18.102: NOTES ON HILBERT SPACE

RICHARD MELROSE

ABSTRACT. Here are some notes summarizing and slightly reorganizing the material covered from Chapter 3 of Debnaith and Mikusiński

(1) Baire's theorem. Let M be a complete, non-empty, metric space. If $F_i \subset M$ are closed subsets for $i \in \mathbb{N}$ and

$$(1) M = \bigcup_{i} F_i$$

then at least one of the F_i has non-empty interior, i.e. contains a ball of positive radius.

Proof. Assume on the contrary that each of the F_i has empty interior. Since M contains a ball of positive radius, $F_1 \neq M$. Thus there is a point $p_1 \in M \setminus F_1$ and since this set is open, for some $\epsilon_1 > 0$ $B(p_1, \epsilon_1) \cap F_1 = \emptyset$. Now, consider the set $B(p_1, \epsilon_1/3) \setminus F_2$. This must be non-empty since otherwise F_2 contains a ball, so we can choose $p_2 \in B(p_1, \epsilon_1/3)$ and $0 < \epsilon_2 < \epsilon_1/3$ such that $B(p_2, \epsilon_2) \cap F_2 = \emptyset$ and $B(p_2, \epsilon_2) \subset B(p_1, 2\epsilon_1/3)$. Proceeding step by step this gives a sequence $\{p_n\}$ in M such that

(2)
$$0 < \epsilon_n < \epsilon_{n-1}/3, \ B(p_n, \epsilon_n) \cap F_n = \emptyset, d(p_n, p_{n-1}) < \epsilon_{n-1}.$$

Thus the balls are nested, $B(p_n, \epsilon_n) \subset B(p_{n-1}, 2\epsilon_{n-1}/3)$ and the sequence is Cauchy, $\epsilon_n < 3^{-n+1}\epsilon_1$ and $f(p_n, p_j) < \epsilon_n$ for all $j \ge n$. By the assumed completeness of M, the sequence converges, $p_n \to p$, and the limit cannot be in any of the F_i since it lies inside the closed ball $\{q; |p-q_i| \le 2\epsilon_i/3\}$ which does not meet F_i . This contradicts (1) so at least one of the F_i must have non-empty interior.

- (2) Uniform boundedness Principle which is another theorem. Suppose B is a Banach space, V is a normed space and $L_i: B \longrightarrow V$ is a sequence of bounded linear maps. If, for each $b \in B$, the set
- (3) $\{L_i(b)\subset B\} \text{ is bounded (i.e. in norm) in } V$ then

$$\sup_{i} \|L_i\| < \infty,$$

meaning that the sequence is uniformly bounded.

Proof. Let M be the complete metric space $\{b \in B; ||b||_B \leq 1\}$, the closed unit ball in B. Consider the sets

(5)
$$F_n = \{ b \in M; L_i(b) \le n \ \forall i \}.$$

These are closed sets, since

(6)
$$F_n = \bigcap_i L_i^{-1}(\{|z| \le n\} \cap M)$$

which are all closed by the assumed continuity of the L_i . Moreover, the assumption (3) is that every point in M is in one of the F_n , so

$$(7) M = \bigcup_{n} F_{n}.$$

Baire's theorem therefore shows that at least one of the F_n has non-empty interior. This means that for some $b \in M$, and some $\epsilon > 0$,

(8)
$$|b' - b| \le \epsilon \Longrightarrow |L_i(b)| \le n \ \forall i.$$

This set also contains an open ball in the interior of M so we can assume that (8) holds and $|b| + \epsilon < 1$. Now, the triangle inequality shows that

$$(9) |b'| < \epsilon \Longrightarrow |L_i(b')| \le |L_i(b+b')| + |L_i(b)| \le C$$

where we again use (3). Thus in fact $||L_i|| \leq C/\epsilon$.

(3) If $\{x_n\}$ is a weakly convergent sequence in a Hilbert space H, $x_n \to x$, meaning that for a fixed element $x \in H$ and all $v \in H$

$$\langle x_n, v \rangle \longrightarrow \langle x, v \rangle$$

then $\sup_n ||x_n|| < \infty$.

Proof. We may apply the Uniform Boundedness Principle with B=H the Hilbert space, $V=\mathbb{C}$ and $L_i(v)=\langle v,x_i\rangle$. These are bounded linear functionals, since

(11)
$$|L_i(v)| \le ||x_i|| ||v||$$
 by Schwarz inequality

and in fact $||L_i|| = ||x_i||$ as follows by setting $v = x_i$. Moreover (3) holds since $\langle v, x_i \rangle \to \langle v, x \rangle$ so $||L_i||$ and hence $||x_i||$ are bounded in \mathbb{R} .

- (4) Conversely if x_i is a bounded sequence in H and $\langle x_i, v \rangle \to \langle x, v \rangle$ for all v in a dense subset $D \subset H$ then $x_i \rightharpoonup x$.
- (5) Suppose that $||x||, ||x_n|| \le C$ for all n and $w \in H$. Then there is a sequence $D \ni v_k \to w$. Given $\epsilon > 0$ choose k so large that

$$(12) 2C||w - v_k|| < \epsilon/2$$

then

(13)

$$|\langle x_n, w \rangle - \langle x, w \rangle| \le |\langle x_n, v_k \rangle - \langle x, v_k \rangle| + |\langle x_n - x, w - v_k \rangle| \le |\langle x_n, v_k \rangle - \langle x, v_k \rangle| + \epsilon/2 < \epsilon$$
 for n large. Thus $\langle x_n, w \rangle \to \langle x, w \rangle$ for all $w \in H$ so $x_n \rightharpoonup x$.

(6)

Theorem 1 (Open mapping theorem). Let $T: B_1 \longrightarrow B_2$ be a bounded linear map between Banach spaces and suppose that T is surjective, then $T(O) \subset B_2$ is open for each open set $O \subset B_1$.

Proof. Consider the open ball around the origin in B_1 of unit radius B(0,1). By the assumed surjectivity

(14)
$$\bigcup_{k \in \mathbb{N}} T(B(0,k)) = B_2$$

since every point in B_1 is in the ball of radius k for k large enough. By Baire's theorem it follows that one of the T(B(0,k)) must have closure with non-empty interior in B_1 , that is for some $p \in B_2$, some $\epsilon > 0$ and some k,

(15)
$$B(p,\epsilon) \subset \overline{T(B(0,k)}.$$

This means that the set $T(B(0,k))\cap B(p,\epsilon)$ is dense in $B(p,\epsilon)$. In particular it is non-empty, so there is some $q\in B(0,k)$ such that $T(q)\in B(p,\epsilon)$. If $\delta>0$ is small enough then $B(T(q),\delta)\subset B(p,\epsilon)$ so $T(B(0,k))\cap B(T(q),\delta)$ is also dense in $B(T(q),\delta)$. So, reverting to the earlier notation, we can assume that p=T(q), the centre of the ball, is in T(B(0,k)). The triangle inequality shows that $B(q,2k)\supset B(0,k)$. It follows that

(16)
$$B(0,\epsilon) \subset \overline{T(B(0,2k))}.$$

Indeed, if $f \in B(0, \epsilon)$ then $T(q) + f = \lim_n T(q_n)$, $q_n \in B(T(q), \epsilon)$. Thus $f = \lim_n T(q_n - q)$ and $q_n - q \in B(0, 2k)$.

Now we use the linearity of T to make (16) look more uniform. Given $f \in B(0, \epsilon)$ and $\eta > 0$, (16) asserts the existence of $u \in B(0, 2k)$ such that $||Tu - f|| < \eta$. Suppose that $f \in B_2$ and $f \neq 0$. Then $f' = \epsilon f/2||f|| \in B(0, \epsilon)$. So there exists $u' \in B(0, 2k)$ with $||Tu' - f'|| < \epsilon \eta/2||f||$. This means that $u = 2||f||u'/\epsilon$ shows that

(17)
$$\exists u \in B_1, ||u|| \le C||f||, ||Tu - f|| < \eta, C = 2k/\epsilon.$$

So this is the uniformity – this is possible for every $f \in B_2$ and every $\eta > 0$ with C independent of η and f – including f = 0 for which we can take u = 0 for any η .

So, now fix $f \in B(0,1) \subset B_2$ and choose a sequence $u_n \in B_1$ using (17). First apply (17) to f with $\eta = 1/2$ and let u_1 be the result. Now, suppose by induction we have obtained u_k for $k \le n$ which satisfy

(18)
$$||u_k|| \le 2^{-k}C, ||T(\sum_{k=1}^n u_k) - f|| \le 2^{-n}.$$

Then apply (17) again but to $f_{n+1} = f - T(\sum_{k=1}^{n} u_k)$ with $\eta = 2^{-n-1}$ and let u_{n+1} be the result. So $||u_{n+1}|| \leq 2^{-n}C$ and

(19)
$$||Tu_n - (f - T(\sum_{k=1}^{n-1} u_k))|| \le 2^{-n-1}.$$

This is just the inductive hypothesis (18) for n + 1 so in fact we have (18) for every n. It follows that

(20)
$$v_n = \sum_{k=1}^n u_k \Longrightarrow ||v_n - v_m|| < 2^{-|n-m|}C, ||v_n|| < C$$

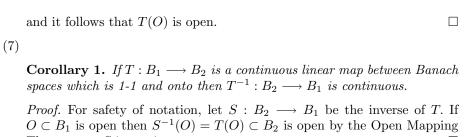
so v_n is Cauchy in B_1 , hence convergent by the assumed completeness of B_1 . Thus $v_n \to V$ in B_1 . However the second part of (18) shows that $Tv_n \to f$ so by the continuity of T, Tv = f. Moreover, $v \in B(0, 3C)$ so we conclude that

(21)
$$T(B(0,3C)) \supset B(0,1)$$

without taking the closure.

Now, from (21) it follows for any $\epsilon > 0$, $T(0, 3C\epsilon) \supset B(0, \epsilon)$. If O is open and $q \in T(O)$, so q = T(p) for $p \in O$ then, for some $\epsilon > 0$, $B(p, 3C\epsilon) \subset O$ so

(22)
$$T(O) \supset T(B(p, 3C\epsilon)) \supset B(q, \epsilon)$$



Department of Mathematics, Massachusetts Institute of Technology $E\text{-}mail\ address$: rbm@math.mit.edu

Theorem, so S is continuous.