A maximal orthonormal sequence in a separable Hilbert space
is called a complete orthonormal basis.

This notion of basis is not quite the same as in the finite dimensional case
(although it is a legitimate extension of it).

Theorem 13. If {ei} is a complete orthonormal basis in a Hilbert space then
for any element u ∈ H the ‘Fourier-Bessel series’ converges to u :

(3.26) u =

∞∑
i=1

(u, ei)ei.

Proof. The sequence of partial sums of the Fourier-Bessel series

(3.27) uN =

N∑
i=1

(u, ei)ei
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is Cauchy. Indeed, if m < m′ then

(3.28) ‖um′ − um‖2 =

m′∑
i=m+1

|(u, ei)|2 ≤
∑
i>m

|(u, ei)|2

which is small for large m by Bessel’s inequality. Since we are now assuming
completeness, um → w in H. However, (um, ei) = (u, ei) as soon as m > i and
|(w − un, ei)| ≤ ‖w − un‖ so in fact

(3.29) (w, ei) = lim
m→∞

(um, ei) = (u, ei)

for each i. Thus in fact u − w is orthogonal to all the ei so by the assumed com-
pleteness of the orthonormal basis must vanish. Thus indeed (3.26) holds. �

6. Isomorphism to l2

A finite dimensional Hilbert space is isomorphic to Cn with its standard inner
product. Similarly from the result above

Proposition 21. Any infinite-dimensional separable Hilbert space (over the
complex numbers) is isomorphic to l2, that is there exists a linear map

(3.30) T : H −→ l2

which is 1-1, onto and satisfies (Tu, Tv)l2 = (u, v)H and ‖Tu‖l2 = ‖u‖H for all u,
v ∈ H.

Proof. Choose an orthonormal basis – which exists by the discussion above
and set

(3.31) Tu = {(u, ej)}∞j=1.

This maps H into l2 by Bessel’s inequality. Moreover, it is linear since the entries
in the sequence are linear in u. It is 1-1 since Tu = 0 implies (u, ej) = 0 for all j
implies u = 0 by the assumed completeness of the orthonormal basis. It is surjective
since if {cj}∞j=1 ∈ l2 then

(3.32) u =

∞∑
j=1

cjej

converges in H. This is the same argument as above – the sequence of partial sums
is Cauchy since if n > m,

(3.33) ‖
n∑

j=m+1

cjej‖2H =

n∑
j=m+1

|c2| .

Again by continuity of the inner product, Tu = {cj} so T is surjective.
The equality of the norms follows from equality of the inner products and the

latter follows by computation for finite linear combinations of the ej and then in
general by continuity. �



74 3. HILBERT SPACES

7. Parallelogram law

What exactly is the difference between a general Banach space and a Hilbert
space? It is of course the existence of the inner product defining the norm. In fact
it is possible to formulate this condition intrinsically in terms of the norm itself.

Proposition 22. In any pre-Hilbert space the parallelogram law holds –

(3.34) ‖v + w‖2 + ‖v − w‖2 = 2‖v‖2 + 2‖w‖2, ∀ v, w ∈ H.

Proof. Just expand out using the inner product

(3.35) ‖v + w‖2 = ‖v‖2 + (v, w) + (w, v) + ‖w‖2

and the same for ‖v − w‖2 and see the cancellation. �

Proposition 23. Any normed space where the norm satisfies the parallelogram
law, (3.34), is a pre-Hilbert space in the sense that

(3.36) (v, w) =
1

4

(
‖v + w‖2 − ‖v − w‖2 + i‖v + iw‖2 − i‖v − iw‖2

)
is a positive-definite Hermitian inner product which reproduces the norm.

Proof. A problem below. �

So, when we use the parallelogram law and completeness we are using the
essence of the Hilbert space.

8. Convex sets and length minimizer

The following result does not need the hypothesis of separability of the Hilbert
space and allows us to prove the subsequent results – especially Riesz’ theorem –
in full generality.

Proposition 24. If C ⊂ H is a subset of a Hilbert space which is

(1) Non-empty
(2) Closed
(3) Convex, in the sense that v1, v1 ∈ C implies 1

2 (v1 + v2) ∈ C
then there exists a unique element v ∈ C closest to the origin, i.e. such that

(3.37) ‖v‖H = inf
u∈C
‖u‖H .

Proof. By definition of inf there must exist a sequence {vn} in C such that
‖vn‖ → d = infu∈C ‖u‖H . We show that vn converges and that the limit is the
point we want. The parallelogram law can be written

(3.38) ‖vn − vm‖2 = 2‖vn‖2 + 2‖vm‖2 − 4‖(vn + vm)/2‖2.

Since ‖vn‖ → d, given ε > 0 if N is large enough then n > N implies 2‖vn‖2 <
2d2 + ε2/2. By convexity, (vn + vm)/2 ∈ C so ‖(vn + vm)/2‖2 ≥ d2. Combining
these estimates gives

(3.39) n,m > N =⇒ ‖vn − vm‖2 ≤ 4d2 + ε2 − 4d2 = ε2

so {vn} is Cauchy. Since H is complete, vn → v ∈ C, since C is closed. Moreover,
the distance is continuous so ‖v‖H = limn→∞ ‖vn‖ = d.



9. ORTHOCOMPLEMENTS AND PROJECTIONS 75

Thus v exists and uniqueness follows again from the parallelogram law. If v
and v′ are two points in C with ‖v‖ = ‖v′‖ = d then (v + v′)/2 ∈ C so

(3.40) ‖v − v′‖2 = 2‖v‖2 + 2‖v′‖2 − 4‖(v + v′)/2‖2 ≤ 0 =⇒ v = v′.

�

9. Orthocomplements and projections

Proposition 25. If W ⊂ H is a linear subspace of a Hilbert space then

(3.41) W⊥ = {u ∈ H; (u,w) = 0 ∀ w ∈W}

is a closed linear subspace and W ∩W⊥ = {0}. If W is also closed then

(3.42) H = W ⊕W⊥

meaning that any u ∈ H has a unique decomposition u = w + w⊥ where w ∈ W
and w⊥ ∈W⊥.

Proof. That W⊥ defined by (3.41) is a linear subspace follows from the lin-
earity of the condition defining it. If u ∈ W⊥ and u ∈ W then u ⊥ u by the
definition so (u, u) = ‖u‖2 = 0 and u = 0. Since the map H 3 u −→ (u,w) ∈ C is
continuous for each w ∈ H its null space, the inverse image of 0, is closed. Thus

(3.43) W⊥ =
⋂
w∈W
{(u,w) = 0}

is closed.
Now, suppose W is closed. If W = H then W⊥ = {0} and there is nothing to

show. So consider u ∈ H, u /∈W and set

(3.44) C = u+W = {u′ ∈ H;u′ = u+ w, w ∈W}.

Then C is closed, since a sequence in it is of the form u′n = u + wn where wn is a
sequence in W and u′n converges if and only if wn converges. Also, C is non-empty,
since u ∈ C and it is convex since u′ = u + w′ and u′′ = u + w′′ in C implies
(u′ + u′′)/2 = u+ (w′ + w′′)/2 ∈ C.

Thus the length minimization result above applies and there exists a unique
v ∈ C such that ‖v‖ = infu′∈C ‖u′‖. The claim is that this v is perpendicular to
W – draw a picture in two real dimensions! To see this consider an aritrary point
w ∈W and λ ∈ C then v + λw ∈ C and

(3.45) ‖v + λw‖2 = ‖v‖2 + 2 Re(λ(v, w)) + |λ|2‖w‖2.

Choose λ = teiθ where t is real and the phase is chosen so that eiθ(v, w) = |(v, w)| ≥
0. Then the fact that ‖v‖ is minimal means that

(3.46)
‖v‖2 + 2t|(v, w))|+ t2‖w‖2 ≥ ‖v‖2 =⇒

t(2|(v, w)|+ t‖w‖2) ≥ 0 ∀ t ∈ R =⇒ |(v, w)| = 0

which is what we wanted to show.
Thus indeed, given u ∈ H \W we have constructed v ∈ W⊥ such that u =

v + w, w ∈ W. This is (3.42) with the uniqueness of the decomposition already
shown since it reduces to 0 having only the decomposition 0 + 0 and this in turn is
W ∩W⊥ = {0}. �
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Since the construction in the preceding proof associates a unique element in W,
a closed linear subspace, to each u ∈ H, it defines a map

(3.47) ΠW : H −→W.

This map is linear, by the uniqueness since if ui = vi +wi, wi ∈W, (vi, wi) = 0 are
the decompositions of two elements then

(3.48) λ1u1 + λ2u2 = (λ1v1 + λ2v2) + (λ1w1 + λ2w2)

must be the corresponding decomposition. Moreover ΠWw = w for any w ∈ W
and ‖u‖2 = ‖v‖2 + ‖w‖2, Pythagoras’ Theorem, shows that

(3.49) Π2
W = ΠW , ‖ΠWu‖ ≤ ‖u‖ =⇒ ‖ΠW ‖ ≤ 1.

Thus, projection onto W is an operator of norm 1 (unless W = {0}) equal to its
own square. Such an operator is called a projection or sometimes an idempotent
(which sounds fancier).

Lemma 23. If {ej} is any finite or countable orthonormal set in a Hilbert space
then the orthogonal projection onto the closure of the span of these elements is

(3.50) Pu =
∑

(u, ek)ek.

Proof. We know that the series in (3.50) converges and defines a bounded
linear operator of norm at most one by Bessel’s inequality. Clearly P 2 = P by the
same argument. If W is the closure of the span then (u−Pu) ⊥W since (u−Pu) ⊥
ek for each k and the inner product is continuous. Thus u = (u− Pu) + Pu is the
orthogonal decomposition with respect to W. �

10. Riesz’ theorem

The most important application of these results is to prove Riesz’ representation
theorem (for Hilbert space, there is another one to do with measures).

Theorem 14. If H is a Hilbert space then for any continuous linear functional
T : H −→ C there exists a unique element φ ∈ H such that

(3.51) T (u) = (u, φ) ∀ u ∈ H.

Proof. If T is the zero functional then φ = 0 gives (3.51). Otherwise there
exists some u′ ∈ H such that T (u′) 6= 0 and then there is some u ∈ H, namely
u = u′/T (u′) will work, such that T (u) = 1. Thus

(3.52) C = {u ∈ H;T (u) = 1} = T−1({1}) 6= ∅.
The continuity of T and the second form shows that C is closed, as the inverse
image of a closed set under a continuous map. Moreover C is convex since

(3.53) T ((u+ u′)/2) = (T (u) + T (u′))/2.

Thus, by Proposition 24, there exists an element v ∈ C of minimal length.
Notice that C = {v + w;w ∈ N} where N = T−1({0}) is the null space of T.

Thus, as in Proposition 25 above, v is orthogonal to N. In this case it is the unique
element orthogonal to N with T (v) = 1.

Now, for any u ∈ H,
(3.54)
u−T (u)v satisfies T (u−T (u)v) = T (u)−T (u)T (v) = 0 =⇒ u = w+T (u)v, w ∈ N.
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Then, (u, v) = T (u)‖v‖2 since (w, v) = 0. Thus if φ = v/‖v‖2 then

(3.55) u = w + (u, φ)v =⇒ T (u) = (u, φ)T (v) = (u, φ).

�

11. Adjoints of bounded operators

As an application of Riesz’ we can see that to any bounded linear operator on
a Hilbert space

(3.56) A : H −→ H, ‖Au‖H ≤ C‖u‖H ∀ u ∈ H
there corresponds a unique adjoint operator.

Proposition 26. For any bounded linear operator A : H −→ H on a Hilbert
space there is a unique bounded linear operator A∗ : H −→ H such that

(3.57) (Au, v)H = (u,A∗v)H ∀ u, v ∈ H and ‖A‖ = ‖A∗‖.

Proof. To see the existence of A∗v we need to work out what A∗v ∈ H should
be for each fixed v ∈ H. So, fix v in the desired identity (3.57), which is to say
consider

(3.58) H 3 u −→ (Au, v) ∈ C.
This is a linear map and it is clearly bounded, since

(3.59) |(Au, v)| ≤ ‖Au‖H‖v‖H ≤ (‖A‖‖v‖H)‖u‖H .
Thus it is a continuous linear functional on H which depends on v. In fact it is just
the composite of two continuous linear maps

(3.60) H
u7−→Au−→ H

w 7−→(w,v)−→ C.
By Riesz’ theorem there is a unique element in H, which we can denote A∗v (since
it only depends on v) such that

(3.61) (Au, v) = (u,A∗v) ∀ u ∈ H.
Now this defines the map A∗ : H −→ H but we need to check that it is linear and
continuous. Linearity follows from the uniqueness part of Riesz’ theorem. Thus if
v1, v2 ∈ H and c1, c2 ∈ C then

(3.62) (Au, c1v1 + c2v2) = c1(Au, v1) + c2(Au, v2)

= c1(u,A∗v1) + c2(u,A∗v2) = (u, c1A
∗v2 + c2A

∗v2)

where we have used the definitions of A∗v1 and A∗v2 – by uniqueness we must have
A∗(c1v1 + c2v2) = c1A

∗v1 + c2A
∗v2.

Since we know the optimality of Cauchy’s inequality

(3.63) ‖v‖H = sup
‖u‖=1

|(u, v)|

it follows that

(3.64) ‖A∗v‖ = sup
‖u‖=1

|(u,A∗v)| = sup
‖u‖=1

|(Au, v)| ≤ ‖A‖‖v‖.

So in fact

(3.65) ‖A∗‖ ≤ ‖A‖
which shows that A∗ is bounded.
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The defining identity (3.57) also shows that (A∗)∗ = A so the reverse equality
in (3.65) also holds and so

(3.66) ‖A∗‖ = ‖A‖.

�

12. Compactness and equi-small tails

A compact subset in a general metric space is one with the property that any
sequence in it has a convergent subsequence, with its limit in the set. You will recall,
with pleasure no doubt, the equivalence of this condition to the (more general since
it makes good sense in an arbitrary topological space) covering condition, that any
open cover of the set has a finite subcover. So, in a separable Hilbert space the
notion of a compact set is already fixed. We want to characterize it, actually in
several ways.

A general result in a metric space is that any compact set is both closed and
bounded, so this must be true in a Hilbert space. The Heine-Borel theorem gives a
converse to this, for Rn or Cn (and hence in any finite dimensional normed space)
in which any closed and bounded set is compact. Also recall that the convergence
of a sequence in Cn is equivalent to the convergence of the n sequences given by its
components and this is what is used to pass first from R to C and then to Cn. All
of this fails in infinite dimensions and we need some condition in addition to being
bounded and closed for a set to be compact.

To see where this might come from, observe that

Lemma 24. In any metric space a set, S, consisting of the points of a convergent
sequence, s : N −→M, together with its limit, s, is compact.

Proof. The set here is the image of the sequence, thought of as a map from
the integers into the metric space, together with the limit (which might or might
not already be in the image of the sequence). Certainly this set is bounded, since
the distance from the intial point is bounded. Moreover it is closed. Indeed, the
complement M \ S is open – if p ∈ M \ S then it is not the limit of the sequence,
so for some ε > 0, and some N, if n > N then s(n) /∈ B(p, ε). Shrinking ε further if
necessary, we can make sure that all the s(k) for k ≤ N are not in the ball either
– since they are each at a positive distance from p. Thus B(p, ε) ⊂M \ S.

Finally, S is compact since any sequence in S has a convergent subsequence.
To see this, observe that a sequence {tj} in S either has a subsequence converging
to the limit s of the original sequence or it does not. So we only need consider the
latter case, but this means that, for some ε > 0, d(tj , s) > ε; but then tj takes values
in a finite set, since S \ B(s, ε) is finite – hence some value is repeated infinitely
often and there is a convergent subsequence. �

Lemma 25. The image of a convergent sequence in a Hilbert space is a set with
equi-small tails with respect to any orthonormal sequence, i.e. if ek is an othonormal
sequence and un → u is a convergent sequence then given ε > 0 there exists N such
that

(3.67)
∑
k>N

|(un, ek)|2 < ε2 ∀ n.
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Proof. Bessel’s inequality shows that for any u ∈ H,

(3.68)
∑
k

|(u, ek)|2 ≤ ‖u‖2.

The convergence of this series means that (3.67) can be arranged for any single
element un or the limit u by choosing N large enough, thus given ε > 0 we can
choose N ′ so that

(3.69)
∑
k>N ′

|(u, ek)|2 < ε2/2.

Consider the closure of the subspace spanned by the ek with k > N. The
orthogonal projection onto this space (see Lemma 23) is

(3.70) PNu =
∑
k>N

(u, ek)ek.

Then the convergence un → u implies the convergence in norm ‖PNun‖ → ‖PNu‖,
so

(3.71) ‖PNun‖2 =
∑
k>N

|(un, ek)|2 < ε2, n > n′.

So, we have arranged (3.67) for n > n′ for some N. This estimate remains valid if
N is increased – since the tails get smaller – and we may arrange it for n ≤ n′ by
chossing N large enough. Thus indeed (3.67) holds for all n if N is chosen large
enough. �

This suggests one useful characterization of compact sets in a separable Hilbert
space.

Proposition 27. A set K ⊂ H in a separable Hilbert space is compact if and
only if it is bounded, closed and the Fourier-Bessel sequence with respect to any
(one) complete orthonormal basis converges uniformly on it.

Proof. We already know that a compact set in a metric space is closed and
bounded. Suppose the equi-smallness of tails condition fails with respect to some
orthonormal basis ek. This means that for some ε > 0 and all p there is an element
up ∈ K, such that

(3.72)
∑
k>p

|(up, ek)|2 ≥ ε2.

Consider the subsequence {up} generated this way. No subsequence of it can have
equi-small tails (recalling that the tail decreases with p). Thus, by Lemma 25,
it cannot have a convergent subsequence, so K cannot be compact if the equi-
smallness condition fails.

Thus we have proved the equi-smallness of tails condition to be necessary for
the compactness of a closed, bounded set. It remains to show that it is sufficient.

So, suppose K is closed, bounded and satisfies the equi-small tails condition
with respect to an orthonormal basis ek and {un} is a sequence in K. We only
need show that {un} has a Cauchy subsequence, since this will converge (H being
complete) and the limit will be in K (since it is closed). Consider each of the
sequences of coefficients (un, ek) in C. Here k is fixed. This sequence is bounded:

(3.73) |(un, ek)| ≤ ‖un‖ ≤ C
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by the boundedness of K. So, by the Heine-Borel theorem, there is a subsequence
unl such that (unl , ek) converges as l→∞.

We can apply this argument for each k = 1, 2, . . . . First extract a subsequence
{un,1} of {un} so that the sequence (un,1, e1) converges. Then extract a subsequence
un,2 of un,1 so that (un,2, e2) also converges. Then continue inductively. Now pass
to the ‘diagonal’ subsequence vn of {un} which has kth entry the kth term, uk,k in
the kth subsequence. It is ‘eventually’ a subsequence of each of the subsequences
previously constructed – meaning it coincides with a subsequence from some point
onward (namely the kth term onward for the kth subsquence). Thus, for this
subsequence each of the (vn, ek) converges.

Consider the identity (the orthonormal set ek is complete by assumption) for
the difference

(3.74)

‖vn − vn+l‖2 =
∑
k≤N

|(vn − vn+l, ek)|2 +
∑
k>N

|(vn − vn+l, ek)|2

≤
∑
k≤N

|(vn − vn+l, ek)|2 + 2
∑
k>N

|(vn, ek)|2 + 2
∑
k>N

|(vn+l, ek)|2

where the parallelogram law on C has been used. To make this sum less than ε2

we may choose N so large that the last two terms are less than ε2/2 and this may
be done for all n and l by the equi-smallness of the tails. Now, choose n so large
that each of the terms in the first sum is less than ε2/2N, for all l > 0 using the
Cauchy condition on each of the finite number of sequence (vn, ek). Thus, {vn} is
a Cauchy subsequence of {un} and hence as already noted convergent in K. Thus
K is indeed compact. �

13. Finite rank operators

Now, we need to starting thinking a little more seriously about operators on
a Hilbert space, remember that an operator is just a continuous linear map T :
H −→ H and the space of them (a Banach space) is denoted B(H) (rather than the
more cumbersome B(H,H) which is needed when the domain and target spaces are
different).

Definition 18. An operator T ∈ B(H) is of finite rank if its range has fi-
nite dimension (and that dimension is called the rank of T ); the set of finite rank
operators will be denoted R(H).

Why not F(H)? Because we want to use this for the Fredholm operators.
Clearly the sum of two operators of finite rank has finite rank, since the range

is contained in the sum of the ranges (but is often smaller):

(3.75) (T1 + T2)u ∈ Ran(T1) + Ran(T2) ∀ u ∈ H.
Since the range of a constant multiple of T is contained in the range of T it follows
that the finite rank operators form a linear subspace of B(H).

What does a finite rank operator look like? It really looks like a matrix.

Lemma 26. If T : H −→ H has finite rank then there is a finite orthonormal
set {ek}Lk=1 in H such that

(3.76) Tu =

L∑
i,j=1

cij(u, ej)ei.
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Proof. By definition, the range of T, R = T (H) is a finite dimensional sub-
space. So, it has a basis which we can diagonalize in H to get an orthonormal basis,
ei, i = 1, . . . , p. Now, since this is a basis of the range, Tu can be expanded relative
to it for any u ∈ H :

(3.77) Tu =

p∑
i=1

(Tu, ei)ei.

On the other hand, the map u −→ (Tu, ei) is a continuous linear functional on H,
so (Tu, ei) = (u, vi) for some vi ∈ H; notice in fact that vi = T ∗ei. This means the
formula (3.77) becomes

(3.78) Tu =

p∑
i=1

(u, vi)ei.

Now, the Gram-Schmidt procedure can be applied to orthonormalize the sequence
e1, . . . , ep, v1 . . . , vp resulting in e1, . . . , eL. This means that each vi is a linear
combination which we can write as

(3.79) vi =

L∑
j=1

cijej .

Inserting this into (3.78) gives (3.76) (where the constants for i > p are zero). �

It is clear that

(3.80) B ∈ B(H) and T ∈ R(H) then BT ∈ R(H).

Indeed, the range of BT is the range of B restricted to the range of T and this is
certainly finite dimensional since it is spanned by the image of a basis of Ran(T ).
Similalry TB ∈ R(H) since the range of TB is contained in the range of T. Thus
we have in fact proved most of

Proposition 28. The finite rank operators form a ∗-closed two-sided ideal in
B(H), which is to say a linear subspace such that

(3.81) B1, B2 ∈ B(H), T ∈ R(H) =⇒ B1TB2, T
∗ ∈ R(H).

Proof. It is only left to show that T ∗ is of finite rank if T is, but this is an
immediate consequence of Lemma 26 since if T is given by (3.76) then

(3.82) T ∗u =

N∑
i,j=1

cij(u, ei)ej

is also of finite rank. �

Lemma 27 (Row rank=Colum rank). For any finite rank operator on a Hilbert
space, the dimension of the range of T is equal to the dimension of the range of T ∗.

Proof. From the formula (3.78) for a finite rank operator, it follows that the
vi, i = 1, . . . , p must be linearly independent – since the ei form a basis for the
range and a linear relation between the vi would show the range had dimension less
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than p. Thus in fact the null space of T is precisely the orthocomplement of the
span of the vi – the space of vectors orthogonal to each vi. Since

(3.83)

(Tu,w) =

p∑
i=1

(u, vi)(ei, w) =⇒

(w, Tu) =

p∑
i=1

(vi, u)(w, ei) =⇒

T ∗w =

p∑
i=1

(w, ei)vi

the range of T ∗ is the span of the vi, so is also of dimension p. �

14. Compact operators

Definition 19. An element K ∈ B(H), the bounded operators on a separable
Hilbert space, is said to be compact (the old terminology was ‘totally bounded’
or ‘completely continuous’) if the image of the unit ball is precompact, i.e. has
compact closure – that is if the closure of K{u ∈ H; ‖u‖H ≤ 1} is compact in H.

Notice that in a metric space, to say that a set has compact closure is the same
as saying it is contained in a compact set.

Proposition 29. An operator K ∈ B(H), bounded on a separable Hilbert space,
is compact if and only if it is the limit of a norm-convergent sequence of finite rank
operators.

Proof. So, we need to show that a compact operator is the limit of a conver-
gent sequence of finite rank operators. To do this we use the characterizations of
compact subsets of a separable Hilbert space discussed earlier. Namely, if {ei} is
an orthonormal basis of H then a subset I ⊂ H is compact if and only if it is closed
and bounded and has equi-small tails with respect to {ei}, meaning given ε > 0
there exits N such that

(3.84)
∑
i>N

|(v, ei)|2 < ε2 ∀ v ∈ I.

Now we shall apply this to the set K(B(0, 1)) where we assume that K is
compact (as an operator, don’t be confused by the double usage, in the end it turns
out to be constructive) – so this set is contained in a compact set. Hence (3.84)
applies to it. Namely this means that for any ε > 0 there exists n such that

(3.85)
∑
i>n

|(Ku, ei)|2 < ε2 ∀ u ∈ H, ‖u‖H ≤ 1.

For each n consider the first part of these sequences and define

(3.86) Knu =
∑
k≤n

(Ku, ei)ei.

This is clearly a linear operator and has finite rank – since its range is contained in
the span of the first n elements of {ei}. Since this is an orthonormal basis,

(3.87) ‖Ku−Knu‖2H =
∑
i>n

|(Ku, ei)|2



14. COMPACT OPERATORS 83

Thus (3.85) shows that ‖Ku−Knu‖H ≤ ε. Now, increasing n makes ‖Ku−Knu‖
smaller, so given ε > 0 there exists n such that for all N ≥ n,

(3.88) ‖K −KN‖B = sup
‖u‖≤1

‖Ku−Knu‖H ≤ ε.

Thus indeed, Kn → K in norm and we have shown that the compact operators are
contained in the norm closure of the finite rank operators.

For the converse we assume that Tn → K is a norm convergent sequence in
B(H) where each of the Tn is of finite rank – of course we know nothing about the
rank except that it is finite. We want to conclude that K is compact, so we need to
show that K(B(0, 1)) is precompact. It is certainly bounded, by the norm of K. By
a result above on compactness of sets in a separable Hilbert space we know that it
suffices to prove that the closure of the image of the unit ball has uniformly small
tails. Let ΠN be the orthogonal projection off the first N elements of a complete
orthonormal basis {ek} – so

(3.89) u =
∑
k≤N

(u, ek)ek + ΠNu.

Then we know that ‖ΠN‖ = 1 (assuming the Hilbert space is infinite dimensional)
and ‖ΠNu‖ is the ‘tail’. So what we need to show is that given ε > 0 there exists
n such that

(3.90) ‖u‖ ≤ 1 =⇒ ‖ΠNKu‖ < ε.

Now,

(3.91) ‖ΠNKu‖ ≤ ‖ΠN (K − Tn)u‖+ ‖ΠNTnu‖

so choosing n large enough that ‖K − Tn‖ < ε/2 and then using the compactness
of Tn (which is finite rank) to choose N so large that

(3.92) ‖u‖ ≤ 1 =⇒ ‖ΠNTnu‖ ≤ ε/2

shows that (3.90) holds and hence K is compact. �

Proposition 30. For any separable Hilbert space, the compact operators form
a closed and ∗-closed two-sided ideal in B(H).

Proof. In any metric space (applied to B(H)) the closure of a set is closed,
so the compact operators are closed being the closure of the finite rank operators.
Similarly the fact that it is closed under passage to adjoints follows from the same
fact for finite rank operators. The ideal properties also follow from the correspond-
ing properties for the finite rank operators, or we can prove them directly anyway.
Namely if B is bounded and T is compact then for some c > 0 (namely 1/‖B‖
unless it is zero) cB maps B(0, 1) into itself. Thus cTB = TcB is compact since
the image of the unit ball under it is contained in the image of the unit ball under
T ; hence TB is also compact. Similarly BT is compact since B is continuous and
then

(3.93) BT (B(0, 1)) ⊂ B(T (B(0, 1))) is compact

since it is the image under a continuous map of a compact set. �
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15. Weak convergence

It is convenient to formalize the idea that a sequence be bounded and that each
of the (un, ek), the sequence of coefficients of some particular Fourier-Bessel series,
should converge.

Definition 20. A sequence, {un}, in a Hilbert space, H, is said to converge
weakly to an element u ∈ H if it is bounded in norm and (uj , v)→ (u, v) converges
in C for each v ∈ H. This relationship is written

(3.94) un ⇀ u.

In fact as we shall see below, the assumption that ‖un‖ is bounded and that u
exists are both unnecessary. That is, a sequence converges weakly if and only if
(un, v) converges in C for each v ∈ H. Conversely, there is no harm in assuming
it is bounded and that the ‘weak limit’ u ∈ H exists. Note that the weak limit is
unique since if u and u′ both have this property then (u−u′, v) = limn→∞(un, v)−
limn→∞(un, v) = 0 for all v ∈ H and setting v = u− u′ it follows that u = u′.

Lemma 28. A (strongly) convergent sequence is weakly convergent with the
same limit.

Proof. This is the continuity of the inner product. If un → u then

(3.95) |(un, v)− (u, v)| ≤ ‖un − u‖‖v‖ → 0

for each v ∈ H shows weak convergence. �

Lemma 29. For a bounded sequence in a separable Hilbert space, weak con-
vergence is equivalent to component convergence with respect to an orthonormal
basis.

Proof. Let ek be an orthonormal basis. Then if un is weakly convergent
it follows immediately that (un, ek) → (u, ek) converges for each k. Conversely,
suppose this is true for a bounded sequence, just that (un, ek) → ck in C for each
k. The norm boundedness and Bessel’s inequality show that

(3.96)
∑
k≤p

|ck|2 = lim
n→∞

∑
k≤p

|(un, ek)|2 ≤ C2 sup
n
‖un‖2

for all p. Thus in fact {ck} ∈ l2 and hence

(3.97) u =
∑
k

ckek ∈ H

by the completeness of H. Clearly (un, ek)→ (u, ek) for each k. It remains to show
that (un, v) → (u, v) for all v ∈ H. This is certainly true for any finite linear
combination of the ek and for a general v we can write

(3.98) (un, v)− (u, v) = (un, vp)− (u, vp) + (un, v − vp)− (u, v − vp) =⇒
|(un, v)− (u, v)| ≤ |(un, vp)− (u, vp)|+ 2C‖v − vp‖

where vp =
∑
k≤p

(v, ek)ek is a finite part of the Fourier-Bessel series for v and C is a

bound for ‖un‖. Now the convergence vp → v implies that the last term in (3.98)
can be made small by choosing p large, independent of n. Then the second last term
can be made small by choosing n large since vp is a finite linear combination of the
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ek. Thus indeed, (un, v) → (u, v) for all v ∈ H and it follows that un converges
weakly to u. �

Proposition 31. Any bounded sequence {un} in a separable Hilbert space has
a weakly convergent subsequence.

This can be thought of as an analogue in infinite dimensions of the Heine-Borel
theorem if you say ‘a bounded closed subset of a separable Hilbert space is weakly
compact’.

Proof. Choose an orthonormal basis {ek} and apply the procedure in the
proof of Proposition 27 to extract a subsequence of the given bounded sequence
such that (unp , ek) converges for each k. Now apply the preceeding Lemma to
conclude that this subsequence converges weakly. �

Lemma 30. For a weakly convergent sequence un ⇀ u

(3.99) ‖u‖ ≤ lim inf ‖un‖.

Proof. Choose an orthonormal basis ek and observe that

(3.100)
∑
k≤p

|(u, ek)|2 = lim
n→∞

∑
k≤p

|(un, ek)|2.

The sum on the right is bounded by ‖un‖2 independently of p so

(3.101)
∑
k≤p

‖u, ek‖2 ≤ lim inf
n
‖un‖2

by the definition of lim inf . Then let p→∞ to conclude that

(3.102) ‖u‖2 ≤ lim inf
n
‖un‖2

from which (3.99) follows. �

Lemma 31. An operator K ∈ B(H) is compact if and only if the image Kun
of any weakly convergent sequence {un} in H is strongly, i.e. norm, convergent.

This is the origin of the old name ‘completely continuous’ for compact operators,
since they turn even weakly convergent into strongly convergent sequences.

Proof. First suppose that un ⇀ u is a weakly convergent sequence in H and
that K is compact. We know that ‖un‖ < C is bounded so the sequence Kun
is contained in CK(B(0, 1)) and hence in a compact set (clearly if D is compact
then so is cD for any constant c.) Thus, any subsequence of Kun has a convergent
subseqeunce and the limit is necessarily Ku since Kun ⇀ Ku (true for any bounded
operator by computing

(3.103) (Kun, v) = (un,K
∗v)→ (u,K∗v) = (Ku, v).)

But the condition on a sequence in a metric space that every subsequence of it has
a subsequence which converges to a fixed limit implies convergence. (If you don’t
remember this, reconstruct the proof: To say a sequence vn does not converge to
v is to say that for some ε > 0 there is a subsequence along which d(vnk , v) ≥ ε.
This is impossible given the subsequence of subsequence condition (converging to
the fixed limit v.))

Conversely, suppose that K has this property of turning weakly convergent
into strongly convergent sequences. We want to show that K(B(0, 1)) has compact
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closure. This just means that any sequence in K(B(0, 1)) has a (strongly) con-
vergent subsequence – where we do not have to worry about whether the limit is
in the set or not. Such a sequence is of the form Kun where un is a sequence in
B(0, 1). However we know that the ball is weakly compact, that is we can pass to
a subsequence which converges weakly, unj ⇀ u. Then, by the assumption of the
Lemma, Kunj → Ku converges strongly. Thus un does indeed have a convergent
subsequence and hence K(B(0, 1)) must have compact closure. �

As noted above, it is not really necessary to assume that a sequence in a Hilbert
space is bounded, provided one has the Uniform Boundedness Principle, Theorem 3,
at the ready.

Proposition 32. If un ∈ H is a sequence in a Hilbert space and for all v ∈ H

(3.104) (un, v)→ F (v) converges in C

then ‖un‖H is bounded and there exists w ∈ H such that un ⇀ w (converges
weakly).

Proof. Apply the Uniform Boundedness Theorem to the continuous function-
als

(3.105) Tn(u) = (u, un), Tn : H −→ C

where we reverse the order to make them linear rather than anti-linear. Thus, each
set |Tn(u)| is bounded in C since it is convergent. It follows from the Uniform
Boundedness Principle that there is a bound

(3.106) ‖Tn‖ ≤ C.

However, this norm as a functional is just ‖Tn‖ = ‖un‖H so the original sequence
must be bounded in H. Define T : H −→ C as the limit for each u :

(3.107) T (u) = lim
n→∞

Tn(u) = lim
n→∞

(u, un).

This exists for each u by hypothesis. It is a linear map and from (3.106) it is
bounded, ‖T‖ ≤ C. Thus by the Riesz Representation theorem, there exists w ∈ H
such that

(3.108) T (u) = (u,w) ∀ u ∈ H.

Thus (un, u)→ (w, u) for all u ∈ H so un ⇀ w as claimed. �

16. The algebra B(H)

Recall the basic properties of the Banach space, and algebra, of bounded oper-
ators B(H) on a separable Hilbert space H. In particular that it is a Banach space
with respect to the norm

(3.109) ‖A‖ = sup
‖u‖H=1

‖Au‖H

and that the norm satisfies

(3.110) ‖AB‖ ≤ ‖A‖‖B‖

as follows from the fact that

‖ABu‖ ≤ ‖A‖‖Bu‖ ≤ ‖A‖‖B‖‖u‖.
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Consider the set of invertible elements:

(3.111) GL(H) = {A ∈ B(H);∃ B ∈ B(H), BA = AB = Id}.

Note that this is equivalent to saying A is 1-1 and onto in view of the Open Mapping
Theorem, Theorem 4.

This set is open, to see this consider a neighbourhood of the identity.

Lemma 32. If A ∈ B(H) and ‖A‖ < 1 then

(3.112) Id−A ∈ GL(H).

Proof. This follows from the convergence of the Neumann series. If ‖A‖ < 1
then ‖Aj‖ ≤ ‖A‖j , from (3.110), and it follows that

(3.113) B =

∞∑
j=0

Aj

(where A0 = Id by definition) is absolutely summable in B(H) since
∞∑
j=0

‖Aj‖ con-

verges. Since B(H) is a Banach space, the sum converges. Moreover by the conti-
nuity of the product with respect to the norm

(3.114) AB = A lim
n→∞

n∑
j=0

Aj = lim
n→∞

n+1∑
j=1

Aj = B − Id

and similarly BA = B − Id . Thus (Id−A)B = B(Id−A) = Id shows that B is a
(and hence the) 2-sided inverse of Id−A. �

Proposition 33. The invertible elements form an open subset GL(H) ⊂ B(H).

Proof. Suppose G ∈ GL(H), meaning it has a two-sided (and unique) inverse
G−1 ∈ B(H) :

(3.115) G−1G = GG−1 = Id .

Then we wish to show that B(G; ε) ⊂ GL(H) for some ε > 0. In fact we shall see
that we can take ε = ‖G−1‖−1. To show that G+B is invertible set

(3.116) E = −G−1B =⇒ G+B = G(Id +G−1B) = G(Id−E)

From Lemma 32 we know that

(3.117) ‖B‖ < 1/‖G−1‖ =⇒ ‖G−1B‖ < 1 =⇒ Id−E is invertible.

Then (Id−E)−1G−1 satisfies

(3.118) (Id−E)−1G−1(G+B) = (Id−E)−1(Id−E) = Id .

Moreover E′ = −BG−1 also satisfies ‖E′‖ ≤ ‖B‖‖G−1‖ < 1 and

(3.119) (G+B)G−1(Id−E′)−1 = (Id−E′)(Id−E′)−1 = Id .

Thus G+B has both a ‘left’ and a ‘right’ inverse. The associtivity of the operator
product (that A(BC) = (AB)C) then shows that

(3.120) G−1(Id−E′)−1 = (Id−E)−1G−1(G+B)G−1(Id−E′)−1 = (Id−E)−1G−1

so the left and right inverses are equal and hence G+B is invertible. �
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Thus GL(H) ⊂ B(H), the set of invertible elements, is open. It is also a group
– since the inverse of G1G2 if G1, G2 ∈ GL(H) is G−1

2 G−1
1 .

This group of invertible elements has a smaller subgroup, U(H), the unitary
group, defined by

(3.121) U(H) = {U ∈ GL(H);U−1 = U∗}.

The unitary group consists of the linear isometric isomorphisms of H onto itself –
thus

(3.122) (Uu,Uv) = (u, v), ‖Uu‖ = ‖u‖ ∀ u, v ∈ H, U ∈ U(H).

This is an important object and we will use it a little bit later on.
The groups GL(H) and U(H) for a separable Hilbert space may seem very

similar to the familiar groups of invertible and unitary n× n matrices, GL(n) and
U(n), but this is somewhat deceptive. For one thing they are much bigger. In fact
there are other important qualitative differences – you can find some of this in the
problems. One important fact that you should know, even though we will not try
prove it here, is that both GL(H) and U(H) are contractible as a metric spaces –
they have no significant topology. This is to be constrasted with the GL(n) and
U(n) which have a lot of topology, and are not at all simple spaces – especially for
large n. One upshot of this is that U(H) does not look much like the limit of the
U(n) as n → ∞. Another important fact that we will show is that GL(H) is not
dense in B(H), in contrast to the finite dimensional case.

17. Spectrum of an operator

Another direct application of Lemma 32, the convergence of the Neumann se-
ries, is that if A ∈ B(H) and λ ∈ C has |λ| > ‖A‖ then ‖λ−1A‖ < 1 so (Id−λ−1A)−1

exists and satisfies

(3.123) (λ Id−A)λ−1(Id−λ−1A)−1 = Id = λ−1(Id−λ−1A)−1(λ−A).

Thus, λ−A ∈ GL(H) has inverse (λ−A)−1 = λ−1(Id−λ−1A)−1. The set of λ for
which this operator is invertible,

(3.124) {λ ∈ C; (λ Id−A) ∈ GL(H)} ⊂ C

is an open, and non-empty, set called the resolvent set (usually (A− λ)−1 is called
the resolvent). The complement of the resolvent set is called the spectrum of A

(3.125) Spec(A) = {λ ∈ C;λ Id−A /∈ GL(H)}.

As follows from the discussion above it is a compact set – it cannot be empty. You
should resist the temptation to think that this is the set of eigenvalues of A, that
is not really true.

For a bounded self-adjoint operator we can say more quite a bit more.

Proposition 34. If A : H −→ H is a bounded operator on a Hilbert space and
A∗ = A then A− λ Id is invertible for all λ ∈ C \R and at least one of A− ‖A‖ Id
and A+ ‖A‖ Id is not invertible.

The proof of the last part depends on a different characterization of the norm
in the self-adjoint case.
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Lemma 33. If A∗ = A then

(3.126) ‖A‖ = sup
‖u‖=1

|〈Au, u〉|.

Proof. Certainly, |〈Au, u〉| ≤ ‖A‖‖u‖2 so the right side can only be smaller
than or equal to the left. Suppose that

sup
‖u‖=1

|〈Au, u〉| = a.

Then for any u, v ∈ H, |〈Au, v〉| = 〈Aeiθu, v〉 for some θ ∈ [0, 2π), so we can arrange
that 〈Au, v〉 = |〈Au′, v〉| is non-negative and ‖u′‖ = 1 = ‖u‖ = ‖v‖. Dropping the
primes and computing using the polarization identity (really just the parallelogram
law)
(3.127)
4〈Au, v〉 = 〈A(u+v), u+v〉−〈A(u−v), u−v〉+i〈A(u+iv), u+iv〉−i〈A(u−iv), u−iv〉.

By the reality of the left side we can drop the last two terms and use the bound to
see that

(3.128) 4〈Au, v〉 ≤ a(‖u+ v‖2 + ‖u− v‖2) = 2a(‖u‖2 + ‖v‖2) = 4a

Thus, ‖A‖ = sup‖u‖=‖v‖=1 |〈Au, v〉| ≤ a and hence ‖A‖ = a. �

Proof of Proposition 34. If λ = s+it where t 6= 0 then A−λ = (A−s)−it
and A − s is bounded and selfadjoint, so it is enough to consider the special case
that λ = it. Then for any u ∈ H,

(3.129) Im〈(A− it)u, u〉 = −t‖u‖2.

So, certainly A − it is injective, since (A − it)u = 0 implies u = 0 if t 6= 0. The
adjoint of A − it is A + it so the adjoint is injective too. It follows that the range
of A − it is dense in H. Indeed, if v ∈ H and v ⊥ (A − it)u for all u ∈ H, so v is
orthogonal to the range, then

(3.130) 0 = Im〈(A− it)v, v〉 = −t‖v‖2.

By this density of the range, if w ∈ H there exists a sequence un in H with
(A− it)un → w. But this implies that ‖un‖ is bounded, since t‖un‖2 = − Im〈(A−
it)un, un〉 and hence we can pass to a weakly convergent subsequence, un ⇀ u.
Then (A − it)un ⇀ (A − it)u = w so A − it is 1-1 and onto. From the Open
Mapping Theorem, (A− it) is invertible.

Finally then we need to show that one of A ± ‖A‖ Id is NOT invertible. This
follows from (3.126). Indeed, by the definition of sup there is a sequence un ∈ H
with ‖un‖ = 1 such that either 〈Aun, un〉 → ‖A‖ or 〈Aun, un〉 → −‖A‖. We may
pass to a weakly convergent subsequence and so assume un ⇀ u. Assume we are in
the first case, so this means 〈(A− ‖A‖)un, un〉 → 0. Then

(3.131)
‖(A− ‖A‖)un‖2 = ‖Aun‖2 − 2‖A‖〉Aun, un〉+ ‖A‖2‖un‖2

‖Aun‖2 − 2‖A‖〉(A− ‖A‖)un, un〉 − ‖A‖2‖un‖2.

The second two terms here have limit −‖A‖2 by assumption and the first term
is less than or equal to ‖A‖2. Since the sequence is positive it follows that ‖(A −
‖A‖)2un‖ → 0. This means that A − ‖A‖ Id is not invertible, since if it had a
bounded inverse B then 1 = ‖un‖ ≤ ‖B‖‖(A − ‖A‖)2un‖ which is impossible.
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The other case is similar (or you can replace A by −A) so one of A ± ‖A‖ is not
invertible. �

18. Spectral theorem for compact self-adjoint operators

One of the important differences between a general bounded self-adjoint op-
erator and a compact self-adjoint operator is that the latter has eigenvalues and
eigenvectors – lots of them.

Theorem 15. If A ∈ K(H) is a self-adjoint, compact operator on a separable
Hilbert space, so A∗ = A, then H has an orthonormal basis consisting of eigenvec-
tors of A, uj such that

(3.132) Auj = λjuj , λj ∈ R \ {0},
consisting of an orthonormal basis for the possibly infinite-dimensional (closed)
null space and eigenvectors with non-zero eigenvalues which can be arranged into a
sequence such that |λj | is a non-increasing and λj → 0 as j →∞ (in case Nul(A)⊥

is finite dimensional, this sequence is finite).

The operator A maps Nul(A)⊥ into itself so it may be clearer to first split off the null
space and then look at the operator acting on Nul(A)⊥ which has an orthonormal
basis of eigenvectors with non-vanishing eigenvalues.

Before going to the proof, let’s notice some useful conclusions. One is that we
have ‘Fredholm’s alternative’ in this case.

Corollary 4. If A ∈ K(H) is a compact self-adjoint operator on a separable
Hilbert space then the equation

(3.133) u−Au = f

either has a unique solution for each f ∈ H or else there is a non-trivial finite
dimensional space of solutions to

(3.134) u−Au = 0

and then (3.133) has a solution if and only if f is orthogonal to all these solutions.

Proof. This is just saying that the null space of Id−A is a complement to
the range – which is closed. So, either Id−A is invertible or if not then the range
is precisely the orthocomplement of Nul(Id−A). You might say there is not much
alternative from this point of view, since it just says the range is always the ortho-
complement of the null space. �

Let me separate off the heart of the argument from the bookkeeping.

Lemma 34. If A ∈ K(H) is a self-adjoint compact operator on a separable
(possibly finite-dimensional) Hilbert space then

(3.135) F (u) = (Au, u), F : {u ∈ H; ‖u‖ = 1} −→ R
is a continuous function on the unit sphere which attains its supremum and infimum
where

(3.136) sup
‖u‖=1

|F (u)| = ‖A‖.

Furthermore, if the maximum or minimum of F (u) is non-zero it is attained at an
eivenvector of A with this extremal value as eigenvalue.
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Proof. Since |F (u)| is the function considered in (3.126), (3.136) is a direct
consequence of Lemma 33. Moreover, continuity of F follows from continuity of A
and of the inner product so

(3.137) |F (u)−F (u′)| ≤ |(Au, u)−(Au, u′)|+ |(Au, u′)−(Au′, u′)| ≤ 2‖A‖‖u−u′‖
since both u and u′ have norm one.

If we were in finite dimensions this almost finishes the proof, since the sphere
is then compact and a continuous function on a compact set attains its sup and inf.
In the general case we need to use the compactness of A. Certainly F is bounded,

(3.138) |F (u)| ≤ sup
‖u‖=1

|(Au, u)| ≤ ‖A‖.

Thus, there is a sequence u+
n such that F (u+

n ) → supF and another u−n such that
F (u−n )→ inf F. The weak compactness of the unit sphere means that we can pass
to a weakly convergent subsequence in each case, and so assume that u±n ⇀ u±

converges weakly. Then, by the compactness of A, Au±n → Au± converges strongly,
i.e. in norm. But then we can write

(3.139) |F (u±n )− F (u±)| ≤ |(A(u±n − u±), u±n )|+ |(Au±, u±n − u±)|
= |(A(u±n − u±), u±n )|+ |(u±, A(u±n − u±))| ≤ 2‖Au±n −Au±‖

to deduce that F (u±) = limF (u±n ) are respectively the sup and inf of F. Thus
indeed, as in the finite dimensional case, the sup and inf are attained, and hence
are the max and min. Note that this is NOT typically true if A is not compact as
well as self-adjoint.

Now, suppose that Λ+ = supF > 0. Then for any v ∈ H with v ⊥ u+ and
‖v‖ = 1, the curve

(3.140) Lv : (−π, π) 3 θ 7−→ cos θu+ + sin θv

lies in the unit sphere. Expanding out

(3.141) F (Lv(θ)) =

(ALv(θ), Lv(θ)) = cos2 θF (u+) + 2 sin(2θ) Re(Au+, v) + sin2(θ)F (v)

we know that this function must take its maximum at θ = 0. The derivative there
(it is certainly continuously differentiable on (−π, π)) is Re(Au+, v) which must
therefore vanish. The same is true for iv in place of v so in fact

(3.142) (Au+, v) = 0 ∀ v ⊥ u+, ‖v‖ = 1.

Taking the span of these v’s it follows that (Au+, v) = 0 for all v ⊥ u+ so A+u
must be a multiple of u+ itself. Inserting this into the definition of F it follows
that Au+ = Λ+u+ is an eigenvector with eigenvalue Λ+ = supF.

The same argument applies to inf F if it is negative, for instance by replacing
A by −A. This completes the proof of the Lemma. �

Proof of Theorem 15. First consider the Hilbert space H0 = Nul(A)⊥ ⊂
H. Then, as noted above, A maps H0 into itself, since

(3.143) (Au, v) = (u,Av) = 0 ∀ u ∈ H0, v ∈ Nul(A) =⇒ Au ∈ H0.

Moreover, A0, which is A restricted to H0, is again a compact self-adjoint operator
– where the compactness follows from the fact that A(B(0, 1)) for B(0, 1) ⊂ H0 is
smaller than (actually of course equal to) the whole image of the unit ball.
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Thus we can apply the Lemma above to A0, with quadratic form F0, and find
an eigenvector. Let’s agree to take the one associated to supF0 unless supF0 <
− inf F0 in which case we take one associated to the inf . Now, what can go wrong
here? Nothing except if F0 ≡ 0. However in that case we know from Lemma 33
that ‖A‖ = 0 so A = 0.

So, we now know that we can find an eigenvector with non-zero eigenvalue
unless A ≡ 0 which would implies Nul(A) = H. Now we proceed by induction.
Suppose we have found N mutually orthogonal eigenvectors ej for A all with norm
1 and eigenvectors λj – an orthonormal set of eigenvectors and all in H0. Then we
consider

(3.144) HN = {u ∈ H0 = Nul(A)⊥; (u, ej) = 0, j = 1, . . . , N}.

From the argument above, A maps HN into itself, since

(3.145) (Au, ej) = (u,Aej) = λj(u, ej) = 0 if u ∈ HN =⇒ Au ∈ HN .

Moreover this restricted operator is self-adjoint and compact on HN as before so
we can again find an eigenvector, with eigenvalue either the max of min of the new
F for HN . This process will not stop uness F ≡ 0 at some stage, but then A ≡ 0
on HN and since HN ⊥ Nul(A) which implies HN = {0} so H0 must have been
finite dimensional.

Thus, eitherH0 is finite dimensional or we can grind out an infinite orthonormal
sequence ei of eigenvectors of A in H0 with the corresponding sequence of eigen-
values such that |λi| is non-increasing – since the successive FN ’s are restrictions
of the previous ones the max and min are getting closer to (or at least no further
from) 0.

So we need to rule out the possibility that there is an infinite orthonormal
sequence of eigenfunctions ej with corresponding eigenvalues λj where infj |λj | =
a > 0. Such a sequence cannot exist since ej ⇀ 0 so by the compactness of A,
Aej → 0 (in norm) but |Aej | ≥ a which is a contradiction. Thus if null(A)⊥ is
not finite dimensional then the sequence of eigenvalues constructed above must
converge to 0.

Finally then, we need to check that this orthonormal sequence of eigenvectors
constitutes an orthonormal basis of H0. If not, then we can form the closure of the
span of the ei we have constructed, H′, and its orthocomplement in H0 – which
would have to be non-trivial. However, as before F restricts to this space to be
F ′ for the restriction of A′ to it, which is again a compact self-adjoint operator.
So, if F ′ is not identically zero we can again construct an eigenfunction, with non-
zero eigenvalue, which contracdicts the fact the we are always choosing a largest
eigenvalue, in absolute value at least. Thus in fact F ′ ≡ 0 so A′ ≡ 0 and the
eigenvectors form and orthonormal basis of Nul(A)⊥. This completes the proof of
the theorem. �

19. Functional Calculus

So the non-zero eigenvalues of a compact self-adjoint operator form the image of
a sequence in [−‖A‖, ‖A‖] either converging to zero or finite. If f ∈ C0([−‖A‖, ‖A‖)
then one can define an operator

(3.146) f(A) ∈ B(H), f(A)u =
∑
i

f(λu)(u, ei)ei



20. COMPACT PERTURBATIONS OF THE IDENTITY 93

where {ei} is a complete orthonormal basis of eigenfunctions. Provided f(0) = 0
this is compact and if f is real it is self-adjoint. This formula actually defines a
linear map

(3.147) C0([−‖A‖, ‖A‖]) −→ B(H) with f(A)g(A) = (fg)(A).

Such a map exists for any bounded self-adjoint operator. Even though it may
not have eigenfunctions – or not a complete orthonormal basis of them anyway, it
is still possible to define f(A) for a continous function defined on [−‖A‖, ‖A‖] (in
fact it only has to be defined on Spec(A) ⊂ [−‖A‖, ‖A‖] which might be quite a lot
smaller). This is an effective replacement for the spectral theorem in the compact
case.

How does one define f(A)? Well, it is easy enough in case f is a polynomial,
since then we can factorize it and set
(3.148)
f(z) = c(z − z1)(z − z2) . . . (z − zN ) =⇒ f(A) = c(A− z1)(A− z2) . . . (A− zN ).

Notice that the result does not depend on the order of the factors or anything like
that. To pass to the case of a general continuous function on [−‖A‖, ‖A‖] one can
use the norm estimate in the polynomial case, that

(3.149) ‖f(A)‖ ≤ sup
z∈[−‖A‖,‖A‖

|f(z)|.

This allows one to pass f in the uniform closure of the polynomials, which by the
Stone-Weierstrass theorem is the whole of C0([−‖A‖, ‖A‖]). The proof of (3.149) is
outlined in Problem 5.33 below.

20. Compact perturbations of the identity

I have generally not had a chance to discuss most of the material in this section,
or the next, in the lectures.

Compact operators are, as we know, ‘small’ in the sense that the are norm
limits of finite rank operators. If you accept this, then you will want to say that an
operator such as

(3.150) Id−K, K ∈ K(H)

is ‘big’. We are quite interested in this operator because of spectral theory. To say
that λ ∈ C is an eigenvalue of K is to say that there is a non-trivial solution of

(3.151) Ku− λu = 0

where non-trivial means other than than the solution u = 0 which always exists. If
λ is an eigenvalue of K then certainly λ ∈ Spec(K), since λ−K cannot be invertible.
For general operators the converse is not correct, but for compact operators it is.

Lemma 35. If K ∈ B(H) is a compact operator then λ ∈ C\{0} is an eigenvalue
of K if and only if λ ∈ Spec(K).

Proof. Since we can divide by λ we may replace K by λ−1K and consider the
special case λ = 1. Now, if K is actually finite rank the result is straightforward.
By Lemma 26 we can choose a basis so that (3.76) holds. Let the span of the ei
be W – since it is finite dimensional it is closed. Then Id−K acts rather simply –
decomposing H = W ⊕W⊥, u = w + w′

(3.152) (Id−K)(w + w′) = w + (IdW −K ′)w′, K ′ : W −→W
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being a matrix with respect to the basis. Now, 1 is an eigenvalue of K if and only
if 1 is an eigenvalue of K ′ as an operator on the finite-dimensional space W. Now,
a matrix, such as IdW −K ′, is invertible if and only if it is injective, or equivalently
surjective. So, the same is true for Id−K.

In the general case we use the approximability of K by finite rank operators.
Thus, we can choose a finite rank operator F such that ‖K − F‖ < 1/2. Thus,
(Id−K + F )−1 = Id−B is invertible. Then we can write

(3.153) Id−K = Id−(K − F )− F = (Id−(K − F ))(Id−L), L = (Id−B)F.

Thus, Id−K is invertible if and only if Id−L is invertible. Thus, if Id−K is not
invertible then Id−L is not invertible and hence has null space and from (3.153) it
follows that Id−K has non-trivial null space, i.e. K has 1 as an eigenvalue. �

A little more generally:-

Proposition 35. If K ∈ K(H) is a compact operator on a separable Hilbert
space then

(3.154)

null(Id−K) = {u ∈ H; (IdK)u = 0} is finite dimensional

Ran(Id−K) = {v ∈ H;∃u ∈ H, v = (Id−K)u} is closed and

Ran(Id−K)⊥ = {w ∈ H; (w,Ku) = 0 ∀ u ∈ H} is finite dimensional

and moreover

(3.155) dim (null(Id−K)) = dim
(
Ran(Id−K)⊥

)
.

Proof of Proposition 35. First let’s check this in the case of a finite rank
operator K = T. Then

(3.156) Nul(Id−T ) = {u ∈ H;u = Tu} ⊂ Ran(T ).

A subspace of a finite dimensional space is certainly finite dimensional, so this
proves the first condition in the finite rank case.

Similarly, still assuming that T is finite rank consider the range

(3.157) Ran(Id−T ) = {v ∈ H; v = (Id−T )u for some u ∈ H}.
Consider the subspace {u ∈ H;Tu = 0}. We know that this this is closed, since T
is certainly continuous. On the other hand from (3.157),

(3.158) Ran(Id−T ) ⊃ Nul(T ).

Remember that a finite rank operator can be written out as a finite sum

(3.159) Tu =

N∑
i=1

(u, ei)fi

where we can take the fi to be a basis of the range of T. We also know in this
case that the ei must be linearly independent – if they weren’t then we could write
one of them, say the last since we can renumber, out as a sum, eN =

∑
j<N

ciej , of

multiples of the others and then find

(3.160) Tu =

N−1∑
i=1

(u, ei)(fi + cjfN )

showing that the range of T has dimension at most N − 1, contradicting the fact
that the fi span it.
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So, going back to (3.159) we know that Nul(T ) has finite codimension – every
element of H is of the form

(3.161) u = u′ +

N∑
i=1

diei, u
′ ∈ Nul(T ).

So, going back to (3.158), if Ran(Id−T ) 6= Nul(T ), and it need not be equal, we
can choose – using the fact that Nul(T ) is closed – an element g ∈ Ran(Id−T ) \
Nul(T ) which is orthogonal to Nul(T ). To do this, start with any a vector g′ in
Ran(Id−T ) which is not in Nul(T ). It can be split as g′ = u′′ + g where g ⊥
Nul(T ) (being a closed subspace) and u′′ ∈ Nul(T ), then g 6= 0 is in Ran(Id−T )
and orthongonal to Nul(T ). Now, the new space Nul(T ) ⊕ Cg is again closed and
contained in Ran(Id−T ). But we can continue this process replacing Nul(T ) by
this larger closed subspace. After a a finite number of steps we conclude that
Ran(Id−T ) itself is closed.

What we have just proved is:

Lemma 36. If V ⊂ H is a subspace of a Hilbert space which contains a closed
subspace of finite codimension in H – meaning V ⊃W where W is closed and there
are finitely many elements ei ∈ H, i = 1, . . . , N such that every element u ∈ H is
of the form

(3.162) u = u′ +

N∑
i=1

ciei, ci ∈ C,

then V itself is closed.

So, this takes care of the case that K = T has finite rank! What about the
general case where K is compact? Here we just use a consequence of the approxi-
mation of compact operators by finite rank operators proved last time. Namely, if
K is compact then there exists B ∈ B(H) and T of finite rank such that

(3.163) K = B + T, ‖B‖ < 1

2
.

Now, consider the null space of Id−K and use (3.163) to write

(3.164) Id−K = (Id−B)− T = (Id−B)(Id−T ′), T ′ = (Id−B)−1T.

Here we have used the convergence of the Neumann series, so (Id−B)−1 does exist.
Now, T ′ is of finite rank, by the ideal property, so

(3.165) Nul(Id−K) = Nul(Id−T ′) is finite dimensional.

Here of course we use the fact that (Id−K)u = 0 is equivalent to (Id−T ′)u = 0
since Id−B is invertible. So, this is the first condition in (3.154).

Similarly, to examine the second we do the same thing but the other way around
and write

(3.166) Id−K = (Id−B)− T = (Id−T ′′)(Id−B), T ′′ = T (Id−B)−1.

Now, T ′′ is again of finite rank and

(3.167) Ran(Id−K) = Ran(Id−T ′′) is closed

again using the fact that Id−B is invertible – so every element of the form (Id−K)u
is of the form (Id−T ′′)u′ where u′ = (Id−B)u and conversely.
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So, now we have proved all of (3.154) – the third part following from the first
as discussed before.

What about (3.155)? This time let’s first check that it is enough to consider
the finite rank case. For a compact operator we have written

(3.168) (Id−K) = G(Id−T )

where G = Id−B with ‖B‖ < 1
2 is invertible and T is of finite rank. So what we

want to see is that

(3.169) dim Nul(Id−K) = dim Nul(Id−T ) = dim Nul(Id−K∗).
However, Id−K∗ = (Id−T ∗)G∗ and G∗ is also invertible, so

(3.170) dim Nul(Id−K∗) = dim Nul(Id−T ∗)
and hence it is enough to check that dim Nul(Id−T ) = dim Nul(Id−T ∗) – which is
to say the same thing for finite rank operators.

Now, for a finite rank operator, written out as (3.159), we can look at the
vector space W spanned by all the fi’s and all the ei’s together – note that there is
nothing to stop there being dependence relations among the combination although
separately they are independent. Now, T : W −→W as is immediately clear and

(3.171) T ∗v =

N∑
i=1

(v, fi)ei

so T : W −→ W too. In fact Tw′ = 0 and T ∗w′ = 0 if w′ ∈ W⊥ since then
(w′, ei) = 0 and (w′, fi) = 0 for all i. It follows that if we write R : W ←→ W for
the linear map on this finite dimensional space which is equal to Id−T acting on
it, then R∗ is given by Id−T ∗ acting on W and we use the Hilbert space structure
on W induced as a subspace of H. So, what we have just shown is that
(3.172)
(Id−T )u = 0⇐⇒ u ∈W and Ru = 0, (Id−T ∗)u = 0⇐⇒ u ∈W and R∗u = 0.

Thus we really are reduced to the finite-dimensional theorem

(3.173) dim Nul(R) = dim Nul(R∗) on W.

You no doubt know this result. It follows by observing that in this case, every-
thing now on W, Ran(W ) = Nul(R∗)⊥ and finite dimensions

(3.174) dim Nul(R) + dim Ran(R) = dimW = dim Ran(W ) + dim Nul(R∗).

�

21. Fredholm operators

Definition 21. A bounded operator F ∈ B(H) on a Hilbert space is said to
be Fredholm, written F ∈ F(H), if it has the three properties in (3.154) – its null
space is finite dimensional, its range is closed and the orthocomplement of its range
is finite dimensional.

For general Fredholm operators the row-rank=colum-rank result (3.155) does not
hold. Indeed the difference of these two integers, called the index of the operator,

(3.175) ind(F ) = dim (null(Id−K))− dim
(
Ran(Id−K)⊥

)
is a very important number with lots of interesting properties and uses.
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Notice that the last two conditions in (3.154) are really independent since the
orthocomplement of a subspace is the same as the orthocomplement of its closure.
There is for instance a bounded operator on a separable Hilbert space with trivial
null space and dense range which is not closed. How could this be? Think for
instance of the operator on L2(0, 1) which is multiplication by the function x.
This is assuredly bounded and an element of the null space would have to satisfy
xu(x) = 0 almost everywhere, and hence vanish almost everywhere. Moreover the
density of the L2 functions vanishing in x < ε for some (non-fixed) ε > 0 shows
that the range is dense. However it is clearly not invertible.

Before proving this result let’s check that, in the case of operators of the form
Id−K, with K compact the third conclusion in (3.154) really follows from the first.
This is a general fact which I mentioned, at least, earlier but let me pause to prove
it.

Proposition 36. If B ∈ B(H) is a bounded operator on a Hilbert space and
B∗ is its adjoint then

(3.176) Ran(B)⊥ = (Ran(B))⊥ = {v ∈ H; (v, w) = 0 ∀ w ∈ Ran(B)} = Nul(B∗).

Proof. The definition of the orthocomplement of Ran(B) shows immediately
that

(3.177) v ∈ (Ran(B))⊥ ⇐⇒ (v, w) = 0 ∀ w ∈ Ran(B)←→ (v,Bu) = 0 ∀ u ∈ H
⇐⇒ (B∗v, u) = 0 ∀ u ∈ H ⇐⇒ B∗v = 0⇐⇒ v ∈ Nul(B∗).

On the other hand we have already observed that V ⊥ = (V )⊥ for any subspace –
since the right side is certainly contained in the left and (u, v) = 0 for all v ∈ V
implies that (u,w) = 0 for all w ∈ V by using the continuity of the inner product
to pass to the limit of a sequence vn → w. �

Thus as a corrollary we see that if Nul(Id−K) is always finite dimensional for
K compact (i. e. we check it for all compact operators) then Nul(Id−K∗) is finite
dimensional and hence so is Ran(Id−K)⊥.

There is a more ‘analytic’ way of characterizing Fredholm operators, rather
than Definition 21.

Lemma 37. An operator F ∈ B(H) is Fredholm, F ∈ F(H), if and only if it
has a generalized inverse P satisfying

(3.178)
PF = Id−Π(F )

FP = Id−Π(F )⊥

with the two projections of finite rank.

Proof. If (3.178) holds then F must be Fredholm, since its null space is finite
dimensional, from the second identity the range of F must contain the range of
Id−Pi(F )⊥ and hence it must be closed and of finite codimension (and in fact be
equal to this closed subspace.

Conversely, suppose that F ∈ F(H). We can divide H into two pieces in two
ways as H = (F ) ⊕ (F )⊥ and H = Ran(F )⊥ ⊕ Ran(F ) where in each case the
first summand is finite-dimensional. Then F defines four maps, from each of the
two first summands to each of the two second ones but all but one of these is zero
and so F corresponds to a bounded linear map F̃ : (F )⊥ −→ Ran(F ). These are
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two Hilbert spaces with bounded linear bijection between them, so the inverse map,
P̃ : Ran(F ) −→ (F )⊥ is bounded by the Open Mapping Theorem and we can define

(3.179) P = P̃ ◦Π(F )⊥v).

Then (3.178) follows directly. �

What we want to show is that the Fredholm operators form an open set in
B(H) and that the index is locally constant. To do this we show that a weaker
version of (3.178) also implies that F is Fredholm.

Lemma 38. An operator F ∈ F(H) is Fredholm if and only if it has a para-
metrix Q ∈ B(H) in the sense that

(3.180)
QF = Id−ER
FQ = Id−EL

with ER and EL of finite rank. Moreover any two such parametrices differ by a
finite rank operator.

Proof. If F is Fredholm then Q = P certainly is a parameterix in this sense.
Conversely suppose that Q as in (??) exists. Then (Id−ER) is finite dimensional –
from (3.154) for instance. However, from the first identity (F ) ⊂ (QF ) = (Id−ER)
so (F ) is finite dimensional too. Similarly, the second identity shows that Ran(F ) ⊃
Ran(FQ) = Ran(Id−EL) and the last space is closed and of finite codimension,
hence so is the first.

Now if Q and Q′ both satisfy (3.180) with finite ranke error terms E′R and E′L
for Q′ then

(3.181) (Q′ −Q)F = ER − E′R
is of finite rank. Applying the generalized inverse, P of F on the right shows that
the difference

(3.182) (Q′ −Q) = (ER − E′R)P + (Q′ −Q)Π(F )

is indeed of finite rank. �

Now recall (in 2014 from Problems7) that finite-rank operators are of trace
class, that the trace is well-defined and that the trace of a commutator where one
factor is bounded and the other trace class vanishes. Using this we show

Lemma 39. If Q and F satisfy (3.180) then

(3.183) ind(F ) = Tr(EL)− Tr(ER).

Proof. We certainly know that (3.183) holds in the special case that Q = P
is the generalized inverse of F, since then EL = Π(F ) and ER = ΠRan(F )⊥ and the
traces are the dimensions of these spaces.

Now, if Q is a parameterix as in (3.180) consider the straight line of operators
Qt = (1− t)P + tQ. Using the two sets of identities for the generalized inverse and
paramaterix

(3.184)
QtF = (1− t)PF + tQF = Id−(1− t)Π(F ) − tEL,

FQt = (1− t)FP + tFQ = Id−(1− t)ΠRan(F )⊥ − tER.
Thus Qt is a curve of parameterices and what we need to show is that

(3.185) J(t) = Tr((1− t)Π(F ) + tEL)− Tr((1− t)ΠRan(F )⊥ + tER)
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is constant. This is a linear function of t as is Qt. We can differentiate (3.184) with
respect to t and see that

(3.186)
d

dt
((1− t)Π(F ) + tEL)− d

dt
((1− t)ΠRan(F )⊥ + tER) = [Q− P, F ]

=⇒ J ′(t) = 0

since it is the trace of the commutator of a bounded and a finite rank operator
(using the last part of Lemma 38. �

Proposition 37. The Fredholm operators form an open set in B(H) on which
the index is locally constant.

Proof. We need to show that if F is Fredholm then there exists ε > 0 such
that F +B is Fredholm if ‖B‖ < ε. Set B′ = ΠRan(F )BΠ(F )⊥ then ‖B′‖ ≤ ‖B‖ and

B − B′ is finite rank. If F̃ is the operator constructed in the proof of Lemma 37
then F̃ +B′ is invertible as an operator from (F )⊥ to Ran(F ) if ε > 0 is small. The
inverse, P ′B , extended as 0 to (F ) as P is defined in that proof, satisfies

(3.187)
P ′B(F +B) = Id−Π(F ) + P ′B(B −B′),

(F +B)P ′B = Id−Π)Ran(F )⊥ + (B −B])P ′B

and so is a parametrix for F +B. Thus the set of Fredholm operators is open.
The index of F +B is given by the difference of the trace of the finite rank error

terms in the second and first lines here. It depends continuously on B in ‖B‖ < ε
so, being integer valued, is constant. �

This shows in particular that there is an open subset of B(H) which contains
no invertible operators, in strong contrast to the finite dimensional case. Still even
the Fredholm operators do no form a dense subset of B(H). One such open subset
consists of the sem-Fredholm operators, those with closed range and with either
null space of complement of range finite-dimensional.

22. Kuiper’s theorem

For finite dimensional spaces, such as CN , the group of invertible operators,
denoted typically GL(N), is a particularly important example of a Lie group. One
reason it is important is that it carries a good deal of ‘topological’ structure. In
particular – I’m assuming you have done a little topology – its fundamental group
is not trivial, in fact it is isomorphic to Z. This corresponds to the fact that a
continuous closed curve c : S −→ GL(N) is contractible if and only if its winding
number is zero – the effective number of times that the determinant goes around
the origin in C. There is a lot more topology than this and it is actually quite
complicated.

Perhaps surprisingly, the corresponding group of the bounded operators on a
separable (complex) infinite-dimensional Hilbert space which have bounded inverses
(or equivalently those which are bijections in view of the open mapping theorem)
is contractible. This is Kuiper’s theorem, and means that this group, GL(H), has
no ‘topology’ at all, no holes in any dimension and for topological purposes it is
like a big open ball. The proof is not really hard, but it is not exactly obvious
either. It depends on an earlier idea, ‘Eilenberg’s swindle’, which shows how the
infinite-dimensionality is exploited. As you can guess, this is sort of amusing (if
you have the right attitude . . . ).
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Let’s denote by GL(H) this group, as remarked above in view of the open
mapping theorem we know that

(3.188) GL(H) = {A ∈ B(H);A is injective and surjective.}.
Contractibility is the topological notion of ‘topologically trivial’. It means precisely
that there is a continuous map

(3.189)
γ : [0, 1]×GL(H) −→ GL(H) s.t.

γ(0, A) = A, γ(1, A) = Id, ∀ A ∈ GL(H).

Continuity here means for the metric space [0, 1]×GL(H) where the metric comes
from the norms on R and B(H).

As a warm-up exercise, let us show that the group GL(H) is contractible to
the unitary subgroup

(3.190) U(H) = {U ∈ GL(H);U−1 = U∗}.
These are the isometric isomorphisms.

Proposition 38. There is a continuous map
(3.191)

Γ : [0, 1]×GL(H) −→ GL(H) s.t. Γ(0, A) = A, Γ(1, A) ∈ U(H) ∀ A ∈ GL(H).

Proof. This is a consequence of the functional calculus, giving the ‘polar
decomposition’ of invertible (and more generally bounded) operators. Namely, if
AGL(H) then AA∗ ∈ GL(H) is self-adjoint. Its spectrum is then contained in an
interval [a, b], where 0 < a ≤ b = ‖A‖2. It follows from what we showed earlier

that R = (AA∗)
1
2 is a well-defined bounded self-adjoint operator and R2 = AA∗.

Moreover, R is invertible and the operator UA = R−1A ∈ U(H). Certainly it is
bounded and U∗A = A∗R−1 so U∗AUA = A∗R−2A = Id since R−2 = (AA∗)−1 =
(A∗)−1A−1. Thus U∗A is a right inverse of UA, and (since UA is a bijection) is the
unique inverse so UA ∈ U(H). So we have shown A = RUA (this is the polar
decomposition) and then

(3.192) Γ(s,A) = (s Id +(1− s)R)UA, s ∈ [0, 1]

satisfies (3.191). �

Initially we will consider only the notion of ‘weak contractibility’. This has
nothing to do with weak convergence, rather just means that we only look for an
homotopy over compact sets. So, for any compact subset X ⊂ GL(H) we seek a
continuous map

(3.193)
γ : [0, 1]×X −→ GL(H) s.t.

γ(0, A) = A, γ(1, A) = Id, ∀ A ∈ X,
note that this is not contractibility of X, but of X in GL(H).

In fact, to carry out the construction without having to worry about too many
things at one, just consider (path) connectedness of GL(H) meaning that there is
a continuous map as in (3.193) where X = {A} just consists of one point – so the
map is just γ : [0, 1] −→ GL(H) such that γ(0) = A, γ(1) = Id .

The construction of γ is in three stages

(1) Creating a gap
(2) Rotating to a trivial factor
(3) Eilenberg’s swindle.
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This approach follows ideas of B. Mityagin, [2].

Lemma 40 (Creating a gap). If A ∈ B(H) and ε > 0 is given there is a
decomposition H = HK ⊕HL ⊕HO into three closed mutually orthogonal infinite-
dimensional subspaces such that if QI is the orthogonal projections onto HI for
I = K, L, O then

(3.194) ‖QLBQK‖ < ε.

Proof. Choose an orthonormal basis ej , j ∈ N, of H. The subspaces Hi will
be determined by a corresponding decomposition

(3.195) N = K ∪ L ∪O, K ∩ L = K ∩O = L ∩O = ∅.

Thus HI has orthonormal basis ek, k ∈ I, I = K, L, O. To ensure (3.194) we choose
the decomposition (3.195) so that all three sets are infinite and so that

(3.196) |(el, Bek)| < 2−l−1ε ∀ l ∈ L, k ∈ K.

Once we have this, then for u ∈ H, QKu ∈ HK can be expanded to
∑
k∈K

(Qku, ek)ek

and expanding in HL similalry,

(3.197)

QLBQKu =
∑
l∈L

(BQKu, el)el =
∑
k∈L

∑
k∈K

(Bek, el)(QKu, ek)el

=⇒ ‖QLBQKu‖2 ≤
∑
k∈K

(
|(Qku, ek)|2

∑
l∈L

|(Bek, el)|2
)

≤ 1

2
ε2
∑
k∈K

|(Qku, ek)|2 ≤ 1

2
ε2‖u‖2

giving (3.194). The absolute convergence of the series following from (3.196).
Thus, it remains to find a decomposition (3.195) for which (3.196) holds. This

follows from Bessel’s inequality. First choose 1 ∈ K then (Be1, el) → 0 as l → ∞
so |(Be1, el1)| < ε/4 for l1 large enough and we will take l1 > 2k1. Then we use
induction on N, choosing K(N), L(N) and O(N) with

K(N) = {k1 = 1 < k2 < . . . , kN},
L(N) = {l1 < l2 < · · · < lN}, lr > 2kr, kr > lr−1 for 1 < r ≤ N and

O(N) = {1, . . . , lN} \ (K(N) ∪ L(N)).

Now, choose kN+1 > lN by such that |(el, BekN+1
)| < 2−l−N ε, for all l ∈ L(N), and

then lN+1 > 2kN+1 such that |(elN+1
, Bk)| < e−N−1−kε for k ∈ K(N+1) = K(N)∪

{kN+1} and the inductive hypothesis follows with L(N + 1) = N(N) ∪ {lN+1}.
Given a fixed operator A ∈ GL(H) Lemma 40 can be applied with ε = ‖A−1‖−1.

It then follows that the curve

(3.198) A(s) = A− sQLAQK , s ∈ [0, 1]

lies in GL(H) and has endpoint satisfying

(3.199) QLBQK = 0, B = A(1), QLQK = 0 = QKQL, QK = Q2
K , QL = Q2

L

where all three projections, QL, QK and Id−QK −QL have infinite rank.
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These three projections given an identification of H = H ⊕ H ⊕ H and so
replace the bounded operators by 3 × 3 matrices with entries which are bounded
operators on H. The condition (3.199) means that

(3.200) B =

B11 B12 B13

0 B22 B23

B31 B32 B33

 , QK =

1 0 0
0 0 0
0 0 0

 , QL =

0 0 0
0 1 0
0 0 0

 .

So, now we have a ‘little hole’. Under the conditions (3.199) consider

(3.201) P = BQKB
−1(Id−QL).

The condition QLBQK = 0 and the definition show that QLP = 0 = PQL. More-
over,

P 2 = BQKB
−1(Id−QL)BQKB

−1(Id−QL) = BQKB
−1BQKB

−1(Id−QL) = P.

So, P is a projection which acts on the range of Id−QL; from its definition, the
range of P is contained in the range of BQK . Since

PBQK = BQKB
−1(Id−QL)BQK = BQK

it follows that P is a projection onto the range of BQK .
If A = QLAP is an isomorphism between the ranges of P and QL and A′ =

PA′QL is its inverse, it is possible to rotate the range of P to that of QL

(3.202) R(θ) = cos θP + sin θA− sin θA′ + cos θQL + (Id−P −QL).

That this is a rotation can be seen directly

(3.203) R(θ)R(−θ) = Id .

Thus the homotopy R(θ)B, θ ∈ [0, π/2], connects B to

(3.204) B′ = (Id−P −QL)B +AB

since A′B = 0 and (Id−QL)B′QK = (Id−P − QL)BQK + (Id−QL)ABQk = 0.
Thus B′ maps the range of QK to the range of QL and as such is an isomorphism,

(3.205) QLB
′QK = QLABQK = QLAPQK = (QLAP )(PBQK) = APQK .

Now, a similar, simpler, rotation can be made from the range of QL to the range
of QK using any isomorphism, which can be chosen to be G = (APQK)−1,

(3.206) R′(θ) = cos θQL+sin θG− sin θAPQK +cos θQK +QO, R
′(θ′R(−θ) = Id .

The homotopy R′(θ)B′ connects B′ to B′′ which has QKB
′′QK = QK so with

respect to the 2× 2 decomposition given by QK and Id−QK ,

(3.207) B′′ =

(
Id E
0 F

)
.

The invertibility of this is equivalent to the invertibility of F and the homotopy

(3.208) B′′(s) =

(
Id (1− s)E
0 F

)
connects it to

(3.209) L =

(
Id 0
0 F

)
, (B′′(s))−1 =

(
Id −(1− s)EF−1

0 F−1

)
through invertibles.
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The final step is ‘Eilenberg’s swindle’. Start from the form of L in (3.209),
choose an isomorphism Ran(QK) = l2(H)⊕ l2(H) and then consider the successive
rotations in terms of this 2× 2 decomposition

(3.210) L(θ) =

(
cos θ sin θF−1

− sin θF cos θ

)
, θ ∈ [0, π/2],

L(θ) =

(
cos θF−1 sin θF−1

− sin θF cos θF

)
, θ ∈ [π/2, π]

extended to be the constant isomorphism F on the extra factor. Then take the
isomorphism

(3.211) l2(H)⊕ l2(H)⊕H −→ L2(H)⊕ l2(H), ({ui}, {wi}, v) 7−→ ({ui}, {v, wi})
in which the last element of H is place at the beginning of the second sequence.
Now the rotations in (3.210) act on this space and L(π − θ) gives a homotopy

connecting B̃ to the identity.
�




