Undecidability in number theory

Bjorn Poonen

Rademacher Lecture 1 November 6, 2017

Undecidability in number theory

Bjorn Poonen

H1

Polynomial equations Hilbert's 10th problem Diophantine sets Listable sets DPRM theorem

Consequences of DPRM

Prime-producing polynomials Riemann hypothesis

Related problems

Do there exist integers x, y, z such that

$$x^3 + y^3 + z^3 = 29$$
?

Undecidability in number theory

Bjorn Poonen

H1

Polynomial equations
Hilbert's 10th problem
Diophantine sets
Listable sets

Consequences of DPRM

Prime-producing polynomials Riemann hypothesis

Related problems

Do there exist integers x, y, z such that

$$x^3 + y^3 + z^3 = 29$$
?

Yes:
$$(x, y, z) = (3, 1, 1)$$
.

Undecidability in number theory

Bjorn Poonen

H

Polynomial equations Hilbert's 10th problem Diophantine sets Listable sets

Consequences of DPRM

Prime-producing polynomials
Riemann hypothesis

Related problems

Do there exist integers x, y, z such that

$$x^3 + y^3 + z^3 = 30?$$

Undecidability in number theory

Bjorn Poonen

H1

Polynomial equations Hilbert's 10th problem Diophantine sets Listable sets

Consequences of DPRM

Prime-producing polynomials Riemann hypothesis

Related problems

H10 over \mathcal{O}_k H10 over \mathbb{Q} First-order sentences
Subrings of \mathbb{Q} Status of knowledge

Do there exist integers x, y, z such that

$$x^3 + y^3 + z^3 = 30?$$

Yes:
$$(x, y, z) = (-283059965, -2218888517, 2220422932).$$

(discovered in 1999 by E. Pine, K. Yarbrough, W. Tarrant, and M. Beck, following an approach suggested by N. Elkies.)

Undecidability in number theory

Bjorn Poonen

H1

Polynomial equations Hilbert's 10th problem Diophantine sets Listable sets DPRM theorem

Consequences of DPRM

Prime-producing polynomials Riemann hypothesis

Do there exist integers x, y, z such that

$$x^3 + y^3 + z^3 = 33?$$

Undecidability in number theory

Bjorn Poonen

H1

Polynomial equations Hilbert's 10th problem Diophantine sets Listable sets

Consequences of DPRM

Prime-producing polynomials Riemann hypothesis

Related problems

Do there exist integers x, y, z such that

$$x^3 + y^3 + z^3 = 33?$$

Unknown.

Undecidability in number theory

Bjorn Poonen

H1

Polynomial equations Hilbert's 10th problem Diophantine sets Listable sets

Consequences of

Prime-producing polynomials
Riemann hypothesis

Related problems

David Hilbert, in the 10th of the list of 23 problems he published after a famous lecture in 1900, asked his audience to find a method that would answer all such questions.

Hilbert's tenth problem (H10)

Find an algorithm that solves the following problem:

input: a multivariable polynomial $f(x_1,...,x_n)$ with integer coefficients

output: YES or NO, according to whether there exist integers $a_1, a_2, ..., a_n$ such that $f(a_1, ..., a_n) = 0$.

More generally, one could ask for an algorithm for solving a system of polynomial equations, but this would be equivalent, since

$$f_1 = \cdots = f_m = 0 \iff f_1^2 + \cdots + f_m^2 = 0.$$

Undecidability in number theory

Bjorn Poonen

H1

Polynomial equations Hilbert's 10th problem Diophantine sets

Consequences of

Prime-producing polynomials Riemann hypothesis

Hilbert's tenth problem

Hilbert's tenth problem (H10)

Find a Turing machine that solves the following problem:

input: a multivariable polynomial $f(x_1, ..., x_n)$ with

integer coefficients

output: YES or NO, according to whether

there exist integers a_1, a_2, \ldots, a_n such that

 $f(a_1,\ldots,a_n)=0.$

Theorem (Davis-Putnam-Robinson 1961 + Matiyasevich 1970)

No such algorithm exists!

In fact they proved something stronger...

Undecidability in number theory

Bjorn Poonen

H1

Polynomial equations Hilbert's 10th problem Diophantine sets

onsequences of

Prime-producing polynomials Riemann hypothesis

Related problems

H10 over \mathcal{O}_k H10 over \mathbb{Q} First-order sentences Subrings of \mathbb{Q} Status of knowledge

Family of polynomial equations

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = -2$$

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = -1$$

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = 0$$

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1$$

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1$$

$$YES$$

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = 2$$

$$YES$$

$$\vdots$$

The set of $a \in \mathbb{Z}$ such that

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = a$$

has a solution in integers is

$$\{0,1,2,\ldots\}=:\mathbb{N}$$

Undecidability in number theory

Bjorn Poonen

H

Polynomial equations Hilbert's 10th problem

Diophantine sets Listable sets

Consequences

OPRM Prime-producing

polynomials Riemann hypothesis

Related problems

H10 over \mathcal{O}_k H10 over \mathbb{Q}

First-order sentences Subrings of Q Status of knowledge

Family of polynomial equations

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = -2$$

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = -1$$

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = 0$$

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1$$

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1$$

$$YES$$

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = 2$$

$$YES$$

$$\vdots$$

The set of $a \in \mathbb{Z}$ such that

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 - a = 0$$

has a solution in integers is

$$\{0,1,2,\ldots\}=:\mathbb{N}$$

Undecidability in number theory

Bjorn Poonen

H1

Polynomial equations Hilbert's 10th problem

Diophantine sets Listable sets

DPRM theorem

onsequences of PRM

Prime-producing polynomials
Riemann hypothesis

Related problems

H10 over
$$\mathcal{O}_k$$

H10 over \mathbb{Q}
First-order sentences

Subrings of Q Status of knowledge

Diophantine sets

Definition

 $A \subseteq \mathbb{Z}$ is diophantine if there exists

$$p(t,\vec{x}) \in \mathbb{Z}[t,x_1,\ldots,x_m]$$

such that

$$A = \{ a \in \mathbb{Z} : p(a, \vec{x}) = 0 \text{ has a solution } \vec{x} \in \mathbb{Z}^m \}.$$

Example

The subset $\mathbb{N} := \{0, 1, 2, \dots\}$ of \mathbb{Z} is diophantine, since for $a \in \mathbb{Z}$,

$$a \in \mathbb{N} \iff (\exists x_1, x_2, x_3, x_4 \in \mathbb{Z}) x_1^2 + x_2^2 + x_3^2 + x_4^2 - a = 0.$$

Undecidability in number theory

Bjorn Poonen

H10

Polynomial equations Hilbert's 10th problem

Diophantine sets Listable sets

Consequences of

DPRM

polynomials
Riemann hypothesis

Related problems

Listable sets

Definition

 $A \subseteq \mathbb{Z}$ is listable if there is a Turing machine such that A is the set of integers that it prints out when left running forever.

Example

The set of integers expressible as a sum of three cubes is listable.

(Print out $x^3+y^3+z^3$ for all $|x|,|y|,|z| \le 10$, then print out $x^3+y^3+z^3$ for $|x|,|y|,|z| \le 100$, and so on.)

Undecidability in number theory

Bjorn Poonen

H1

Polynomial equations Hilbert's 10th problem Diophantine sets

Consequences of

Prime-producing polynomials Riemann hypothesis

Related problems

Halting problem

Can one write a debugger to solve the halting problem?

input: program p and natural number x

output: YES if p on input x eventually halts,

NO if it enters an infinite loop.

Theorem (Turing 1936)

No such debugger exists; the halting problem is unsolvable.

Sketch of proof:

Enumerate all programs. If we had a debugger, we could use it to write a new program H such that for every $x \in \mathbb{N}$,

H on input x halts \iff program x on input x does not halt.

Taking x = H, we find a contradiction:

H on input H halts \iff H on input H does not halt.

Undecidability in number theory

Bjorn Poonen

H1

Polynomial equations Hilbert's 10th problem Diophantine sets Listable sets

DPRM theorem

OPRM
Prime-producing

Riemann hypothesis

Negative answer to H10

What Davis-Putnam-Robinson-Matiyasevich really proved is:

DPRM theorem: Diophantine \iff listable

(They showed that the theory of diophantine equations is rich enough to simulate any computer!)

The DPRM theorem implies a negative answer to H10:

- The unsolvability of the halting problem provides a listable set for which no algorithm can decide membership.
- So there exists a *diophantine* set for which no algorithm can decide membership.
- Thus H10 has a negative answer.

Undecidability in number theory

Bjorn Poonen

H:

Polynomial equations Hilbert's 10th problem Diophantine sets Listable sets DPRM theorem

Consequences of

Prime-producing polynomials

Related problems

More fun consequences of the DPRM theorem

"Diophantine \iff listable" has applications beyond the negative answer to H10:

- Prime-producing polynomials
- Diophantine statement of the Riemann hypothesis

Undecidability in number theory

Bjorn Poonen

H3

Polynomial equations Hilbert's 10th problem Diophantine sets Listable sets DPRM theorem

Consequences of DPRM

Prime-producing polynomials
Riemann hypothesis

Related problems

the 26-variable polynomial

 $(k+2)\{1-([wz+h+i-q]^2$ $+[(gk+2g+k+1)(h+j)+h-z]^2$ $+[16(k+1)^3(k+2)(n+1)^2+1-f^2]^2$ $+[2n+p+q+z-e]^2+[e^3(e+2)(a+1)^2+1-o^2]^2$

 $+[(a^2-1)v^2+1-x^2]^2+[16r^2v^4(a^2-1)+1-u^2]^2$

 $+[((a+u^2(u^2-a))^2-1)(n+4dy)^2+1-(x+cu)^2]^2$ $+[(a^2-1)\ell^2+1-m^2]^2$ $+[ai + k + 1 - \ell - i]^2 + [n + \ell + v - v]^2$ $+[p+\ell(a-n-1)+b(2an+2a-n^2-2n-2)-m]^2$ $+[q + y(a - p - 1) + s(2ap + 2a - p^2 - 2p - 2) - x]^2$ $+[z+p\ell(a-p)+t(2ap-p^2-1)-pm]^2)$

as the variables range over nonnegative integers

(J. Jones, D. Sato, H. Wada, D. Wiens).

Undecidability in number theory

Biorn Poonen

Prime-producing

polynomials

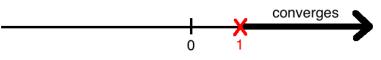
Riemann zeta function

The series

$$\zeta(s) := \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

converges for real numbers s > 1.

But $\zeta(s) \to \infty$ as $s \to 1$ from the right.



- Within \mathbb{R} , there is no way to extend $\zeta(s)$ to an analytic function across 1 to define it to the left of 1.
- ullet But in $\mathbb C$, one can go around 1, to get values like

$$\zeta(-1)=-\frac{1}{12}.$$

Some people pretend that this means that

$$1+2+3+\cdots=-\frac{1}{12}$$
.

Undecidability in number theory

Bjorn Poonen

н

Polynomial equations Hilbert's 10th problem Diophantine sets Listable sets DPRM theorem

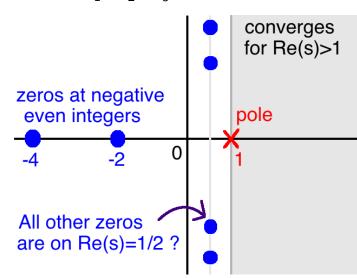
Consequences of

Prime-producing polynomials Riemann hypothesis

Related problems
H10 over \mathcal{O}_k H10 over \mathcal{O}_k First-order sentences
Subrings of \mathcal{O}_k Status of knowledge

Riemann zeta function on the complex plane

$$\zeta(s) := \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$
 when $\text{Re}(s) > 1$.



Undecidability in number theory

Bjorn Poonen

H:

Polynomial equations Hilbert's 10th problem Diophantine sets Listable sets DPRM theorem

ionsequences of PRM

polynomials
Riemann hypothesis

Polated problems

H10 over \mathcal{O}_k H10 over $\mathbb Q$ First-order sentences Subrings of $\mathbb Q$ Status of knowledge

Riemann hypothesis

zeros at negative even integers

-4 -2 0

All other zeros are on Re(s)=1/2?

Riemann hypothesis (from 1859, still not proved)

All zeros of $\zeta(s)$ except for $-2, -4, -6, \dots$ satisfy Re(s) = 1/2.

The DPRM theorem gives an explicit polynomial equation that has a solution in integers if and only if the Riemann hypothesis is *false*.

Construction of this polynomial equation.

- One can write a computer program that, when left running forever, will detect a counterexample to the Riemann hypothesis if one exists.
- Simulate this program with a diophantine equation.

Undecidability in number theory

Bjorn Poonen

H1

Polynomial equations Hilbert's 10th problem Diophantine sets Listable sets DPRM theorem

onsequences of PRM

polynomials

Riemann hypothesis

H10 over \mathcal{O}_k H10 over \mathcal{Q} First-order sentences Subrings of \mathcal{Q} Status of knowledge

H10 over rings of integers

Given a number field k, its ring of integers is

$$\mathcal{O}_k := \{ \alpha \in k : f(\alpha) = 0 \text{ for some monic } f \in \mathbb{Z}[x] \}.$$

Example

If
$$k = \mathbb{Q}(i) = \{a + bi : a, b \in \mathbb{Q}\}$$
, then $\mathcal{O}_k = \mathbb{Z}[i]$.

Conjecture

 $H10/\mathcal{O}_k$ has a negative answer for every number field k.

Question

Why can't we just replace \mathbb{Z} by \mathcal{O}_k in the proof of DPRM?

Answer:

- For the Pell equation $T: x^2 dy^2 = 1$ (where $d \in \mathbb{Z}_{>0}$) is a fixed non-square), rank $T(\mathbb{Z}) = 1$.
- For most number fields k, it is impossible to find tori T such that the needed conditions on rank $T(\mathcal{O}_k)$ hold.

On the other hand, there exist other algebraic groups...

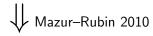
Undecidability in number theory

Biorn Poonen

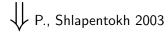
H10 over O L

H10 over rings of integers, continued

Conjecture: Shafarevich—Tate groups of elliptic curves are finite.



For every prime-degree Galois extension of number fields $L\supseteq K$, there is an elliptic curve E/K with rank $E(L)=\operatorname{rank} E(K)>0$.



For every number field k, $\text{H}10/\mathcal{O}_k$ has a negative answer.

Undecidability in number theory

Bjorn Poonen

H:

Polynomial equations Hilbert's 10th problem Diophantine sets Listable sets DPRM theorem

Consequences of OPRM

Prime-producing polynomials Riemann hypothesis

Related problems

H10 over \mathcal{O}_k H10 over $\mathbb Q$

First-order sentences Subrings of Q Status of knowledge

Hilbert's tenth problem over $\mathbb Q$

Question

Is there an algorithm to decide whether a multivariable polynomial equation has a solution in rational numbers?

The answer is not known!

- If $\mathbb Z$ is diophantine over $\mathbb Q$, then the negative answer for $\mathbb Z$ implies a negative answer for $\mathbb Q$.
- But there is a conjecture that implies that Z is not diophantine over Q:

Conjecture (Mazur 1992)

For any polynomial equation $f(x_1,...,x_n)=0$ with rational coefficients, if S is the set of rational solutions, then the closure of S in \mathbb{R}^n has at most finitely many connected components.

Undecidability in number theory

Bjorn Poonen

H3

Polynomial equations Hilbert's 10th problem Diophantine sets Listable sets DPRM theorem

Consequences of OPRM

Prime-producing polynomials Riemann hypothesis

Related problems H10 over ${\cal O}_k$

H10 over Q
First-order sentence

$$(\exists x_1 \exists x_2 \cdots \exists x_n) \ p(x_1, \ldots, x_n) = 0.$$

 Harder problem: Find an algorithm to decide the truth of arbitrary first-order sentences, in which any number of bound quantifiers \exists and \forall are permitted, e.g.,

$$(\exists x)(\forall y)(\exists z)(\exists w) \quad (x \cdot z + 3 = y^2) \quad \forall \quad \neg(z = x + w).$$

If variables range over integers, this is undecidable (since it is harder than the original H10).

But what if variables range over rational numbers?

First-order sentences

Theorem (Robinson 1949, P. 2007, Koenigsmann 2016)

The set \mathbb{Z} equals the set of $t \in \mathbb{Q}$ such that

$$(\forall a, b)(\exists x_1, x_2, x_3, x_4, y_2, y_3, y_4)$$

$$(a + x_1^2 + x_2^2 + x_3^2 + x_4^2)(b + x_1^2 + x_2^2 + x_3^2 + x_4^2)$$

$$\cdot \left[(x_1^2 - ax_2^2 - bx_3^2 + abx_4^2 - 1)^2 + ((t - 2x_1)^2 - 4ay_2^2 - 4by_3^2 + 4aby_4^2 - 4)^2 \right] = 0$$

is true, when the variables range over rational numbers.

Corollary (Robinson 1949)

There is no algorithm to decide the truth of a first-order sentence over \mathbb{Q} .

Building on these ideas, Koenigsmann (2016) proved also that the *complement* $\mathbb{Q} - \mathbb{Z}$ is diophantine over \mathbb{Q} . This was generalized to number fields by Jennifer Park.

Undecidability in number theory

Bjorn Poonen

H₁₀

Polynomial equations
Hilbert's 10th problem
Diophantine sets
Listable sets
DPRM theorem

DPRM . . .

polynomials Riemann hypothesis

Related problems

First-order sentences
Subrings of Q
Status of knowledge

Example

$$\mathbb{Z}[1/2] := \left\{ \frac{a}{2^m} : a \in \mathbb{Z}, \ m \ge 0 \right\}$$

Example

$$\mathbb{Z}[1/2, 1/3] := \left\{ \frac{a}{2^m 3^n} : a \in \mathbb{Z}, \ m, n \ge 0 \right\}$$

In general, if $S \subseteq \mathcal{P} := \{\text{all primes}\}$, one can define

$$\mathbb{Z}[S^{-1}] = \text{the subring of } \mathbb{Q} \text{ generated by } p^{-1} \text{ for all } p \in S$$
$$= \left\{ \frac{a}{d} : a \in \mathbb{Z}, \ d \text{ is a product of powers of primes in } S \right\}$$

Proposition

Every subring of \mathbb{Q} is of the form $\mathbb{Z}[S^{-1}]$ for a unique S.

H10

Polynomial equations
Hilbert's 10th problem
Diophantine sets
Listable sets
DPRM theorem

Consequences of

Prime-producing polynomials Riemann hypothesis

Related problems

H10 over Q
First-order sentences
Subrings of Q

Subrings of Q Status of knowledge

H10 over subrings of O

Proposition

Every subring of \mathbb{Q} is of the form $\mathbb{Z}[S^{-1}]$ for a unique S.

Examples:

- $S = \emptyset$, $\mathbb{Z}[S^{-1}] = \mathbb{Z}$, answer is negative.
- $S = \mathcal{P}$, $\mathbb{Z}[S^{-1}] = \mathbb{Q}$, answer is unknown.
- How large can we make S (in the sense of density) and still prove a negative answer for H10 over $\mathbb{Z}[S^{-1}]$?
- For finite S, a negative answer follows from work of Robinson, who used the Hasse-Minkowski theorem (local-global principle) for quadratic forms.

Undecidability in number theory

Biorn Poonen

Subrings of 0

H10 over subrings of \mathbb{Q} , continued

Theorem (P., 2003)

There exists a computable set of primes $S \subset \mathcal{P}$ of density 1 such that H10 over $\mathbb{Z}[S^{-1}]$ has a negative answer.

The proof use properties of integral points on elliptic curves.

Undecidability in number theory

Bjorn Poonen

H:

Polynomial equations Hilbert's 10th problem Diophantine sets Listable sets DPRM theorem

Consequences of DPRM

Prime-producing polynomials Riemann hypothesis

Related problems

110 over Q First-order sentences

Subrings of Q
Status of knowledge

Ring	H10	1st order theory
\mathbb{C}	YES	YES
\mathbb{R}	YES	YES
\mathbb{F}_q	YES	YES
<i>p</i> -adic fields	YES	YES
$\mathbb{F}_q(\!(t)\!)$?	?
number field	?	NO
Q	?	NO
global function field	NO	NO
$\mathbb{F}_q(t)$	NO	NO
$\mathbb{C}(t)$?	?
$\mathbb{C}(t_1,\ldots,t_n),\ n\geq 2$	NO	NO
$\mathbb{R}(t)$	NO	NO
\mathcal{O}_k	?	NO
\mathbb{Z}	NO	NO

Undecidability in number theory

Bjorn Poonen

H10

Polynomial equations Hilbert's 10th problem Diophantine sets Listable sets DPRM theorem

onsequences of PRM

Prime-producing polynomials Riemann hypothesis

H10 over \mathcal{O}_k

ubrings of Q

Status of knowledge