Undecidability in number theory

Bjorn Poonen

Rademacher Lecture 1
November 6, 2017

Examples of polynomial equations

Do there exist integers x, y, z such that

$$
x^{3}+y^{3}+z^{3}=29 ?
$$

Polynomial equations
Hilbert's 10th problem
Diophantine sets
Listable sets
DPRM theorem
Consequences of DPRM
Prime-producing polynomials
Riemann hypothesis
Related problems
H10 over \mathcal{O}_{k}
H10 over ©
First-order sentences
Subrings of \mathbb{Q}
Status of knowledge

Examples of polynomial equations

Do there exist integers x, y, z such that

$$
x^{3}+y^{3}+z^{3}=29 ?
$$

Yes: $(x, y, z)=(3,1,1)$.

Polynomial equations
Hilbert's 10th problem
Diophantine sets
Listable sets
DPRM theorem
Consequences of DPRM
Prime-producing polynomials
Riemann hypothesis
Related problems
H10 over \mathcal{O}_{k}
H10 over Q
First-order sentences

Examples of polynomial equations

Do there exist integers x, y, z such that

$$
x^{3}+y^{3}+z^{3}=30 ?
$$

Polynomial equations
Hilbert's 10th problem
Diophantine sets
Listable sets
DPRM theorem
Consequences of DPRM
Prime-producing polynomials
Riemann hypothesis
Related problems
H10 over \mathcal{O}_{k}
H10 over ©
First-order sentences
Subrings of \mathbb{Q}
Status of knowledge

Examples of polynomial equations

Do there exist integers x, y, z such that

$$
x^{3}+y^{3}+z^{3}=30 ?
$$

Yes: $(x, y, z)=(-283059965,-2218888517,2220422932)$.
(discovered in 1999 by E. Pine, K. Yarbrough, W. Tarrant, and M. Beck, following an approach suggested by N. Elkies.)

Polynomial equations Hilbert's 10th problem
Diophantine sets
Listable sets
DPRM theorem

Examples of polynomial equations

Do there exist integers x, y, z such that

$$
x^{3}+y^{3}+z^{3}=33 ?
$$

Polynomial equations
Hilbert's 10th problem
Diophantine sets

Listable sets

DPRM theorem
Consequences of DPRM
Prime-producing polynomials
Riemann hypothesis
Related problems
H10 over \mathcal{O}_{k}
H10 over ©
First-order sentences
Subrings of \mathbb{Q}
Status of knowledge

Examples of polynomial equations

Do there exist integers x, y, z such that

$$
x^{3}+y^{3}+z^{3}=33 ?
$$

Unknown.

Polynomial equations
Hilbert's 10th problem
Diophantine sets

Listable sets

DPRM theorem
Consequences of DPRM
Prime-producing polynomials
Riemann hypothesis
Related problems
H10 over \mathcal{O}_{k}
H10 over Q
First-order sentences

Hilbert's tenth problem

David Hilbert, in the 10th of the list of 23 problems he published after a famous lecture in 1900, asked his audience to find a method that would answer all such questions.

Hilbert's tenth problem (H10)

Find an algorithm that solves the following problem:
input: a multivariable polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ with integer coefficients
output: YES or NO, according to whether there exist integers $a_{1}, a_{2}, \ldots, a_{n}$ such that $f\left(a_{1}, \ldots, a_{n}\right)=0$.

More generally, one could ask for an algorithm for solving a system of polynomial equations, but this would be equivalent, since

$$
f_{1}=\cdots=f_{m}=0 \Longleftrightarrow f_{1}^{2}+\cdots+f_{m}^{2}=0
$$

Undecidability in number theory

Hilbert's tenth problem

Undecidability in number theory

Hilbert's tenth problem (H10)

Find a Turing machine that solves the following problem: input: a multivariable polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ with integer coefficients
output: YES or NO, according to whether there exist integers $a_{1}, a_{2}, \ldots, a_{n}$ such that $f\left(a_{1}, \ldots, a_{n}\right)=0$.

Theorem (Davis-Putnam-Robinson 1961 + Matiyasevich 1970)

No such algorithm exists!
In fact they proved something stronger...

Family of polynomial equations

Undecidability in number theory

$$
\begin{array}{rr}
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=-2 & \mathrm{NO} \\
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=-1 & \mathrm{NO} \\
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=0 & \text { YES } \\
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=1 & \text { YES } \\
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=2 & \text { YES }
\end{array}
$$

The set of $a \in \mathbb{Z}$ such that

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=a
$$

has a solution in integers is

$$
\{0,1,2, \ldots\}=: \mathbb{N}
$$

Family of polynomial equations

Undecidability in number theory

$$
\begin{array}{rlr}
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=-2 & \quad \mathrm{NO} \\
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=-1 & \mathrm{NO} \\
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=0 & \text { YES } \\
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=1 & \text { YES } \\
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=2 & \text { YES }
\end{array}
$$

The set of $a \in \mathbb{Z}$ such that

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}-a=0
$$

has a solution in integers is

$$
\{0,1,2, \ldots\}=: \mathbb{N}
$$

Diophantine sets

Undecidability in number theory

Definition

$A \subseteq \mathbb{Z}$ is diophantine if there exists

$$
p(t, \vec{x}) \in \mathbb{Z}\left[t, x_{1}, \ldots, x_{m}\right]
$$

such that

$$
A=\left\{a \in \mathbb{Z}: p(a, \vec{x})=0 \text { has a solution } \vec{x} \in \mathbb{Z}^{m}\right\} .
$$

Example

The subset $\mathbb{N}:=\{0,1,2, \ldots\}$ of \mathbb{Z} is diophantine, since for $a \in \mathbb{Z}$,

$$
a \in \mathbb{N} \Longleftrightarrow\left(\exists x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{Z}\right) x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}-a=0
$$ Hilbert's 10th problem

Diophantine sets Listable sets
DPRM theorem
Consequences of DPRM
Prime-producing polynomials
Riemann hypothesis
Related problems
H10 over \mathcal{O}_{k}
H10 over Q
First-order sentences
Subrings of \mathbb{Q}
Status of knowledge

Listable sets

Definition

$A \subseteq \mathbb{Z}$ is listable if there is a Turing machine such that A is the set of integers that it prints out when left running forever.

Example

The set of integers expressible as a sum of three cubes is listable.

$$
\begin{aligned}
& \text { (Print out } x^{3}+y^{3}+z^{3} \text { for all }|x|,|y|,|z| \leq 10 \\
& \text { then print out } x^{3}+y^{3}+z^{3} \text { for }|x|,|y|,|z| \leq 100 \text {, } \\
& \text { and so on.) }
\end{aligned}
$$

Halting problem

Can one write a debugger to solve the halting problem?
input: program p and natural number x
output: YES if p on input x eventually halts, NO if it enters an infinite loop.

Theorem (Turing 1936)

No such debugger exists; the halting problem is unsolvable.
Sketch of proof:
Enumerate all programs. If we had a debugger, we could use it to write a new program H such that for every $x \in \mathbb{N}$, H on input x halts \Longleftrightarrow program x on input x does not halt.

Taking $x=H$, we find a contradiction:
H on input H halts $\Longleftrightarrow H$ on input H does not halt.

Negative answer to H 10

What Davis-Putnam-Robinson-Matiyasevich really proved is:

DPRM theorem: Diophantine \Longleftrightarrow listable

(They showed that the theory of diophantine equations is rich enough to simulate any computer!)

The DPRM theorem implies a negative answer to H10:

- The unsolvability of the halting problem provides a listable set for which no algorithm can decide membership.
- So there exists a diophantine set for which no algorithm can decide membership.
- Thus H10 has a negative answer.

More fun consequences of the DPRM theorem

"Diophantine \Longleftrightarrow listable"
has applications beyond the negative answer to H 10 :

- Prime-producing polynomials
- Diophantine statement of the Riemann hypothesis

Consequences of DPRM
Prime-producing polynomials
Riemann hypothesis

The set of primes equals the set of positive values assumed by the 26 -variable polynomial

$$
\begin{gathered}
(k+2)\left\{1-\left([w z+h+j-q]^{2}\right.\right. \\
+[(g k+2 g+k+1)(h+j)+h-z]^{2} \\
+\left[16(k+1)^{3}(k+2)(n+1)^{2}+1-f^{2}\right]^{2} \\
+[2 n+p+q+z-e]^{2}+\left[e^{3}(e+2)(a+1)^{2}+1-o^{2}\right]^{2} \\
+\left[\left(a^{2}-1\right) y^{2}+1-x^{2}\right]^{2}+\left[16 r^{2} y^{4}\left(a^{2}-1\right)+1-u^{2}\right]^{2} \\
+\left[\left(\left(a+u^{2}\left(u^{2}-a\right)\right)^{2}-1\right)(n+4 d y)^{2}+1-(x+c u)^{2}\right]^{2} \\
+\left[\left(a^{2}-1\right) \ell^{2}+1-m^{2}\right]^{2} \\
+[a i+k+1-\ell-i]^{2}+[n+\ell+v-y]^{2} \\
+\left[p+\ell(a-n-1)+b\left(2 a n+2 a-n^{2}-2 n-2\right)-m\right]^{2} \\
+\left[q+y(a-p-1)+s\left(2 a p+2 a-p^{2}-2 p-2\right)-x\right]^{2} \\
\left.\left.+\left[z+p \ell(a-p)+t\left(2 a p-p^{2}-1\right)-p m\right]^{2}\right)\right\}
\end{gathered}
$$

Undecidability in number theory

Bjorn Poonen
as the variables range over nonnegative integers
(J. Jones, D. Sato, H. Wada, D. Wiens).

Riemann zeta function

The series

$$
\zeta(s):=\frac{1}{1^{s}}+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\cdots
$$

converges for real numbers $s>1$.
But $\zeta(s) \rightarrow \infty$ as $s \rightarrow 1$ from the right.

- Within \mathbb{R}, there is no way to extend $\zeta(s)$ to an analytic function across 1 to define it to the left of 1 .
- But in \mathbb{C}, one can go around 1 , to get values like

$$
\zeta(-1)=-\frac{1}{12} .
$$

Some people pretend that this means that

$$
1+2+3+\cdots=-\frac{1}{12}
$$

Undecidability in number theory

Riemann zeta function on the complex plane

$$
\zeta(s):=\frac{1}{1^{s}}+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\cdots \quad \text { when } \operatorname{Re}(s)>1 .
$$

Undecidability in number theory

Bjorn Poonen Hilbert's 10th problem Diophantine sets Listable sets

Riemann hypothesis

Undecidability in number theory

Bjorn Poonen

Polynomial equations
Hilbert's 10th problem
Diophantine sets
Listable sets
DPRM theorem
Consequences of

Prime-producing
polynomials
Riemann hypothesis

Related problems

H10 over \mathcal{O}_{k}
H10 over ©
First-order sentences
Subrings of \mathbb{Q}
Status of knowledge the Riemann hypothesis is false.

Construction of this polynomial equation.

- One can write a computer program that, when left running forever, will detect a counterexample to the Riemann hypothesis if one exists.
- Simulate this program with a diophantine equation.

H10 over rings of integers

Given a number field k, its ring of integers is
$\mathcal{O}_{k}:=\{\alpha \in k: f(\alpha)=0$ for some monic $f \in \mathbb{Z}[x]\}$.

Example

If $k=\mathbb{Q}(i)=\{a+b i: a, b \in \mathbb{Q}\}$, then $\mathcal{O}_{k}=\mathbb{Z}[i]$.

Conjecture

$H 10 / \mathcal{O}_{k}$ has a negative answer for every number field k.

Question

Why can't we just replace \mathbb{Z} by \mathcal{O}_{k} in the proof of DPRM?
Answer:

- For the Pell equation $T: x^{2}-d y^{2}=1$ (where $d \in \mathbb{Z}_{>0}$ is a fixed non-square), $\operatorname{rank} T(\mathbb{Z})=1$.
- For most number fields k, it is impossible to find tori T such that the needed conditions on rank $T\left(\mathcal{O}_{k}\right)$ hold.
On the other hand, there exist other algebraic groups. . .

H10 over rings of integers, continued

Conjecture: Shafarevich-Tate groups of elliptic curves are finite.

\Downarrow Mazur-Rubin 2010
For every prime-degree Galois extension of number fields $L \supseteq K$, there is an elliptic curve E / K with

$$
\operatorname{rank} E(L)=\operatorname{rank} E(K)>0
$$

\Downarrow P., Shlapentokh 2003
For every number field $k, \mathrm{H} 10 / \mathcal{O}_{k}$ has a negative answer.

Hilbert's tenth problem over \mathbb{Q}

Question

Is there an algorithm to decide whether a multivariable polynomial equation has a solution in rational numbers?

The answer is not known!

- If \mathbb{Z} is diophantine over \mathbb{Q}, then the negative answer for \mathbb{Z} implies a negative answer for \mathbb{Q}.
- But there is a conjecture that implies that \mathbb{Z} is not diophantine over \mathbb{Q} :

Conjecture (Mazur 1992)

For any polynomial equation $f\left(x_{1}, \ldots, x_{n}\right)=0$ with rational coefficients, if S is the set of rational solutions, then the closure of S in \mathbb{R}^{n} has at most finitely many connected components.

First-order sentences

- H10 is about truth of positive existential sentences

$$
\left(\exists x_{1} \exists x_{2} \cdots \exists x_{n}\right) p\left(x_{1}, \ldots, x_{n}\right)=0 .
$$

- Harder problem: Find an algorithm to decide the truth of arbitrary first-order sentences, in which any number of bound quantifiers \exists and \forall are permitted, e.g.,

$$
(\exists x)(\forall y)(\exists z)(\exists w) \quad\left(x \cdot z+3=y^{2}\right) \vee \neg(z=x+w)
$$

If variables range over integers, this is undecidable (since it is harder than the original H 10).

But what if variables range over rational numbers?

Theorem (Robinson 1949, P. 2007, Koenigsmann 2016)

Undecidability in number theory

The set \mathbb{Z} equals the set of $t \in \mathbb{Q}$ such that

$$
\begin{gathered}
(\forall a, b)\left(\exists x_{1}, x_{2}, x_{3}, x_{4}, y_{2}, y_{3}, y_{4}\right) \\
\left(a+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)\left(b+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right) \\
\cdot\left[\left(x_{1}^{2}-a x_{2}^{2}-b x_{3}^{2}+a b x_{4}^{2}-1\right)^{2}\right. \\
\left.+\left(\left(t-2 x_{1}\right)^{2}-4 a y_{2}^{2}-4 b y_{3}^{2}+4 a b y_{4}^{2}-4\right)^{2}\right]=0
\end{gathered}
$$

is true, when the variables range over rational numbers.

Corollary (Robinson 1949)

There is no algorithm to decide the truth of a first-order sentence over \mathbb{Q}.

Building on these ideas, Koenigsmann (2016) proved also that the complement $\mathbb{Q}-\mathbb{Z}$ is diophantine over \mathbb{Q}.
This was generalized to number fields by Jennifer Park.

Subrings of \mathbb{Q}

There are rings between \mathbb{Z} and \mathbb{Q} :

Example

$$
\mathbb{Z}[1 / 2]:=\left\{\frac{a}{2^{m}}: a \in \mathbb{Z}, m \geq 0\right\}
$$

Example

$$
\mathbb{Z}[1 / 2,1 / 3]:=\left\{\frac{a}{2^{m} 3^{n}}: a \in \mathbb{Z}, m, n \geq 0\right\}
$$

In general, if $S \subseteq \mathcal{P}:=\{$ all primes $\}$, one can define
$\mathbb{Z}\left[S^{-1}\right]=$ the subring of \mathbb{Q} generated by p^{-1} for all $p \in S$
$=\left\{\frac{a}{d}: a \in \mathbb{Z}, d\right.$ is a product of powers of primes in $\left.S\right\}$

Proposition

Every subring of \mathbb{Q} is of the form $\mathbb{Z}\left[S^{-1}\right]$ for a unique S.

H10 over subrings of \mathbb{Q}

Proposition

Every subring of \mathbb{Q} is of the form $\mathbb{Z}\left[S^{-1}\right]$ for a unique S.

Examples:

- $S=\emptyset, \mathbb{Z}\left[S^{-1}\right]=\mathbb{Z}$, answer is negative.
- $S=\mathcal{P}, \mathbb{Z}\left[S^{-1}\right]=\mathbb{Q}$, answer is unknown.
- How large can we make S (in the sense of density) and still prove a negative answer for H 10 over $\mathbb{Z}\left[S^{-1}\right]$?
- For finite S, a negative answer follows from work of Robinson, who used the Hasse-Minkowski theorem (local-global principle) for quadratic forms.

H10 over subrings of \mathbb{Q}, continued

Undecidability in number theory

Bjorn Poonen

Polynomial equations Hilbert's 10th problem Diophantine sets
Listable sets

Prime-producing polynomials
Riemann hypothesis

Undecidability in

