THE SET OF NONSQUARES IN A NUMBER FIELD IS DIOPHANTINE

BJORN POONEN

Abstract. Fix a number field \(k \). We prove that \(k^\times - k^{\times 2} \) is diophantine over \(k \). This is deduced from a theorem that for a nonconstant separable polynomial \(P(x) \in k[x] \), there are at most finitely many \(a \in k^\times \) modulo squares such that there is a Brauer-Manin obstruction to the Hasse principle for the conic bundle \(X \) given by \(y^2 - az^2 = P(x) \).

1. Introduction

Throughout, let \(k \) be a global field; occasionally we impose additional conditions on its characteristic. Warning: we write \(k^n = \prod_{i=1}^n k \) and \(k^{\times n} = \{ a^n : a \in k^\times \} \).

1.1. Diophantine sets. A subset \(A \subseteq k^n \) is diophantine over \(k \) if there exists a closed subscheme \(V \subseteq A_k^{n+m} \) such that \(A \) equals the projection of \(V(k) \) under \(k^{n+m} \to k^n \). The complexity of the collection of diophantine sets over a field \(k \) determines the difficulty of solving polynomial equations over \(k \). For instance, it follows from \([\text{Mat70}]\) that if \(\mathbb{Z} \) is diophantine over \(\mathbb{Q} \), then there is no algorithm to decide whether a multivariable polynomial equation with rational coefficients has a solution in rational numbers. Moreover, diophantine sets can be built up from other diophantine sets. In particular, diophantine sets over \(k \) are closed under taking finite unions and intersections. Therefore it is of interest to gather a library of diophantine sets.

1.2. Main result. Our main theorem is the following:

Theorem 1.1. For any number field \(k \), the set \(k^\times - k^{\times 2} \) is diophantine over \(k \).

In other words, there is an algebraic family of varieties \((V_t)_{t \in k}\) such that \(V_t \) has a \(k \)-point if and only if \(t \) is not a square. This result seems to be new even in the case \(k = \mathbb{Q} \).

Corollary 1.2. For any number field \(k \) and for any \(n \in \mathbb{Z}_{\geq 0} \), the set \(k^\times - k^{\times 2n} \) is diophantine over \(k \).

Proof. Let \(A_n = k^\times - k^{\times 2n} \). We prove by induction on \(n \) that \(A_n \) is diophantine over \(k \). The base case \(n = 1 \) is Theorem [1.1]. The inductive step follows from

\[A_{n+1} = A_1 \cup \{ t^2 : t \in A_n \text{ and } -t \in A_n \} \]

\[\square \]
1.3. **Brauer-Manin obstruction.** The main ingredient of the proof of Theorem 1.1 is the fact the Brauer-Manin obstruction is the only obstruction to the Hasse principle for certain Châtelet surfaces over number fields, so let us begin to explain what this means. Let \(\Omega_k \) be the set of nontrivial places of \(k \). For \(v \in \Omega_k \), let \(k_v \) be the completion of \(k \) at \(v \). Let \(A \) be the adele ring of \(k \). For a projective \(k \)-variety \(X \), we have \(X(A) = \prod_{v \in \Omega_k} X(k_v) \); one says that there is a **Brauer-Manin obstruction to the Hasse principle for** \(X \) if \(X(A) \neq \emptyset \) but \(X(A)^{Br} = \emptyset \). See [Sk00](#) §5.2.

1.4. **Conic bundles and Châtelet surfaces.** Let \(E \) be a rank-3 vector sheaf over a base variety \(B \). A nowhere-vanishing section \(s \in \Gamma(B, \text{Sym}^2 E) \) defines a subscheme \(X \) of \(\mathbb{P}E \) whose fibers over \(B \) are (possibly degenerate) conics. As a special case, we may take \((E, s) = (L_0 \oplus L_1 \oplus L_2, s_0 + s_1 + s_2) \) where each \(L_i \) is a line sheaf on \(B \), and the \(s_i \in \Gamma(B, L_i^{\oplus 2}) \subset \Gamma(B, \text{Sym}^2 E) \) are sections that do not simultaneously vanish on \(B \).

We specialize further to the case where \(B = \mathbb{P}^1 \), \(L_0 = L_1 = \mathcal{O}, L_2 = \mathcal{O}(n) \), \(s_0 = 1, s_1 = -a, \) and \(s_2 = -\tilde{P}(w, x) \) where \(a \in k^\times \) and \(\tilde{P}(w, x) \in \Gamma(\mathbb{P}^1, \mathcal{O}(2n)) \) is a separable binary form of degree \(2n \). Let \(P(x) := \tilde{P}(1, x) \in k[x] \), so \(P(x) \) is a separable polynomial of degree \(2n - 1 \) or \(2n \). We then call \(X \) the conic bundle given by

\[
y^2 - ax^2 = P(x).
\]

A **Châtelet surface** is a conic bundle of this type with \(n = 2 \), i.e., with \(\deg P \) equal to 3 or 4. See also [Poo01](#).

The proof of Theorem 1.1 relies on the Châtelet surface case of the following result about families of more general conic bundles:

Theorem 1.3. Let \(k \) be a global field of characteristic not 2. Let \(P(x) \in k[x] \) be a nonconstant separable polynomial. Then there are at most finitely many classes in \(k^\times/k^\times 2 \) represented by \(a \in k^\times \) such that there is a Brauer-Manin obstruction to the Hasse principle for the conic bundle \(X \) given by \(y^2 - ax^2 = P(x) \).

Remark 1.4. Theorem 1.3 is analogous to the classical fact that for an integral indefinite ternary quadratic form \(q(x, y, z) \), the set of nonzero integers represented by \(q \) over \(\mathbb{Z}_p \) for all \(p \) but not over \(\mathbb{Z} \) fall into finitely many classes in \(\mathbb{Q}^\times/\mathbb{Q}^\times 2 \). J.-L. Colliot-Thélène and F. Xu explain how to interpret and prove this fact (and its generalization to arbitrary number fields) in terms of the integral Brauer-Manin obstruction: see [CTX07](#) §7, especially Proposition 7.9 and the very end of §7. Our proof of Theorem 1.3 shares several ideas with the arguments there.

1.5. **Definable subsets of \(k_v \) and their intersections with \(k \).** The proof of Theorem 1.1 requires one more ingredient, namely that certain subsets of \(k \) defined by local conditions are diophantine over \(k \). This is the content of Theorem 1.5 below, which is proved in more generality than needed. By a **\(k \)-definable subset** of \(k^n \), we mean the subset of \(k^n \) defined by some first-order formula in the language of fields involving only constants from \(k \), even though the variables range over elements of \(k_v \).

Theorem 1.5. Let \(k \) be a number field. Let \(k_v \) be a nonarchimedean completion of \(k \). For any \(k \)-definable subset \(A \) of \(k^n_v \), the intersection \(A \cap k^n \) is diophantine over \(k \).
1.6. Outline of paper. Section 1.3 shows that Theorem 1.5 is an easy consequence of known results, namely the description of definable subsets over \(k_v \), and the diophantineness of the valuation subring \(\mathcal{O} \) of \(k \) defined by \(v \). Section 1.6 proves Theorem 1.3 by showing that for most twists of a given conic bundle, the local Brauer evaluation map at one place is enough to rule out a Brauer-Manin obstruction. Finally, Section 1.7 puts everything together to prove Theorem 1.3.

2. Subsets of global fields defined by local conditions

Lemma 2.1. Let \(m \in \mathbb{Z}_{>0} \) be such that \(\text{char} \ k \nmid m \). Then \(k_v^{\times m} \cap k \) is diophantine over \(k \).

Proof. The valuation subring \(\mathcal{O} \) of \(k \) defined by \(v \) is diophantine over \(k \): see the first few paragraphs of §3 of [Rum80]. The hypothesis \(\text{char} \ k \nmid m \) implies the existence of \(c \in k^\times \) such that \(1 + c\mathcal{O} \subset k_v^{\times m} \), fix such a \(c \). The denseness of \(k^\times \) in \(k_v^\times \) implies \(k_v^{\times m} \cap k = (1 + c\mathcal{O})k^{\times m} \). The latter is diophantine over \(k \).

Proof of Theorem 1.3. Call a subset of \(k_v^m \) simple if it is of one of the following two types: \(\{ x \in k_v^m : f(x) = 0 \} \) or \(\{ x \in k_v^m : f(x) \in k_v^{\times m} \} \) for some \(f \in k[x_1, \ldots, x_n] \) and \(m \in \mathbb{Z}_{>0} \). It follows from the proof of [Mac76, Theorem 1] (see also [Mac76, §2] and [Den84, §2]) that any \(k \)-definable subset \(A \) is a boolean combination of simple subsets. The complement of a simple set of the first type is a simple set of the second type (with \(m = 1 \)). The complement of a simple set of the second type is a union of simple sets, since \(k_v^{\times m} \) has finite index in \(k_v^\times \). Therefore any \(k \)-definable \(A \) is a finite union of finite intersections of simple sets. Diophantine sets in \(k \) are closed under taking finite unions and finite intersections, so it remains to show that for every simple subset \(A \) of \(k_v^m \), the intersection \(A \cap k \) is diophantine. If \(A \) is of the first type, then this is trivial. If \(A \) is of the second type, then this follows from Lemma 2.1. \(\square \)

3. Family of conic bundles

Given a \(k \)-variety \(X \) and a place \(v \) of \(k \), let \(\text{Hom}'(\text{Br} \ X, \text{Br} \ k_v) \) be the set of \(f \in \text{Hom}(\text{Br} \ X, \text{Br} \ k_v) \) such that the composition \(\text{Br} \ k \to \text{Br} \ X \to \text{Br} \ k_v \) equals the map induced by the inclusion \(k \subseteq k_v \). The \(v \)-adic evaluation pairing \(\text{Br} \ X \times \text{Br}(k_v) \to \text{Br} k_v \) induces a map \(X(k_v) \to \text{Hom}'(\text{Br} \ X, \text{Br} k_v) \).

Lemma 3.1. With notation as in Theorem 1.3, there exists a finite set of places \(S \) of \(k \), depending on \(P(x) \) but not \(a \), such that if \(v \notin S \) and \(v(a) \) is odd, then \(X(k_v) \to \text{Hom}'(\text{Br} \ X, \text{Br} k_v) \) is surjective.

Proof. The function field of \(\mathbb{P}^1 \) is \(k(x) \). Let \(Z \) be the zero locus of \(\tilde{P}(w, x) \) in \(\mathbb{P}^1 \). Let \(G \) be the group of \(f \in k(x)^\times \) having even valuation at every closed point of \(\mathbb{P}^1 - Z \). Choose \(P_1(x), \ldots, P_m(x) \in G \) representing a \(\mathbb{F}_2 \)-basis for the image of \(G \) in \(k(x)^\times /k(x)^{\times 2}k^\times \). We may assume that \(P_m(x) = P(x) \). Choose \(S \) so that each \(P_i(x) \) is a ratio of polynomials whose nonzero coefficients are \(S \)-units, and so that \(S \) contains all places above 2.

Let \(\kappa(X) \) be the function field of \(X \). A well-known calculation (see [Sko01, §7.1]) shows that the class of each quaternion algebra \((a, P_i(x))\) in \(\text{Br} \kappa(X) \) belongs to the subgroup \(\text{Br} \ X \), and that the cokernel of \(\text{Br} k \to \text{Br} X \) is an \(\mathbb{F}_2 \)-vector space with the classes of \((a, P_i(x))\) for \(i \leq m - 1 \) as a basis.
Suppose that $v \notin S$ and $v(a)$ is odd. Let $f \in \text{Hom}'(\text{Br} X, \text{Br} k_v)$. The homomorphism f is determined by where it sends $(a, P_i(x))$ for $i \leq m - 1$. We need to find $R \in X(k_v)$ mapping to f.

Let O_v be the valuation ring in k_v, and let \mathbb{F}_v be its residue field. For $i \leq m - 1$, choose $c_i \in O_v^\times$ whose image in \mathbb{F}_v^\times is a square or not, according to whether f sends $(a, P_i(x))$ to 0 or 1/2 in $\mathbb{Q}/\mathbb{Z} \simeq \text{Br} k_v$. Since $v(a)$ is odd, we have $(a, c_i) = f((a, P_i(x)))$ in $\text{Br} k_v$.

View $\mathbb{P}^1 - Z$ as a smooth O_v-scheme, and let Y be the finite étale cover of $\mathbb{P}^1 - Z$ whose function field is obtained by adjoining $\sqrt{c_i P_i(x)}$ for $i \leq m - 1$ and also $\sqrt{P(x)}$. Then the generic fiber $Y_{k_v} := Y \times_{O_v} k_v$ is geometrically integral. Assuming that S was chosen to include all v with small \mathbb{F}_v, we may assume that $v \notin S$ implies that Y has a (smooth) \mathbb{F}_v-point, which by Hensel’s lemma lifts to a k_v-point Q. There is a morphism from Y_{k_v} to the smooth projective model of X over k, which in turn embeds as a closed subscheme of X_{k_v}, as the locus where $z = 0$. Let R be the image of Q under $Y(k_v) \to X(k_v)$, and let $\alpha = x(R) \in k_v$. Evaluating $(a, P_i(x))$ on R yields $(a, P_i(\alpha))$, which is isomorphic to (a, c_i) since $c_i P_i(\alpha) \in k_v^{\times 2}$. Thus R maps to f, as required.

Lemma 3.2. Let X be a projective k-variety. If there exists a place v of k such that the map $X(k_v) \to \text{Hom}'(\text{Br} X, \text{Br} k_v)$ is surjective, then there is no Brauer-Manin obstruction to the Hasse principle for X.

Proof. If $X(A) = \emptyset$, then the Hasse principle holds. Otherwise, pick $Q = (Q_w) \in X(A)$, where $Q_w \in X(k_w)$ for each w. For $A \in \text{Br} X$, let $\text{ev}_A : X(L) \to \text{Br} L$ be the evaluation map for any field extension L of k. Let $\text{inv}_w : \text{Br} k_w \to \mathbb{Q}/\mathbb{Z}$ be the usual inclusion map. Define

$$\eta : \text{Br} X \to \mathbb{Q}/\mathbb{Z} \simeq \text{Br} k_v$$

$$A \mapsto -\sum_{w \neq v} \text{inv}_w \text{ev}_A(Q_w).$$

By reciprocity, $\eta \in \text{Hom}'(\text{Br} X, \text{Br} k_v)$. The surjectivity hypothesis yields $R \in X(k_v)$ giving rise to η. Define $Q' = (Q'_w) \in X(A)$ by $Q'_w := Q_w$ for $w \neq v$ and $Q'_v := R$. Then $Q' \in X(A)^{\text{Br}}$, so there is no Brauer-Manin obstruction.

Proof of Theorem 1.3. Let S be as in Lemma 3.1. Enlarge S to assume that $\text{Pic} O_{k,S}$ is trivial. Then the set of $a \in k^\times$ such that $v(a)$ is even for all $v \notin S$ has the same image in $k^\times/k^{\times 2}$ as the finitely generated group $O_{k,S}^\times$, so the image is finite.

Suppose that $a \in k^\times$ has image in $k^\times/k^{\times 2}$ lying outside this finite set. Then we can fix $v \notin S$ such that $v(a)$ is odd. Let X be the corresponding surface. Combining Lemmas 3.1 and 3.2 shows that there is no Brauer-Manin obstruction to the Hasse principle for X.

4. The set of nonsquares is diophantine

Proof of Theorem 1.1. For each place v of k, define $S_v := k^\times \cap k_v^{\times 2}$ and $N_v := k^\times - S_v$. By Theorem 1.3, the sets S_v and N_v are diophantine over k.

By [Poo09, Proposition 4.1], there is a Châtelet surface

$$X_1 : y^2 - bz^2 = P(x)$$

over k, with $P(x)$ a product of two irreducible quadratic polynomials, such that there is a Brauer-Manin obstruction to the Hasse principle for X_1. For $t \in k^\times$, let X_t be the (smooth
We claim that the following are equivalent for \(t \in k^\times \):

(i) \(U_t \) has a \(k \)-point.
(ii) \(X_t \) has a \(k \)-point.
(iii) \(X_t \) has a \(k_v \)-point for every \(v \) and there is no Brauer-Manin obstruction to the Hasse principle for \(X_t \).

The implications (i) \(\implies \) (ii) \(\implies \) (iii) are trivial. The implication (iii) \(\implies \) (ii) follows from [CTCS80, Theorem B]. Finally, in [CTCS80], the reduction of Theorem B to Theorem A combined with Remarque 7.4 shows that (ii) implies that \(X_t \) is \(k \)-unirational, which implies (i).

Let \(A \) be the (diophantine) set of \(t \in k^\times \) such that (i) holds. The isomorphism type of \(U_t \) depends only on the image of \(t \) in \(k^\times /k^\times 2 \), so \(A \) is a union of cosets of \(k^\times 2 \) in \(k^\times \). We will compute \(A \) by using (iii).

The affine curve \(y^2 = P(x) \) is geometrically integral so it has a \(k_v \)-point for all places \(v \) outside a finite set \(F \). So for any \(t \in k^\times \), the variety \(X_t \) has a \(k_v \)-point for all \(v \notin F \). Since \(X_1 \) has a \(k_v \)-point for all \(v \) and in particular for \(v \in F \), if \(t \in \bigcap_{v \in F} S_v \), then \(X_t \) has a \(k_v \)-point for all \(v \).

Let \(B := A \cup \bigcup_{v \in F} N_v \). If \(t \in k^\times - B \), then \(X_t \) has a \(k_v \)-point for all \(v \), and there is a Brauer-Manin obstruction to the Hasse principle for \(X_t \). By Theorem [1.3], \(k^\times - B \) consists of finitely many cosets of \(k^\times 2 \), one of which is \(k^\times 2 \) itself. Each coset of \(k^\times 2 \) is diophantine over \(k \), so taking the union of \(B \) with all the finitely many missing cosets except \(k^\times 2 \) shows that \(k^\times - k^\times 2 \) is diophantine. \(\square \)

Acknowledgements

I thank Jean-Louis Colliot-Thélène and Anthony Várilly-Alvarado for a few comments, and Alexandra Shlapentokh for suggesting some references.

References

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA

E-mail address: poonen@math.mit.edu
URL: http://math.mit.edu/~poonen