
INTRODUCTION TO DRINFELD MODULES

BJORN POONEN

Our goal is to introduce Drinfeld modules and to explain their application to explicit class
field theory. First, however, to motivate their study, let us mention some of their applications.

1. Applications

(1) Explicit class field theory for global function fields (just as torsion of Gm gives abelian
extensions of Q, and torsion of CM elliptic curves gives abelian extension of imaginary
quadratic fields). Here global function field means Fp(T ) or a finite extension.

(2) Langlands conjectures for GLn over function fields (Drinfeld modular varieties play
the role of Shimura varieties).

(3) Modularity of elliptic curves over function fields: If E/Fp(T ) has split multiplicative
reduction at ∞, then E is dominated by a Drinfeld modular curve.

(4) Explicit construction of curves over finite fields with many points, as needed in coding
theory, namely reductions of Drinfeld modular curves, which are easier to write
equations for than the classical modular curves.

Only the first of these will be treated in these notes.

2. Analytic theory

2.1. Inspiration from characteristic 0. Let Λ be a discrete Z-submodule of C of rank
r ≥ 0, so Λ = Zω1 + · · ·Zωr with ω1, . . . , ωr linearly independent over R.
r = 0:

C/Λ ' C = Ga(C)

r = 1:

C/Λ ' C× = Gm(C)

z 7→ exp

(
2πiz

ω1

)
.

r = 2:

C/Λ ' E(C) elliptic curve
z 7→ (℘(z), ℘′(z)) .

r > 2 is impossible since [C : R] = 2.
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2.2. Characteristic p analogues. What is a good analogue of the above in characteristic p?
Start with a smooth projective geometrically integral curve X over a finite field Fq, and
choose a closed point ∞ ∈ X. Let O(X − {∞}) denote the affine coordinate ring of the
affine curve X − {∞}.

Characteristic 0 ring Characteristic p analogue Example
Z A := O(X − {∞}) Fq[T ]
Q K := FracA Fq(T )
R K∞ := completion at ∞ Fq((1/T ))
C C := completion of K∞

The completions are taken with respect to the ∞-adic absolute value: for a ∈ A, define
|a| := #(A/a) = qdeg a; extend this to K, K∞, and C in turn. The field C is algebraically
closed as well as complete with respect to | |.

Finite rank Z-submodules of C are just finite-dimensional Fp-subspaces, not interesting, so
instead consider this:

Definition 2.1. An A-lattice in C is a discrete A-submodule Λ of C of finite rank, where
rank Λ := dimK(KΛ) = dimK∞(K∞Λ).

If A is a PID, such as Fq[T ], then all such Λ arise as follows: let {x1, . . . , xr} be a basis for
a K∞-subspace in C, and take Λ = Ax1 + · · ·+ Axr ⊂ C.

Note: r can be arbitrarily large since [C : K∞] is infinite.

Theorem 2.2. The quotient C/Λ is analytically isomorphic to C!

This statement can be interpreted using rigid analysis. More concretely, it means that
there exists a power series

e(z) = α0z + α1z
q + α2z

q2

+ · · ·
defining an surjective Fq-linear map C → C with kernel Λ. If we require α0 = 1, then e is
unique.

Sketch of proof. Uniqueness follows from the nonarchimedean Weierstrass preparation theo-
rem, which implies that a convergent power series is determined up to a constant multiple by
its zeros: if e(z) exists, then

e(z) = z
∏
λ∈Λ
λ 6=0

(
1− z

λ

)
.

(Over C, there would be an ambiguity of multiplication by a function eg(z), but in the
nonarchimedean setting there is no entire exponential function.)

• The infinite product converges. (Proof: Since Λ is a discrete subgroup of a locally
compact group K∞Λ, we have λ→∞.)
• e(z) is surjective. (The nonarchimedean Picard theorem says that a nonconstant
entire function omits no values.)
• e(x+ y) = e(x) + e(y). (Proof: Write Λ as an increasing union of finite-dimensional
Fp-subspaces; and e(x) as the limit of the corresponding finite products. If f(x)
is a polynomial whose zeros are distinct and form a group G under addition, then
f(x+ y) = f(x)− f(y), because f(x+ y)− f(x)− f(y) vanishes on G×G but is of
degree less than #G in each variable.)
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• e(cx) = ce(x) for each c ∈ Fq. (Use a proof similar to the preceding, or argue directly.)
• ker e = Λ. �

Next: C/Λ has a natural A-module structure. Carrying this across the isomorphism
C/Λ → C gives an exotic A-module structure on C. This is essentially what a Drinfeld
module is: the additive group with a new A-module structure.

For each a ∈ A, the multiplication-by-a map a : C/Λ → C/Λ corresponds under the
isomorphism to a map φa : C → C making

C/Λ
a //

e o
��

C/Λ

o e
��

C
φa // C

commute.

Proposition 2.3. The map φa is a polynomial!

Proof. We have

ker (a : C/Λ→ C/Λ) =
a−1Λ

Λ
,

which is isomorphic to Λ/aΛ = (A/a)r, which is finite of order |a|r. So kerφa should be
e
(
a−1Λ

Λ

)
. Define the polynomial

φa(z) := az
∏

t∈a−1Λ
Λ
−{0}

(
1− z

e(t)

)
.

Then φa makes the diagram above commute, because φa(e(z)) and e(az) have the same zeros
and same coefficient of z. �

Moreover, deg φa = |a|r.

3. Algebraic theory

3.1. Fq-linear polynomials. Let L be a field containing Fq. A polynomial f(x) ∈ L[x] is
called additive if f(x+ y) = f(x) + f(y) in L[x, y], and Fq-linear if, in addition, f(cx) = cf(x)
in L[x] for all c ∈ Fq. Let Ga be the additive group scheme over L, viewed as an Fq-vector
space scheme over L. Endomorphisms of Ga as an Fq-vector space scheme must be Fq-linear:

EndGa = {Fq-linear polynomials in L[x]}

=

{
n∑
i=0

aix
qi : ai ∈ L

}

=

{(
n∑
i=0

aiτ
i

)
(x) : ai ∈ L

}
=: L{τ},

where we think of τ as the Frobenius operator x 7→ xq, and each a ∈ L acts as x 7→ ax. The
ring L{τ} is a twisted polynomial ring: τa = aqτ for each a ∈ L.

For f ∈ L{τ}, let l.c.(f) denote the leading coefficient of f ; by convention, l.c.(0) = 0.
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3.2. Drinfeld modules.

Definition 3.1. An A-field is an A-algebra L that is a field; that is, L is a field equipped
with a ring homomorphism ι : A→ L.

So L is an extension of K (e.g., C) and ι is an inclusion, or L is an extension of A/p for
some nonzero prime p of A.

Definition 3.2. The A-characteristic of L is charA L := ker ι, a prime ideal of A.

To motivate the following definition, recall that an A-module M is an abelian group M
with a ring homomorphism A→ EndgroupM .

Definition 3.3. A Drinfeld A-module φ over L is the additive group scheme Ga with a faithful
A-module structure for which the induced action on the tangent space at 0 is given by ι.
More concretely, φ is an injective ring homomorphism

A −→ EndGa = L{τ}
a 7−→ φa

such that φ′a(0) = ι(a) for all a ∈ A.

Remark 3.4. Many authors explicitly disallow φ to be the composition A ι→ L ⊂ L{τ}, but
we allow it when charA L = 0, since doing so does not seem to break any theorems. Our
requirement that φ be injective still rules out A ι→ L ⊂ L{τ} when charA L 6= 0, however; we
must rule this out to make Proposition 3.6 below hold.

It turns out that every Drinfeld A-module over C arises from an A-lattice as in Section 2.
For a more precise statement, see Theorem 3.11.

3.3. Rank. We could define the rank of a Drinfeld module over C as the rank of the A-lattice
it comes from, but it would be nicer to give an algebraic definition that makes sense over any
A-field.

Let φ be a Drinfeld module. For each nonzero a ∈ A, we may write

φa = cm(a)τ
m(a) + · · ·+ cM(a)τ

M(a)

with exponents in increasing order, and cm(a), cM(a) 6= 0. Then φa(x) as a polynomial in x
has degree qM(a) and each zero has multiplicity qm(a). In terms of the functions M and m,
we will define the rank and height of φ, respectively.

For each closed point p ∈ X, let vp be the p-adic valuation on K normalized so that vp(a)
is the degree of the p-component of the divisor (a); thus vp(K×) = (deg p)Z. Also, define
|a|p := q−vp(a). For example, | |∞ is the absolute value | | defined earlier.

Example 3.5. If A = Fq[T ], then φ is determined by φT , and we define r = M(T ). For any
nonzero a ∈ A, expanding φa in terms of φT shows that M(a) = (deg a)r = −rv∞(a).

A similar result holds for arbitrary A:

Proposition 3.6 (Characterization of rank). Let φ be a Drinfeld module over an A-field L.
Then there exists a unique r ∈ Q≥0 such that M(a) = −rv∞(a), or equivalently deg φa = |a|r,
for all nonzero a ∈ A. (Proposition 3.13(a) will imply that r is an integer.)
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Proof. After enlarging L to make L perfect, we may define the ring of twisted Laurent series
L((τ−1)) whose elements have the form

∑
n∈Z `nτ

n with `n = 0 for sufficiently large positive n;
multiplication is defined so that τn` = `q

n
τ . Then L((τ−1)) is a division ring with a valuation

v : L((τ−1))→ Z ∪ {+∞} sending τn to −n (same proof as for usual Laurent series). Thus
φ : A→ L{τ} extends to a homomorphism φ : K → L((τ)), and v pulls back to a nontrivial
valuation vK on K. We have vK(a) = −M(a) ≤ 0 for all a ∈ A− {0}, so vK = rv∞ for some
r ∈ Q≥0. Then M(a) = −rv∞(a) for all a ∈ A− {0}. �

Define the rank of φ to be r.
Drinfeld modules are 1-dimensional objects. Analogies:

rank 0 Drinfeld module←→ Ga

rank 1 Drinfeld module←→ Gm or CM elliptic curve
(if E has CM by O, view its lattice as rank 1 O-module)

rank 2 Drinfeld module←→ elliptic curve
rank ≥ 3 Drinfeld module←→ ? (if only we knew. . . )

There is a higher-dimensional generalization called a t-module.

3.4. Height.

Proposition 3.7. Let φ be a Drinfeld module over an A-field L of nonzero characteristic
p. Then there exists a unique h ∈ Q>0 such that m(a) = hvp(a) for all nonzero a ∈ A.
(Proposition 3.13(b) will imply that h is an integer satisfying 0 < h ≤ r.)

Proof. Extend φ to a homomorphism K → L((τ)) (twisted Laurent series in τ instead of τ−1)
to define a valuation on K. It is positive on p, hence equal to hvp for some h ∈ Q>0. �

Call h the height of φ.

3.5. Drinfeld modules and lattices. For fixed A and L, Drinfeld A-modules over L form
a category, with morphisms as follows:

Definition 3.8. A morphism f : φ→ ψ of Drinfeld modules over L is an element of EndGa

such that f ◦ φa = ψa ◦ f for all a ∈ A: i.e.,

Ga
φa //

f
��

Ga

f
��

Ga
ψa // Ga

(1)

commutes.

An isogeny between Drinfeld modules φ and ψ is a surjective morphism f with finite kernel,
or equivalently (since Ga is 1-dimensional), a nonzero morphism. If such an f exists, φ and
ψ are called isogenous.

Proposition 3.9. Isogenous Drinfeld modules have the same rank (just as one cannot have
a nonzero algebraic morphism Gm → E).
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Proof. If f : φ → ψ is an isogeny between Drinfeld modules of rank r and r′, respectively,
then (1) gives

(deg f)|a|r = |a|r′(deg f)

for all a, so r = r′. �

Because of Proposition 3.9, we fix the rank in the following.

Definition 3.10. A morphism of rank r A-lattices Λ,Λ′ in C is a number c ∈ C such that
cΛ ⊆ Λ′.

Theorem 3.11. For each r ≥ 0, the analytic construction

{A-lattices in C of rank r} ∼−→ {Drinfeld modules over C of rank r}
of Section 2 is an equivalence of categories.

Sketch of proof. Given a rank r Drinfeld module φ over C, choose a nonconstant a ∈ A, and
consider a power series

e(z) = z + α1z
q + α2z

q2

+ · · ·
with unknown coefficients αi. The condition e(az) = φa(e(z)) determines the αi uniquely; one
can solve for each αi in turn. Show that the resulting power series converges everywhere, and
that its kernel is an A-lattice in C giving rise to φ. The proof of Proposition 2.3 shows more
generally that a morphism of A-lattices corresponds to a polynomial map C → C defining a
morphism of Drinfeld modules, and vice versa. �

In particular, homothety classes of rank r A-lattices in C are in bijection with isomorphism
classes of rank r Drinfeld modules over C.

3.6. Torsion points. The additive polynomial φa plays the role of the multiplication-by-n
map on an elliptic curve, or the nth power map on Gm.

For a 6= 0, the a-torsion subscheme of a Drinfeld module φ is φ[a] := kerφa, viewed as
subgroup scheme of Ga. It is a finite group scheme of order deg φa = qM(a) = |a|r. Let φL
denote the additive group of L viewed as an A-module via φ. Then φ[a](L) is an A-submodule
of φL, but its order may be less than |a|r if L is not algebraically closed or φ[a] is not reduced.

More generally, if I is a nonzero ideal of A, let φ[I] be the scheme-theoretic intersection⋂
a∈I φ[a]. Equivalently, one can define φI as the monic generator of the left ideal of L{τ}

generated by {φa : a ∈ I}, and define φ[I] := kerφI .

Lemma 3.12. Let A be a Dedekind ring. Let D be an A-module.
(a) If `1, . . . , `n are distinct nonzero prime ideals of A, and e1, . . . , en ∈ Z≥0, then

D[`e11 · · · `enn ] ' D[`e11 ]⊕ · · · ⊕D[`enn ].

(b) If D is divisible, then for each fixed nonzero prime ` of A, the A/`e-module D[`e] is free
of rank independent of e.

Proof. Localize to assume that A is a discrete valuation ring. Then (a) is trivial. In proving (b),
we write ` also for a generator of `. Since D[`] is an A/`-vector space, we can choose a
free A-module F and an isomorphism i1 : `−1F/F

∼→ D[`]. We construct isomorphisms
ie : `−eF/F

∼→ D[`e] for all e ≥ 1 by induction: given the isomorphism ie, use divisibility of D
6



to lift ie to a homomorphism ie+1 : `−(e+1)F/F
∼→ D[`e+1] fitting in a commutative diagram

with exact rows

0 // `−1F/F //

i1
��

`−(e+1)F/F
` //

ie+1

��

`−eF/F //

ie
��

0

0 // D[`] // D[`e+1]
` // D[`e] // 0.

The diagram shows that ie+1 is an isomorphism too. �

Proposition 3.13. Let φ be a Drinfeld module over an algebraically closed A-field L.
(a) If I is an ideal of A such that charA L - I, then the A/I-module φ[I](L) is free of rank r.

The same holds even if L is only separably closed.
(b) If charA L = p 6= 0, then the A/pe-module φ[pe](L) is free of rank r − h.

Proof. When L is algebraically closed, φa : L→ L is surjective for every nonzero a ∈ A. In
other words, the A-module φL is divisible. By Lemma 3.12, the claims for algebraically closed
L follow if for each nonzero prime ` of A, there exists e ≥ 1 such that

#φ[`e](L) =

{
#(A/`e)r, if ` 6= charA L;
#(A/`e)r−h, if ` = charA L.

The class group of A is finite, so we may choose e so that `e is principal, say generated by a.
If ` 6= charA L, then φa is separable, so #φ[`e](L) = deg φa = |a|r = #(A/a)r. If ` = charA L,
then each zero of φa has multiplicity qm(a) = qhvp(a) = #(A/a)h, so #φ[`e](L) = #(A/a)r−h.

Now suppose that L is only separably closed, with algebraic closure L. If charA L - I,
the proof above shows that φ[I](L) consists of L-points, so the structure of φ[I](L) is the
same. �

Corollary 3.14. If φ is a rank r Drinfeld module over any A-field L, and I is a nonzero
ideal of A, then deg φI = #φ[I] = #(A/I)r.

Proof. The underlying scheme of φ[I] is SpecL[x]/(φI(x)), so #φ[I] = deg φI . For the second
equality, assume without loss of generality that L is algebraically closed. For a group scheme
G, let G0 denote its connected component. Define m(I) := min{m(a) : a ∈ I − {0}}. If
a ∈ A − {0}, then φ[a]0 = ker τm(a), so φ[I]0 = ker τm(I). Thus #φ[I]0 = qm(I), which is
multiplicative in I. On the other hand, Proposition 3.13 shows that #φ[I](L) is multiplicative
in I. Thus #φ[I] = #φ[I]0 ·#φ[I](L) and #(A/I)r are both multiplicative in I. They are
equal for any power of I that is principal, so they are equal for I. �

Corollary 3.15. Let φ be a rank 1 Drinfeld module over a field L of nonzero A-characteristic
p. Then φp = τdeg p.

Proof. Without loss of generality, L is algebraically closed. Since 0 < h ≤ r = 1, we have
h = r = 1. By Proposition 3.13(b), φ[p](L) = 0. Since φp is monic, it is a power of τ . By
Corollary 3.14, deg φp = #(A/p) = qdeg p = deg τdeg p, so φp = τdeg p. �

3.7. Tate module. Let ` ⊂ A be a prime ideal not equal to 0 or charA L. Define the
completions A` := lim←−nA/`

n and K` := FracA`. Then the Tate module

T`φ := Hom(K`/A`,
φLs)
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is a free A`-module of rank r.
Applications:
• The endomorphism ring Endφ is a projective A-module of rank ≤ r2. In particular,
if r = 1, then Endφ = A and Autφ = A× = F×q .
• The Galois action on torsion points yields an `-adic representation

ρ` : Gal(Ls/L)→ AutA`
T`φ ' GLr(A`).

4. Reduction theory

4.1. Drinfeld modules over rings. So far we considered Drinfeld modules over A-fields.
One can also define Drinfeld modules over arbitrary A-algebras R or even A-schemes. In
such generality, the underlying Fq-vector space scheme need only be locally isomorphic to Ga,
so it could be the Fq-vector space scheme associated to a nontrivial line bundle on the base.

For simplicity, let us assume that PicR = 0; this holds if the A-algebra R is a PID, for
instance. Then a Drinfeld A-module over R is given by a ring homomorphism

A −→ EndGa,R = R{τ}
a 7−→ φa

such that φ′a(0) = a in R for all a ∈ A and l.c.(φa) ∈ R× for all nonzero a ∈ A. The last
requirement, which implies injectivity of φ, guarantees that for any maximal ideal m ⊂ R,
reducing all the φa modulo m yields a Drinfeld module over R/m of the same rank.

4.2. Good and stable reduction. Let us now specialize to the following setting:

R : an A-discrete valuation ring
(a discrete valuation ring with a ring homomorphism A→ R)

m : the maximal ideal of R
L := FracR, the fraction field
v : L→ Z ∪ {+∞}, the discrete valuation
F := R/m, the residue field
φ : a Drinfeld module over L of rank r ≥ 1.

Then
• φ has good reduction if φ is isomorphic over L to a Drinfeld module over R, that is, if
after replacing φ by an isomorphic Drinfeld module over L, all the φa have coefficients
in R and l.c.(φa) ∈ R× for all nonzero a ∈ A.
• φ has stable reduction if after replacing φ by an isomorphic Drinfeld module over L,
all the φa have coefficients in R and the Drinfeld module a 7→ (φa mod m) over F has
positive rank.

Example 4.1. Let A = Fq[T ]. A rank 2 Drinfeld module over L is determined by

φT = T + c1τ + c2τ
2;

here c1, c2 ∈ L and c2 6= 0. Isomorphic Drinfeld modules are given by

u−1φT u = T + uq−1c1τ + uq
2−1c2τ

2
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for any u ∈ L×. The condition for stable reduction is satisfied if and only if v(uq−1c1) ≥ 0

and v(uq
2−1c2) ≥ 0, with one of them being an equality. This condition uniquely specifies

v(u) ∈ Q. An element u of this valuation might not exist in L, but u can be found in a
suitable ramified finite extension of L.

Theorem 4.2 (Potential stability). Let φ be a Drinfeld module over L of rank r ≥ 1. There
exists a finite ramified extension L′ of L such that φ over L′ has stable reduction.

Proof. Choose generators a1, . . . , am of the ring A. As in Example 4.1, find L′ and u ∈ L′ of
valuation “just right” so that all coefficients of u−1φaiu have nonnegative valuation, and there
exist i and j > 0 such that the coefficient of τ j in φai has valuation 0. �

Corollary 4.3. Let φ be a rank 1 Drinfeld module over L. If there exists a ∈ A− Fq such
that l.c.(φa) ∈ R×, then φ is a Drinfeld module over R. In particular, φ has good reduction.

Proof. Left as an exercise. �

5. Example: The Carlitz module

The Drinfeld module analogue of Gm is the Carlitz module

φ : A = Fq[T ] −→ K{τ}
T 7−→ T + τ

(i.e., φT (x) = Tx+ xq). Then φ is a Drinfeld module of rank 1 since

deg φT = q = |T |1.
Define

[n] := T q
n − T

[n]! :=
n∏
j=1

[j]

e(z) :=
∑
n≥0

zq
n

/[n]!

π :=
∏
n≥1

(
1− [n]

[n+ 1]

)
∈ K∞

i := q−1
√
−[1] ∈ C.

Carlitz proved in the 1930s, long before Drinfeld, that e induces an isomorphism

C/πiA −→ (C with the Carlitz A-module action).

This is analogous to exp: C/2πiZ ∼→ C×.

Theorem 5.1. Fix a ∈ A with a 6= 0. Then K(φ[a]) is an abelian extension of K, and
Gal(K(φ[a])/K) ' (A/a)×.

(Theorem 5.1 is analogous to Gal(Q(µn)/Q)
∼→ (Z/n)×.)

Theorem 5.2 (Analogue of Kronecker–Weber). Every abelian extension of K in which the
place ∞ splits completely is contained in K(φ[a]) for some a.
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6. Class field theory

6.1. The class group. When A is not a PID, class field theory is more complicated. Intro-
duce the following notation:

I : the group of nonzero fractional A-ideals in K

P := {(c) : c ∈ K×}, the group of principal fractional A-ideals
PicA := I/P , the class group of A.

For a nonzero fractional ideal I, let [I] denote its class in PicA.

6.2. Rank 1 Drinfeld modules over C.

Proposition 6.1. We have bijections

PicA
∼−→ {rank 1 A-lattices in C}

homothety
∼−→ {rank 1 Drinfeld modules over C}

isomorphism
[I] 7−→ (homothety class of I in C)

Proof. The second bijection comes from the r = 1 case of Theorem 3.11. Thus we need only
consider the first map.

Surjectivity: Any rank 1 A-lattice Λ in C can be scaled so that KΛ = K. Then Λ is a
nonzero fractional ideal I.

Injectivity: I is homothetic to I ′ in C if and only if there exists c ∈ K× such that
I = cI ′. �

Corollary 6.2. Every rank 1 Drinfeld module over C is isomorphic to one defined over K∞.

Proof. When the lattice Λ is contained in K∞, the power series e and polynomials φa
constructed in Section 2 will have coefficients in K∞. �

6.3. The action of ideals on Drinfeld modules. The bijection between PicA and the
set of isomorphism classes of rank 1 Drinfeld modules over C is analytic, not canonical from
the algebraic point of view. But a weaker form of this structure exists algebraically, as will
be described in Theorem 6.5.

Fix any A-field L. If I is a nonzero ideal of A and φ is a Drinfeld module over any A-field
L, we can define a new Drinfeld module I ∗ φ over L isomorphic to the quotient of Ga by
φ[I]; more precisely, there exists a unique Drinfeld module ψ over L such that φI : Ga → Ga

is an isogeny φ→ ψ, and we define I ∗ φ := ψ.
Suppose that I = (a) for some nonzero a ∈ A. Then φI is φa made monic; that is, if

u := l.c.(φa), then φI = u−1φa. Therefore φI is the composition

φ
φa−→ φ

u−1

−→ u−1φu,

so (a) ∗ φ = u−1φu, which is isomorphic to φ, but not necessarily equal to φ. This suggests
that we define (a−1) ∗ φ = uφu−1. Finally, every I ∈ I is (a−1)J for some a ∈ A− {0} and
integral ideal J , and we define I ∗ φ = u(J ∗ φ)u−1. The following is now easy to check:

Proposition 6.3. The operation ∗ defines an action of I on the set of Drinfeld modules
over L. It induces an action of PicA on the set of isomorphism classes of Drinfeld modules
over L.
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Example 6.4. Suppose that φ is over C, and I is a nonzero integral ideal of A. If we identify
φ analytically with C/Λ, then φ[I] ' I−1Λ/Λ, so

I ∗ (C/Λ) ' (C/Λ)/(I−1Λ/Λ) ' C/I−1Λ.

Let X (C) be the set of isomorphism classes of rank 1 Drinfeld A-modules over C.

Theorem 6.5. The set X (C) is a principal homogeneous space under the action of PicA.

Proof. This follows from Proposition 6.1 and the calculation in Example 6.4 showing that
the corresponding action of I on lattices is by multiplication by I−1. �

6.4. Sgn-normalized Drinfeld modules. We will eventually construct abelian extensions
of a global function field K by adjoining the coefficients appearing in rank 1 Drinfeld modules.
For this, it will be important to have actual Drinfeld modules, and not just isomorphism
classes of Drinfeld modules. Therefore we will choose a (not quite unique) “normalized”
representative of each isomorphism class.

Let F∞ be the residue field of ∞ ∈ X. Since ∞ is a closed point, F∞ is a finite extension
of Fq. A choice of uniformizer π ∈ K∞ defines an isomorphism K∞ ' F∞((π)), and we define
sgn as the composition

K×∞
∼→ F∞((π))×

l.c.
� F×∞.

The function sgn is an analogue of the classical sign function sgn: R× → {±1}.
From now on, we fix (A, sgn).

Definition 6.6. A rank 1 Drinfeld module φ over L is sgn-normalized if there exists an
Fq-algebra homomorphism η : F∞ → L such that l.c.(φa) = η(sgn a) for all nonzero a ∈ A.

Example 6.7. Suppose that A = Fq[T ] and sgn(1/T ) = 1. For a Drinfeld A-module φ over
L, the following are equivalent:

• φ is sgn-normalized;
• l.c.(φT ) = 1;
• φT = T + τ (the Carlitz module).

Theorem 6.8. Every rank 1 Drinfeld module φ over C is isomorphic to a sgn-normalized
Drinfeld module. More precisely, the set of sgn-normalized Drinfeld modules isomorphic to φ
is a principal homogeneous space under F×∞/F×q .

Proof. When A is generated over Fq by one element T , then it suffices to choose u so that
u−1φTu is monic. The idea in general is that even if A is not generated by one element, its
completion will be (topologically).

First, extend φ to a homomorphism K → C((τ−1)) as in the proof of Proposition 3.6.
The induced valuation on K is v∞, so there exists a unique extension to a continuous
homomorphism K∞ → C((τ−1)), which we again denote by a 7→ φa. Also, l.c. extends
to a map C((τ−1))× → C× (not a homomorphism). Let π ∈ K∞ be a uniformizer with
sgn(π) = 1. Replacing φ by u−1φu multiplies l.c.(φπ) by u|π|−1, so we can choose u ∈ C× to
make l.c.(φπ) = 1.

We claim that the new φ is sgn-normalized. Define η : F∞ → C by η(c) := l.c.(φc). For any
a = cπn ∈ K×∞, with c ∈ F∞ and n ∈ Z, we have

l.c.(φa) = l.c.(φcφ
n
π) = l.c.(φc) = η(c) = η(sgn a),
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as required.
The u was determined up to a (#F∞− 1)th root of unity, but Autφ = A× = F×q , so u−1φu

depends only on the image of u modulo F×q . This explains the principal homogeneous space
claim. �

Introduce the following notation:

X +(L) := the set of sgn-normalized rank 1 Drinfeld A-modules over L

P+ := {(c) : c ∈ K× and sgn c = 1} ⊆ P
Pic+A := I/P+, the narrow class group of A.

Lemma 6.9. If φ ∈X +(L), then StabI φ = P+.

Proof. The following are equivalent for a nonzero integral ideal I not divisible by charA φ:
• I ∗ φ = φ;
• φIφa = φaφI for all a ∈ A;
• φI ∈ Endφ;
• φI ∈ A;
• φI = φb for some b ∈ A.

In particular, if I is an integral ideal in P+, then I = (b) for some b ∈ A with sgn b = 1, so
φI = φb, so I ∈ StabI φ. Using weak approximation, one can show that the integral ideals in
P+ generate the group P+, and that a general ideal I can be multiplied by an ideal in P+ to
make it integral and not divisible by charA φ.

Thus it remains to show that when I is an integral ideal not divisible by charA φ, the
condition φI = φb implies I ∈ P+. Suppose that φI = φb. Taking kernels yields φ[I] = φ[b].
Since charA φ - I, the group scheme φ[I] is reduced, so charA φ - b. By Proposition 3.13,
I = AnnA φ[I] = AnnA φ[b] = (b). Also, η(sgn b) = l.c.(φb) = l.c.(φI) = 1, so sgn b = 1. Thus
I ∈ P+. �

Theorem 6.10. The action of I on Drinfeld modules makes X +(C) a principal homogeneous
space under Pic+ A.

Proof. Lemma 6.9 implies that X +(C) is a disjoint union of principal homogeneous spaces
under Pic+A, so it suffices to check that X +(C) and # Pic+A are finite sets of the same
size. Theorems 6.8 and 6.5 imply

#X +(C) = #X (C) ·#(F×∞/F×q ) = # PicA ·#(F×∞/F×q ).

On the other hand, the exact sequence

1 −→ P/P+ −→ I/P+ −→ I/P −→ 1

and the isomorphism P/P+ ∼→ F×∞/F×q induced by sgn show that

# Pic+A = # PicA ·#(F×∞/F×q ). �

6.5. The narrow Hilbert class field. Choose φ ∈X +(C). Define

H+ := K(all coefficients of φa for all a ∈ A) ⊆ C.

Then φ is a Drinfeld module over H+, and so is I ∗ φ for any I ∈ I. By Theorem 6.10, these
are all the objects in X +(C), so H+ is also the extension of K generated by the coefficients

12



of φa for all φ ∈X +(C) and all a ∈ A. In particular, H+ is independent of the choice of φ.
It is called the narrow Hilbert class field of (A, sgn).

Theorem 6.11.
(a) The field H+ is a finite abelian extension of K.
(b) The extension H+ ⊇ K is unramified above every finite place (“finite” means not ∞).
(c) We have Gal(H+/K) ' Pic+A.

Proof.
(a) The group Aut(C/K) acts on X +(C), so it maps H+ to itself. Also, H+ is finitely

generated over K. These imply that H+ is a finite normal extension of K.
By Corollary 6.2, each rank 1 Drinfeld module over C is isomorphic to one over K∞,

and it can be made sgn-normalized over a field obtained by adjoining a (#F∞ − 1)th
root. The completion K∞ of a global field K is a separable extension of K, and adjoining
(#F∞−1)th roots produces a field F separable over K∞ with F ⊇ H+, so H+ is separable
over K.

The automorphism group of X +(C) as a principal homogeneous space under Pic+A
equals Pic+A, so we have an injective homomorphism

χ : Gal(H+/K) ↪→ Aut X + ' Pic+A.

Thus Gal(H+/K) is a finite abelian group.
(b) Let B+ be the integral closure of A in H+. Let P ⊂ B+ be a nonzero prime ideal, lying

above p ⊂ A. Let FP = B+/P . By Corollary 4.3, each φ ∈ X +(H+) = X +(C) is a
Drinfeld module over the localization B+

P , so there is a reduction map

ρ : X +(H+)→X +(FP ).

By Lemma 6.9, Pic+A acts faithfully on the source and target. Moreover, the map ρ
is Pic+A-equivariant, and X +(H+) is a principal homogeneous space under Pic+A by
Theorem 6.10, so ρ is injective.

If an automorphism σ ∈ Gal(H+/K) belongs to the inertia group at P , then σ acts
trivially on X +(FP ), so σ acts trivially on X +(H+), so σ = 1. Thus H+ ⊇ K is
unramified at P .

(c) Let Frobp := FrobP ∈ Gal(FP/Fp) ↪→ Gal(H+/K) be the Frobenius automorphism. The
key point is the formula

Frobp φ = p ∗ φ
for any φ ∈X +(FP ); let us now prove this. By definition, if ψ := p∗φ, then ψaφp = φpφa
for all a ∈ A. By Corollary 3.15, φp = τdeg p, so ψaτdeg p = τdeg pφa. Compare coefficients;
since τdeg p acts on FP as Frobp, we obtain ψ = Frobp φ.

Since X +(H+)→X +(FP ) is injective and Pic+A-equivariant, it follows that Frobp

acts on X +(H+) too as φ 7→ p ∗ φ. Thus χ : Gal(H+/K) ↪→ Pic+A maps Frobp to the
class of p in Pic+ A. Such classes generate Pic+A, so χ is surjective. �

6.6. The Hilbert class field. Because of the exact sequence

0 −→ P/P+ −→ Pic+ A −→ PicA −→ 0,
13



the extension H+ ⊇ K decomposes into two abelian extensions

H+

P/P+

H

PicA

K

with Galois groups as shown. The map of sets X +(C) � X (C) is compatible with the
surjection of groups Pic+ A � PicA acting on the sets. By Corollary 6.2, each element of
X (C) is represented by a Drinfeld module over K∞, so the decomposition group D∞ ⊆
Gal(H+/K) acts trivially on X (C). Thus D∞ ⊆ P/P+. In other words,∞ splits completely
in H ⊇ K.

The Hilbert class fieldHA of A is defined as the maximal unramified abelian extension ofK in
which∞ splits completely. Thus H ⊆ HA. Class field theory shows that Gal(HA/K) ' PicA,
so H = HA.

6.7. Ray class fields. In this section, we generalize the constructions to obtain all the
abelian extensions of K, even the ramified ones. Introduce the following notation:

m : a nonzero ideal of A
Im := the subgroup of I generated by primes not dividing m

Pm := {(c) : c ∈ K and c ≡ 1 (mod m)}
P+

m := {(c) : c ∈ K and sgn c = 1 and c ≡ 1 (mod m)}
PicmA := Im/Pm, the ray class group modulo m of A

Pic+
m A := Im/P+

m , the narrow ray class group modulo m of (A, sgn)

X +
m (C) := {(φ, λ) : φ ∈X +(C) and λ generates the A/m-module φ[m](C)}
H+

m := H+(λ) for any (φ, λ) ∈X +
m (C)

(the narrow ray class field modulo m of (A, sgn))

Hm := the subfield of H+
m fixed by Pm/P+

m

(the ray class field modulo m of A).

Arguments similar to those in previous sections show the following:

Theorem 6.12.

(a) There is an action of Im on X +
m (C) making X +

m (C) a principal homogeneous space
under Pic+

m A.
(b) The field H+

m is a finite abelian extension of K, unramified outside m, and Gal(H+
m /K) '

Pic+
m A.

(c) The extension Hm is the ray class field modulo m of A as classically defined, with
Gal(Hm/K) ' PicmA.
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6.8. The maximal abelian extension. Theorem 6.12 implies that
⋃

mHm equals Kab,∞,
the maximal abelian extension of K in which ∞ splits completely. Finally, if ∞′ is a second
closed point of X, then the compositum Kab,∞Kab,∞′ is the maximal abelian extension of K.

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA
02139-4307, USA

Email address: poonen@math.mit.edu
URL: http://math.mit.edu/~poonen/

15

http://math.mit.edu/~poonen/

	1. Applications
	2. Analytic theory
	2.1. Inspiration from characteristic 0
	2.2. Characteristic p analogues

	3. Algebraic theory
	3.1. Fq-linear polynomials
	3.2. Drinfeld modules
	3.3. Rank
	3.4. Height
	3.5. Drinfeld modules and lattices
	3.6. Torsion points
	3.7. Tate module

	4. Reduction theory
	4.1. Drinfeld modules over rings
	4.2. Good and stable reduction

	5. Example: The Carlitz module
	6. Class field theory
	6.1. The class group
	6.2. Rank 1 Drinfeld modules over C
	6.3. The action of ideals on Drinfeld modules
	6.4. Sgn-normalized Drinfeld modules
	6.5. The narrow Hilbert class field
	6.6. The Hilbert class field
	6.7. Ray class fields
	6.8. The maximal abelian extension


