Hilbert’s Tenth Problem

Bjorn Poonen

University of California at Berkeley

MSRI Introductory Workshop on Rational and Integral Points on Higher-dimensional Varieties

January 18, 2006
The original problem

H10: Find an algorithm that solves the following problem:

- **input:** \(f(x_1, \ldots, x_n) \in \mathbb{Z}[x_1, \ldots, x_n] \)
- **output:** YES or NO, according to whether there exists \(\vec{a} \in \mathbb{Z}^n \) with \(f(\vec{a}) = 0 \).

(More generally, one could ask for an algorithm for solving a system of polynomial equations, but this would be equivalent, since

\[
f_1 = \cdots = f_m = 0 \iff f_1^2 + \cdots + f_m^2 = 0.
\]

Theorem (Davis-Putnam-Robinson 1961 + Matijasevič 1970)

No such algorithm exists.

In fact they proved something stronger...
Diophantine, listable, recursive sets

- $A \subseteq \mathbb{Z}$ is called **diophantine** if there exists

 $$p(t, \vec{x}) \in \mathbb{Z}[t, x_1, \ldots, x_m]$$

 such that

 $$A = \{ a \in \mathbb{Z} : (\exists \vec{x} \in \mathbb{Z}^m) p(a, \vec{x}) = 0 \}.$$

 Example: The subset $\mathbb{N} := \{0, 1, 2, \ldots \}$ of \mathbb{Z} is diophantine, since for $a \in \mathbb{Z},$

 $$a \in \mathbb{N} \iff (\exists x_1, x_2, x_3, x_4 \in \mathbb{Z}) x_1^2 + x_2^2 + x_3^2 + x_4^2 = a.$$

- $A \subseteq \mathbb{Z}$ is **listable** (recursively enumerable) if there is a Turing machine such that A is the set of integers that it prints out when left running forever.

- $A \subseteq \mathbb{Z}$ is **recursive** if there is an algorithm for deciding membership in $A:$$$

 \begin{align*}
 \text{input:} & \quad a \in \mathbb{Z} \\
 \text{output:} & \quad \text{YES if } a \in A, \text{ NO otherwise}
 \end{align*}$$
Negative answer

- **Recursive \(\iff\) listable:** A computer program can loop through all integers \(a \in \mathbb{Z}\), and check each one for membership in \(A\), printing YES if so.
- **Diophantine \(\iff\) listable:** A computer program can loop through all \((a, \vec{x}) \in \mathbb{Z}^{1+m}\) and print out \(a\) if \(p(a, \vec{x}) = 0\).
- **Listable \(\not\iff\) recursive:** This is equivalent to the undecidability of the Halting Problem of computer science.
- **Listable \(\iff\) diophantine:** This is what Davis-Putnam-Robinson-Matijasevič really proved.

Corollary (negative answer to H10)

There exists a diophantine set that is not recursive. In other words, there is a polynomial equation depending on a parameter for which no algorithm can decide for which values of the parameter the equation has a solution.
Generalizing H10 to other rings

Let R be a ring (commutative, associative, with 1).

H10/R: Is there an algorithm with

- **input:** $f(x_1, \ldots, x_n) \in R[x_1, \ldots, x_n]$
- **output:** YES or NO, according to whether there exists $\vec{a} \in R^n$ with $f(\vec{a}) = 0$?

Technicality:

- The question presumes that an encoding of the elements of R suitable for input into a Turing machine has been fixed.
- For many R, there exist several obvious encodings and it does not matter which one we select, because algorithms exist for converting from one encoding to another.
- For other rings (e.g. uncountable rings like \mathbb{C}), one should restrict the input to polynomials with coefficients in a subring R_0 (like $\overline{\mathbb{Q}}$) whose elements admit an encoding.
Examples of H10 over other rings

\(\mathbb{Z}\): NO by D.-P.-R.-Matijasevič
\(\mathbb{C}\): YES, by elimination theory
\(\mathbb{R}\): YES, by Tarski’s elimination theory for semialgebraic sets (sets defined by polynomial equations and inequalities)
\(\mathbb{Q}_p\): YES, again because of an elimination theory
\(\mathbb{F}_q\): YES, trivially!

In the last four examples, there is even an algorithm for the following more general problem:

input: First order sentence in the language of rings, such as

\[
(\exists x)(\forall y)(\exists z)(\exists w) \ (x \cdot z + 3 = y^2) \lor \neg (z = x + w)
\]

output: YES or NO, according to whether it holds when the variables are considered to run over elements of \(R\)
H10 over rings of integers

\[k : \text{number field} \ (\text{finite extension of } \mathbb{Q}). \]
\[\mathcal{O}_k : \text{the ring of integers} \ \text{of } k \ (\text{the set of } \alpha \in k \ \text{such that } p(\alpha) = 0 \ \text{for some monic } p \in \mathbb{Z}[x]) \]

Examples:
- \(k = \mathbb{Q}, \quad \mathcal{O}_k = \mathbb{Z} \)
- \(k = \mathbb{Q}(i), \quad \mathcal{O}_k = \mathbb{Z}[i] \)
- \(k = \mathbb{Q}(\sqrt{5}), \quad \mathcal{O}_k = \mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right] \).

Conjecture

\(H10/\mathcal{O}_k \) has a negative answer for every number field \(k \).
The negative answer for \mathbb{Z} used properties of the Pell equation $x^2 - dy^2 = 1$ (where $d \in \mathbb{Z}_{>0}$ is a fixed non-square). Its integer solutions form a finitely generated abelian group related to \mathcal{O}_K^*. The same ideas give a negative answer for H10/\mathcal{O}_k, provided that certain conditions on the rank of groups like this (integral points on tori) are satisfied. But they are satisfied only for special k, such as totally real k and a few other classes of number fields.

Theorem (P., Shlapentokh 2003)

*If there is an elliptic curve E/\mathbb{Q} with

$$\text{rank } E(k) = \text{rank } E(\mathbb{Q}) > 0,$$

then H10/\mathcal{O}_k has a negative answer.*
H10 over \(\mathbb{Q} \)

H10/\(\mathbb{Q} \) is equivalent to the existence of an algorithm for deciding whether an algebraic variety over \(\mathbb{Q} \) has a rational point.

Does the negative answer for H10/\(\mathbb{Z} \) imply a negative answer for H10/\(\mathbb{Q} \)?

- Given a polynomial system over \(\mathbb{Q} \), one can construct a polynomial system over \(\mathbb{Z} \) that has a solution (over \(\mathbb{Z} \)) if and only if the original system has a solution over \(\mathbb{Q} \): namely, replace each original variable by a ratio of variables, clear denominators, and add additional equations that imply that the denominator variables are nonzero.

- Thus H10/\(\mathbb{Q} \) is embedded as a subproblem of H10/\(\mathbb{Z} \).

- Unfortunately, this goes the wrong way, if we are trying to use the non-existence of an algorithm for H10/\(\mathbb{Z} \) to deduce the non-existence of an algorithm for H10/\(\mathbb{Q} \).
Conjectural approaches to H10 over \(\mathbb{Q} \)

- If the subset \(\mathbb{Z} \subseteq \mathbb{Q} \) were diophantine/\(\mathbb{Q} \), then we could deduce a negative answer for H10/\(\mathbb{Q} \).
 (Proof: If there were an algorithm for \(\mathbb{Q} \), then to solve an equation over \(\mathbb{Z} \), consider the same equation over \(\mathbb{Q} \) with auxiliary equations saying that the rational variables take integer values.)

- More generally, it would suffice to have a diophantine model of \(\mathbb{Z} \) over \(\mathbb{Q} \): a diophantine subset \(A \subseteq \mathbb{Q}^m \) equipped with a bijection \(\phi : A \rightarrow \mathbb{Z} \) such that the graphs of addition and multiplication (subsets of \(\mathbb{Z}^3 \)) correspond to diophantine subsets of \(A^3 \subseteq \mathbb{Q}^{3m} \).

It is not known whether \(\mathbb{Z} \) is diophantine over \(\mathbb{Q} \), or whether a diophantine model of \(\mathbb{Z} \) over \(\mathbb{Q} \) exists. (Can \(E(\mathbb{Q}) \) for an elliptic curve of rank 1 serve as a diophantine model?)
Rational points in the real topology

If X is a variety over \mathbb{Q}, then $X(\mathbb{Q})$ is a subset of $X(\mathbb{R})$, and $X(\mathbb{R})$ has a topology coming from the topology of \mathbb{R}.

Figure 17. Rational points on the curve $y^2 + y = x^3 - x$.

(The figure is from Hartshorne, *Algebraic geometry.*)
Mazur’s conjecture

Conjecture (Mazur 1992)

The closure of $X(\mathbb{Q})$ in $X(\mathbb{R})$ has at most finitely many connected components.

- This conjecture is true for curves.
- There is very little evidence for or against the conjecture in the higher-dimensional case.

The next two frames will discuss the connection between Mazur’s conjecture and H_{10}/\mathbb{Q}.
Proposition

If \mathbb{Z} is diophantine over \mathbb{Q}, then Mazur’s conjecture is false.

Proof.

Suppose \mathbb{Z} is diophantine over \mathbb{Q}; this means that there exists a polynomial $p(t, \vec{x})$ such that

$$\mathbb{Z} = \{ a \in \mathbb{Q} : (\exists \vec{x} \in \mathbb{Q}^m) \ p(a, \vec{x}) = 0 \}.$$

Let X be the variety $p(t, \vec{x}) = 0$ in \mathbb{A}^{1+n}. Then $X(\mathbb{Q})$ has infinitely many components, at least one above each $t \in \mathbb{Z}$. \qed
Mazur’s conjecture and diophantine models

- We just showed that Mazur’s conjecture is incompatible with the statement that \(\mathbb{Z} \) is diophantine over \(\mathbb{Q} \).
- Cornelissen and Zahidi have shown that Mazur’s conjecture is incompatible also with the existence of a diophantine model of \(\mathbb{Z} \) over \(\mathbb{Q} \).
H10 over subrings of \mathbb{Q}

Let $\mathcal{P} = \{2, 3, 5, \ldots \}$. There is a bijection

$\{\text{subsets of } \mathcal{P}\} \leftrightarrow \{\text{subrings of } \mathbb{Q}\}$

$S \mapsto \mathbb{Z}[S^{-1}]$.

Examples:

- $S = \emptyset$, $\mathbb{Z}[S^{-1}] = \mathbb{Z}$, answer is negative
- $S = \mathcal{P}$, $\mathbb{Z}[S^{-1}] = \mathbb{Q}$, answer is unknown
- What happens for S in between?

- How large can we make S (in the sense of density) and still prove a negative answer for H10 over $\mathbb{Z}[S^{-1}]$?

- For finite S, a negative answer follows from work of Robinson, who used the Hasse-Minkowski theorem (local-global principle) for quadratic forms.
Theorem (P., 2003)

There exists a recursive set of primes $S \subset \mathcal{P}$ of density 1 such that

1. There exists a curve E such that $E(\mathbb{Z}[S^{-1}])$ is an infinite discrete subset of $E(\mathbb{R})$. (So the analogue of Mazur’s conjecture for $\mathbb{Z}[S^{-1}]$ is false.)

2. There is a diophantine model of \mathbb{Z} over $\mathbb{Z}[S^{-1}]$.

3. $H10$ over $\mathbb{Z}[S^{-1}]$ has a negative answer.

The proof takes E to be an elliptic curve (minus ∞), and uses properties of integral points on elliptic curves.
<table>
<thead>
<tr>
<th>Ring</th>
<th>H10</th>
<th>1st order theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{C}</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>\mathbb{R}</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>\mathbb{F}_q</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>$\mathbb{F}_q((t))$</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>$\mathbb{F}_q(t)$</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>$\mathbb{C}(t)$</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>$\mathbb{C}(t_1, \ldots, t_n)$, $n \geq 2$</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>$\mathbb{R}(t)$</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>\mathcal{O}_k</td>
<td>?</td>
<td>NO</td>
</tr>
<tr>
<td>\mathbb{Z}</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>