REINTERPRETING MUMFORD

BJORN POONEN

In [Mum66], Mumford defines the group $G(\mathscr{L})$ in terms of pulling back line bundles by translations. There is an alternative interpretation of this that I find simpler and more natural.

1. MORPHISMS OF LINE BUNDLES OVER A MORPHISM OF VARIETIES

For simplicity, let k be an algebraically closed field (this is not really necessary; it is just so that I can speak set-theoretically in places without losing much). A line bundle \mathscr{L} on an *n*-dimensional k-variety X can be viewed geometrically as an (n + 1)-dimensional variety L equipped with a morphism

whose fibers are copies of \mathbb{A}^1 (plus a little extra structure so that each fiber viewed as a set of k-points has the structure of a 1-dimensional vector space).

If \mathscr{L} and \mathscr{M} are line bundles on X, an \mathscr{O}_X -module homomorphism $\mathscr{L} \to \mathscr{M}$ gives rise to a diagram

that is, a morphism $L \to M$ lying above the identity morphism $1_X \colon X \to X$. More generally, given \mathscr{L} on X and \mathscr{M} on Y, we may define a morphism between the corresponding geometric line bundles $L \to X$ and $M \to Y$ to be a pair (f, t) forming a commutative square

(and respecting the vector space structures of the fibers). One might call this a homomorphism $L \to M$ lying over $t: X \to Y$ instead of over 1_X .

Question 1.1. What does (f, t) mean in terms of the \mathcal{O}_X -module \mathscr{L} and \mathcal{O}_Y -module \mathscr{M} ?

Date: October 23, 2015.

To answer this, first define t^*M as the fiber product $M \times_Y X$, so that

is the geometric line bundle corresponding to $t^* \mathcal{M}$.

Answer: Giving a morphism $L \to M$ over a morphism $t: X \to Y$ is equivalent to giving a homomorphism of \mathscr{O}_X -modules $\mathscr{L} \to t^*\mathscr{M}$. This is because of the universal property of the fiber product:

Remark 1.2. If (f, t) is an isomorphism (meaning that both f and t are isomorphisms), then (f, t) induces an isomorphism of the spaces of geometric sections, or equivalently an isomorphism of vector spaces $\Gamma(X, \mathscr{L}) \to \Gamma(Y, \mathscr{M})$.

2. The group $G(\mathscr{L})$

Now let X be an abelian variety over k. Given $x \in X(k)$, let $\tau_x \colon X \to X$ be translation by x. Then one can define $G(\mathscr{L})$ as the group of automorphisms (f, t) of $L \to X$ such that t is a translation τ_x for some $x \in X(k)$. (Given x, for such an automorphism f to exist over τ_x , the line bundles \mathscr{L} and $\tau_x^* \mathscr{L}$ must be isomorphic, so x will automatically be in $H(\mathscr{L})$.)

One nice thing about this definition of $G(\mathscr{L})$ is that it is obvious what the group law is. Also, the action of $G(\mathscr{L})$ on $\Gamma(X, L)$ is obvious: apply Remark 1.2 to the isomorphism given by each element of $G(\mathscr{L})$ (with X = Y and $\mathscr{L} = \mathscr{M}$).

3. Symmetric line bundles

Now assume in addition that char $k \neq 2$. A line bundle \mathscr{L} on X is symmetric if there is an isomorphism $\phi: L \to L$ lying over $[-1]: X \to X$. In this case, all other such ϕ arise by composing ϕ with fiber-wise multiplication by a single element of k^{\times} . This element of k^{\times} can be chosen in a unique way to make the fiber homomorphism $\phi(0): L(0) \to L(0)$ equal to the identity; in this case, ϕ is called normalized.

Suppose that ϕ is normalized. Then $\phi \circ \phi = 1_L$ since 1_L is the only automorphism of L lying over 1_X that acts as the identity on the fiber L(0). If $x \in X(k)$ is a fixed point of [-1] (that is, a 2-torsion point), then ϕ maps the fiber L(x) to itself. This isomorphism $L(x) \to L(x)$ of 1-dimensional vector spaces is multiplication by a scalar; this is $e_*^{\mathscr{L}}(x) \in \{\pm 1\}$.

A line bundle \mathscr{L} is totally symmetric if there exists $\phi: L \to L$ lying above [-1] such that ϕ acts as the identity on the fiber above each 2-torsion point. Let $\pi: X \to K_X$ be the morphism to the Kummer variety, defined as the variety quotient of X by the order 2 group generated

by [-1]. If \mathcal{M} is a line bundle on K_X , then pulling it back in the diagram

immediately shows that $\pi^* \mathcal{M}$ is a totally symmetric line bundle on X. This makes the converse believable too (and it is not too much work to prove).

Any isomorphism from $L \to X$ to $M \to Y$ induces an isomorphism $G(\mathscr{L}) \to G(\mathscr{M})$. If $\psi: L \to L$ is an isomorphism lying over $[-1]: X \to X$, then $(\psi, [-1])$ is an automorphism of $L \to X$, so by the previous sentence, $(\psi, [-1])$ induces an automorphism of $G(\mathscr{L})$; this is Mumford's δ_{-1} .

References

[Mum66] D. Mumford, On the equations defining abelian varieties. I, Invent. Math. 1 (1966), 287–354. MR0204427 (34 #4269) ↑(document)

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MA 02139-4307, USA

E-mail address: poonen@math.mit.edu *URL*: http://math.mit.edu/~poonen/