THE VALUATION OF THE DISCRIMINANT OF A HYPERSURFACE

BJORN POONEN AND MICHAEL STOLL

Abstract. Let R be a discrete valuation ring, with valuation $v : R \to \mathbb{Z} \cup \{\infty\}$ and residue field k. Let H be a hypersurface $\text{Proj} \, R[x_0, \ldots, x_n]/(f)$. Let H_k be the special fiber, and let $(H_k)_{\text{sing}}$ be its singular subscheme. Let $\Delta(f)$ be the discriminant of f. We use Zariski’s main theorem and degeneration arguments to prove that $v(\Delta(f)) = 1$ if and only if H is regular and $(H_k)_{\text{sing}}$ consists of a nondegenerate double point over k. We also give lower bounds on $v(\Delta(f))$ when H_k has multiple singularities or a positive-dimensional singularity.

1. Introduction

Throughout the paper, R denotes a discrete valuation ring, with valuation $v : R \to \mathbb{Z} \cup \{\infty\}$, maximal ideal $m = (\pi)$, and residue field k (except in a few places where k is an arbitrary field).

Let $E \subset \mathbb{P}^2_R$ be defined by a Weierstrass equation, with generic fiber an elliptic curve. If the discriminant of the equation has valuation 1, then E is regular and the singular locus of its special fiber consists of a node; this follows from Tate’s algorithm [Tat75], for example; see also [Sil94, Lemma IV.9.5(a)]. Our main theorem (Theorem 1.1) generalizes this to hypersurfaces of arbitrary degree and dimension (terminology will be explained later).

Theorem 1.1. Let $f \in R[x_0, \ldots, x_n]$ be a homogeneous polynomial. Let $\Delta(f)$ be its discriminant. Let $H = \text{Proj} \, R[x_0, \ldots, x_n]/(f)$. Then the following are equivalent:

(i) $v(\Delta(f)) = 1$;

(ii) H is regular, and $(H_k)_{\text{sing}}$ consists of a nondegenerate double point in $H(k)$.

We also prove that if $(H_k)_{\text{sing}}$ consists of r isolated closed points, then $v(\Delta(f)) \geq r$ (Theorem 6.2). If $\dim (H_k)_{\text{sing}} \geq 1$, we show that H_k is a limit of hypersurfaces whose singular subscheme is finite but with many points, and we combine this and an argument using the Greenberg functor to deduce that $v(\Delta(f)) \geq \max(\lfloor (\deg f - 1)/2 \rfloor, 2)$ (Theorem 8.4).

2. Discriminant

Fix $n \geq 1$ and $d \geq 2$. Let x^i range over the degree d monomials in $\mathbb{Z}[x_0, \ldots, x_n]$, and let a_i be independent indeterminates, so that $F := \sum_i a_i x^i$ is the generic degree d homogeneous polynomial in x_0, \ldots, x_n. Then the affine space $\mathbb{A}^N := \text{Spec} \, \mathbb{Z}[\{a_i\}]$ may be viewed as a moduli space for hypersurfaces (one could also remove the origin, or projectivize as in [Sai12, §2.4]). Let $\mathcal{H} \subset \mathbb{P}^n \times \mathbb{A}^N$ be the closed subscheme defined by $F = 0$, so the projection $\phi : \mathcal{H} \to \mathbb{A}^N$ is the universal hypersurface. Let $\mathcal{H}_{\text{sing}}$ be the relative singular subscheme, the closed subscheme...
defined by \(F = \partial F/\partial x_0 = \cdots = \partial F/\partial x_n = 0 \). More precisely, \(\mathcal{H}_{\text{sing}} \) is the locus of points where \(\phi \) is not smooth of relative dimension \(n - 1 \).

The other projection \(\mathcal{H}_{\text{sing}} \to \mathbb{P}^n \) is a rank \(N - n - 1 \) vector bundle since the equations \(F = \partial F/\partial x_0 = \cdots = \partial F/\partial x_n = 0 \) are linear in the \(a_i \) and independent above each point of \(\mathbb{P}^n \) except for the Euler relation \(d \cdot F = \sum x_i(\partial F/\partial x_i) \). Thus \(\mathcal{H}_{\text{sing}} \) is integral and smooth of relative dimension \(N - 1 \) over \(\mathbb{Z} \). Its scheme-theoretic image under the proper morphism \(\phi \) is a closed subscheme \(D \subset \mathbb{A}^N \), the locus parametrizing singular hypersurfaces. In fact, \(D \subset \mathbb{A}^N \) is a divisor and the restriction \(\mathcal{H}_{\text{sing}} \to D \) of \(\phi \) is birational (cf. [Sai12, §2.9]); this is a Bertini-type statement saying essentially that among hypersurfaces singular at a point, most have singular subscheme consisting of just that point. Thus \(D \subset \mathbb{A}^N \) is the zero locus of some polynomial \(\Delta \in \mathbb{Z}[\{a_i\}] \) determined up to a unit, i.e., up to sign; \(\Delta \) is called the discriminant. (See [GKZ08, Dem12, Sai12] for other descriptions of \(\Delta \).) By definition, if the \(a_i \) are specialized to elements of a field \(k \), the resulting hypersurface in \(\mathbb{P}^n_k \) is singular (not smooth of dimension \(n - 1 \)) if and only if \(\Delta \) specializes to 0 in \(k \).

3. Quadratic Forms

Proposition 3.1. Suppose that \(d = 2 \). Let \(\text{Det} = \det(\partial^2 F/\partial x_i\partial x_j) \in \mathbb{Z}[\{a_i\}] \). If \(n \) is odd, then \(\Delta = \pm \text{Det} \). If \(n \) is even, then \(\Delta = \pm \text{Det}/2 \).

Proof. This is well known, except perhaps the power of 2, which can be determined by evaluating \(\text{Det} \) for a quadratic form defining a smooth quadric over \(\mathbb{Z} \), since \(\Delta = \pm 1 \) for such a form. Use \(x_0x_1 + \cdots + x_{n-1}x_n \) if \(n \) is odd, and \(x_0x_1 + \cdots + x_{n-2}x_{n-1} + x_n^2 \) if \(n \) is even. \(\square \)

A symmetric bilinear space over \(R \) is a pair \((M, \beta)\) where \(M \) is a finite-rank projective module \(R \) (hence free since \(R \) is a discrete valuation ring) and \(\beta: M \times M \to R \) is a symmetric \(R \)-bilinear pairing.

Proposition 3.2. Let \(R \) be a discrete valuation ring.

(a) Each symmetric bilinear space over \(R \) is an orthogonal direct sum of spaces of rank 1 and 2.

(b) Every quadratic form \(f(x_0, \ldots, x_n) \) over \(R \) is equivalent to one of the form

\[
\sum_{i=1}^{I} (a_ix_i^2 + b_i x_iz_i) + \sum_{j=1}^{J} d_j z_j^2
\]

with \(2I + J = n + 1 \) and \(a_i, b_i, c_i, d_j \in R \).

(c) Let \(f \) be as in (b). Let \(H = \text{Proj} \ R[x_0, \ldots, x_n]/(f) \). Then \(\nu(\Delta(f)) \geq \dim(H_k)_{\text{sing}} + 1 \).

Proof.

(a) (We paraphrase an argument of Jean-Pierre Tignol adapted from the proof of [Ver19, Proposition 4.10].) Let \((M, \beta)\) be a nonzero symmetric bilinear space. We may assume that \(\beta \neq 0 \). By dividing \(\beta \) by a nonzero element of \(R \), we may assume that \(\beta(M, M) \not\subset \mathfrak{m} \). We claim that there exists a free \(R \)-module \(N \) of rank 1 or 2 with a homomorphism \(N \to M \) such that \(\beta \) induces a regular pairing on \(N \) (i.e., the composition \(N \to M \to M^\vee \to N^\vee \) is an isomorphism); then \(N \to M \) is injective, and \(M \) is the orthogonal direct sum of \(N \) and \(N^\perp := \ker(M \to N^\vee) \), so we are done by induction on \(\text{rank}(M) \).
If there exists \(e \in M \) with \(\beta(e, e) \in R^* \) a unit, then let \(N = Re \). Otherwise, choose \(c, d \in M \) with \(\beta(c, d) \in R^* \) and let \(N = Rc \oplus Rd \); the induced pairing is regular since its matrix is invertible, being congruent mod \(\pi \) to \(\begin{pmatrix} 0 & \beta(c, d) \\ \beta(c, d) & 0 \end{pmatrix} \).

(b) Decomposing a quadratic space is equivalent to decomposing the associated symmetric bilinear space, even if \(\text{char } k = 2 \).

(c) First suppose \(\text{char } k \neq 2 \). Then \(f \) is equivalent to \(\sum a_i x_i^2 \) for some \(a_i \in R \), and

\[
\dim (H_k)^{\text{sing}} = \# \{ i : v(a_i) \geq 1 \} - 1 \leq v(\text{Det}(f)) - 1 = v(\Delta(f)) - 1,
\]

by Proposition 3.1.

Now suppose \(\text{char } k = 2 \). Let \(I_0 = \# \{ i : v(b_i) = 0 \} \) and \(I_1 = \# \{ i : v(b_i) \geq 1 \} \). Let \(J_0 = \# \{ j : v(d_j) = 0 \} \) and \(J_1 = \# \{ j : v(d_j) \geq 1 \} \). If \(n \) is odd, let \(J' := J \). If \(n \) is even, then \(J \) is odd, so let \(J' := J - 1 \). In both cases \(J' \geq 0 \). The common zero locus in \(\mathbb{P}_k^n \) of the polynomials \(\partial f / \partial x_i \) and \(\partial f / \partial y_i \), for \(i \in I_0 \) is of dimension \(n - 2I_0 \), and including the condition \(f = 0 \) drops the dimension by 1 more if \(J_0 \geq 1 \). Thus \(\dim (H_k)^{\text{sing}} \leq n - 2I_0 \), with strict inequality if \(J_0 \geq 1 \). On the other hand, \(v(4a_i c_i - b_i^2) \geq 2 \) whenever \(v(b_i) \geq 1 \), and \(v(2d_j) \geq v(2) + v(d_j) \) for all \(j \), so Proposition 3.1 implies

\[
v(\Delta(f)) \geq 2I_1 + J'v(2) + J_1
\]

\[
= (n - 2I_0) + J'v(2) - J_0 + 1
\]

\[
\geq \dim (H_k)^{\text{sing}} + J'v(2) - J_0 + 1.
\]

If \(J_0 \geq 1 \), then the inequality above is strict and \(J'v(2) \geq (J_0 - 1)v(2) \geq J_0 - 1 \), so \(v(\Delta(f)) \geq \dim (H_k)^{\text{sing}} + 1 \). If \(J_0 = 0 \), then instead use \(J'v(2) \geq 0 \) to again get \(v(\Delta(f)) \geq \dim (H_k)^{\text{sing}} + 1 \). \(\square \)

4. Nondegenerate double points

Definition 4.1 ([SGA 7] VI.6). Let \(k \) be a field. Let \(X \) be a finite-type \(k \)-scheme. A \(k \)-point \(Q \in X \) is called a **nondegenerate double point** (or **nondegenerate quadratic point**) if there exist \(n \geq 1 \) and \(f \in k[[x_1, \ldots, x_n]] \) such that there is an isomorphism of complete \(k \)-algebras \(\widehat{\mathcal{O}}_{X, Q} \cong k[[x_1, \ldots, x_n]]/(f) \) and an equality of ideals \((\partial f / \partial x_1, \ldots, \partial f / \partial x_n) = (x_1, \ldots, x_n) \).

Remark 4.2. The ideal equality is equivalent to saying that \(Q \) is an isolated reduced point of the singular subscheme \(X_{\text{sing}} \).

Remark 4.3. Suppose that \(n \) and \(f \) exist. Then \(f \) can be taken to be a quadratic form [SGA 7] VI.6.1]. If, moreover, \(k \) is algebraically closed, then

- if \(\text{char } k \neq 2 \), then one can take \(f := x_1^2 + \cdots + x_n^2 \);
- if \(\text{char } k = 2 \), then \(n \) must be even and one can take \(f := x_1 x_2 + x_3 x_4 + \cdots + x_{n-1} x_n \).

Remark 4.4 ([SGA 7] Definition VI.6.6]). There is also notion of **ordinary double point**, which is the same except that when \(\text{char } k = 2 \) and \(n \) is odd, since nondegeneracy is impossible one allows singularities analytically equivalent over an algebraic closure to the singularity defined by the “least degenerate” quadratic form \(f := x_1 x_2 + \cdots + x_{n-2} x_{n-1} + x_n^2 \).
5. COMMUTATIVE ALGEBRA

A ring extension \(R' \supset R \) is called a weakly unramified extension if \(R' \) too is a discrete valuation ring and \(\pi \) is also a uniformizer of \(R' \).

Lemma 5.1. For any field extension \(k' \supset k \), there exists a weakly unramified extension \(R' \supset R \) with residue field \(k' \) (i.e., isomorphic to \(k' \) as \(k \)-algebra).

Proof. If \(k'/k \) is generated by one algebraic element, say a zero of a monic irreducible polynomial \(\tilde{f} \in k[x] \), then we may take \(R' := R[x]/(f) \) for any monic \(f \in R[x] \) reducing to \(\tilde{f} \) [Ser79, I.§6, Proposition 15]. If \(k'/k \) is generated by one transcendental element \(t \), then we may take the localization \(R' := R[t]_{(\pi)} \) of the (regular) polynomial ring \(R[t] \) at the codimension \(1 \) prime \((\pi)\); the residue field of \(R' \) is \(\text{Frac}(R[t]_{(\pi)}) = k(t) \). The general case follows from Zorn’s lemma, using direct limits.

Lemma 5.2. Let \(A \) be a noetherian local domain. Let \(\hat{A} \) be its completion. Let \(B \) be the integral closure of \(A \). Then \[
\#\{\text{minimal primes of } \hat{A}\} \geq \{\text{maximal ideals of } B\}.
\]

Proof. Combine [SP Tag 0C24] and [SP Tag 0C28(1)].

6. HYPERSURFACES WITH SEVERAL SINGULARITIES

Let notation be as in Theorem [I.1]. We use subscripts to denote base change: e.g., \(D_A := D \times_{\text{Spec} \mathbb{Z}} \text{Spec} A \) for any ring \(A \). Restricting \(\phi_R \) yields a proper morphism \(\varphi : (\mathcal{H}_R)_{\text{sing}} \to D_R \).

Proposition 6.1. The proper morphism \(\varphi : (\mathcal{H}_R)_{\text{sing}} \to D_R \) is birational.

Proof. This follows from [Sai12, Proposition 2.12] applied over \(\text{Frac}(R) \).

Theorem 6.2. If the space \((H_k)_{\text{sing}} \) consists of \(r \) closed points, then \(v(\Delta(f)) \geq r \).

Proof. Using Lemma 5.1 we may reduce to the case in which \(k \) is algebraically closed.

Let \(P \in D_R(k) \) correspond to \(H_k \), so \(\varphi^{-1}(P) = (H_k)_{\text{sing}} \). Since \(R \) is regular, the local ring \(\mathcal{O}_{(H_k)_{\text{sing}}} \) is regular, and hence factorial [AB59, Theorem 5].

Let \(D' := \{d \in D_R : \dim_{\varphi^{-1}(d)} = 0\} \), so \(P \in D' \). By [EGA IV$_3$, Corollaire 13.1.5], \(D' \) is open in \(D_R \). By Proposition 6.1 \(\varphi^{-1}(D') \to D' \) is birational. It is also quasi-finite and proper, hence finite by Zariski’s main theorem [EGA III], Corollaire 4.4.11]. Moreover, \((H_R)_{\text{sing}} \) is smooth over a discrete valuation ring, hence normal. The previous three sentences imply that \(\varphi^{-1}(D') \to D' \) is the normalization of \(D' \).

Take \(A := \mathcal{O}_{D',P} = \mathcal{O}_{D,P} = \mathcal{O}_{(H_k)_{\text{sing}},P}/(\Delta) \), and define \(\hat{A} \) and \(B \) as in Lemma 5.2. Then the maximal ideals of \(B \) correspond to the points of \(\varphi^{-1}(D') \) above \(P \), which are the \(r \) points of \((H_k)_{\text{sing}} \). Lemma 5.2 implies that \(\hat{A} \) has at least \(r \) minimal primes. Their inverse images in \(\mathcal{O}_{(H_k)_{\text{sing}},P} \) correspond to prime factors of \(\Delta \) in this factorial ring, so \(\Delta = p_1 \cdots p_rq \), for some \(p_1, \ldots, p_r, q \in \mathcal{O}_{(H_k)_{\text{sing}},P} \) with each \(p_i \) vanishing at \(P \). Evaluating both sides at (the coefficient tuple of) \(f \) shows that \(v(\Delta(f)) \geq 1 + \cdots + 1 + 0 = r \).
7. Valuations of polynomial values

Lemma 7.1. Suppose that k is infinite, and $\ell \geq n$. Let $\rho: \mathbb{A}^\ell_k \to \mathbb{A}^n_k$ be a projection. Let $V \subset \mathbb{A}^\ell_k$ be a closed subscheme. Then $\{a \in k^n : \rho^{-1}(a)(k) \subseteq V(k)\}$ is the set of k-points of a closed subscheme $Z \subseteq \mathbb{A}^n_k$.

Proof. Since k is infinite, $\rho^{-1}(a)(k) \subseteq V(k)$ is equivalent to $\rho^{-1}(a) \subseteq V$, which fails if and only if $a \in \rho(\mathbb{A}^\ell_k - V)$. Since ρ is flat, ρ is open, so $\rho(\mathbb{A}^\ell_k - V)$ is open; let Z be its complement. \hfill \Box

For $b \in R$, let \bar{b} be its image in k. Likewise, given $b \in R^n$, define $\bar{b} \in k^n$.

Proposition 7.2. Let $\delta \in R[x_1, \ldots, x_n]$ and $m \in \mathbb{Z}_{\geq 0}$. If k is infinite and perfect, then

$$\{a \in k^n : v(\delta(b)) \geq m \text{ for all } b \in R^n \text{ with } \bar{b} = a\}$$

is the set of k-points of a closed subscheme of \mathbb{A}^n_k.

Proof. The mth Greenberg functor Gr^m satisfies $\text{Gr}^m(X)(k) = X(R/m^m)$ for any R-scheme X; see [Gre61, Gre63, NS08, §2.2; BGA18]. Applying Gr_m to $\delta: \mathbb{A}^n_R \to \mathbb{A}^1_R$ yields a morphism

$$\text{Gr}^m(\mathbb{A}^n_R) \longrightarrow \text{Gr}^m(\mathbb{A}^1_R);$$

let V be the fiber above 0. On the other hand, the reduction map $R/m^m \to k$ induces a morphism $\rho: \text{Gr}^m(\mathbb{A}^n_R) \to \text{Gr}^1(\mathbb{A}^n_R)$ that is a projection $\mathbb{A}^m_R \to \mathbb{A}^1_k$ as in Lemma 7.1. For $a \in k^n$,

$$v(\delta(b)) \geq m \text{ for all } b \in R^n \text{ with } \bar{b} = a \iff \rho^{-1}(a)(k) \subseteq V(k),$$

so the result follows from Lemma 7.1. \hfill \Box

8. Hypersurfaces with a positive-dimensional singularity

In Lemma 8.1, Corollary 8.2, and Lemma 8.3 we assume that $n \geq 2$, $r \geq 1$, and P_1, \ldots, P_r are distinct points in $\mathbb{P}^n(k)$. Let $\mathcal{O} = \mathcal{O}_{\mathbb{P}^n}$. For each $P \in \mathbb{P}^n(k)$, let $\mathfrak{m}_P \subset \mathcal{O}$ be the ideal sheaf of P.

Lemma 8.1. If $d \geq 2r - 1$, then $\mathcal{O}(d) \to \prod_i (\mathcal{O}/\mathfrak{m}_P^2)(d)$ induces a surjection on global sections.

Proof. Let ℓ_i be a linear form vanishing at P_i but not P_j for any $j \neq i$. Let h be a homogeneous polynomial of degree $d - (2r - 1)$ not vanishing at any P_i. For each s, as g ranges over linear forms, the image of g in $(\mathcal{O}/\mathfrak{m}_P^2)(1)$ ranges over all its sections, so the images of $gh\prod_{j \neq s} \ell^2_j$ in $\prod_i (\mathcal{O}/\mathfrak{m}_P^2)(d)$ exhaust the sth factor of $\prod_i (\mathcal{O}/\mathfrak{m}_P^2)(d)$. \hfill \Box

Corollary 8.2. Let $N = \dim_k \Gamma(\mathbb{P}^n, \mathcal{O}(d))$. For $f \in \Gamma(\mathbb{P}^n, \mathcal{O}(d))$, let $H_f := \text{Proj} k[x_0, \ldots, x_n]/(f)$. Then the f for which $(H_f)_{\text{sing}} \supset \{P_1, \ldots, P_r\}$ form a vector space of dimension $N - r(n + 1)$.

Lemma 8.3. If $d \geq 3$ and $1 \leq r \leq \max((d - 1)/2, 2)$, then in the locus \mathbb{A} of f for which $(H_f)_{\text{sing}} \supset \{P_1, \ldots, P_r\}$, the open sublocus U for which $(H_f)_{\text{sing}}$ is finite is dense.

Proof. Since \mathbb{A} is defined by the vanishing of values of f and its partial derivatives at the P_i, it is cut out by linear forms in the coefficients of f, so \mathbb{A} is an affine space. Applying [EGA IV, Corollaire 13.1.5] the relative singular subscheme over \mathbb{A} shows that U is open in \mathbb{A}, so it remains to show that $U \neq \emptyset$.

First suppose that $r \leq (d - 1)/2$. Let

$$I = \{(f, P_{r+1}) : f \in \mathbb{A}, P_{r+1} \in (H_f)_{\text{sing}} - \{P_1, \ldots, P_r\}\}.$$
Theorem 8.4. Let I at a point P whose singular locus contains I.

Proof. We may assume that k is a proper birational morphism, so ϕ is an isomorphism. On the other hand, by Remark 4.3,

$$\Delta = \phi^*(\Delta)$$

Proof of Theorem 1.1. Case 1: $r = \dim(A) = \dim(A) - 1$. Therefore $I \to A$ is not dominant, and U contains the complement of its image.

Now suppose instead that $r \leq 2$. Choose a homogeneous degree d form $g(x_3, \ldots, x_n)$ defining a smooth hypersurface in \mathbb{P}^{n-3}, let $c_1, \ldots, c_{d-1} \in k$ be distinct (enlarge k if necessary), and let

$$f = x_0 \prod_{i=1}^{d-1} (x_i - c_i x_2) + g.$$

At a point P where f and its partial derivatives vanish, $\prod_{i=1}^{d-1} (x_i - c_i x_2) = 0$, so $g = 0$, so g and its derivatives vanish, so $x_3 = \cdots = x_n = 0$; thus P is a singular point of the plane curve $x_0 \prod_{i=1}^{d-1} (x_i - c_i x_2) = 0$, i.e., an intersection point of two components. By a linear change of variable, we may assume that the P_i (of which there are at most two) are among these singular points. Then f gives a k-point of U. □

Theorem 8.4. Let $H = \text{Proj} R[x_0, \ldots, x_n]/(f)$ for some homogeneous f of degree d. If $\dim(H_{\text{sing}}) \geq 1$, then $v(\Delta(f)) \geq \max([(d-1)/2], 2)$.

Proof. We may assume that $n, d \geq 2$. Using Lemma 5.1 we may reduce to the case in which k is algebraically closed. If $d = 2$, then Proposition 3.2(c) implies that $v(\Delta(f)) \geq \dim(H_{\text{sing}}) + 1 \geq 2$.

So assume $d \geq 3$. Let Z be the closed subscheme of Proposition 7.2 for $\delta := \Delta \in R[\{a_i\}]$ and $r := \max([(d-1)/2], 2)$. Choose distinct $P_1, \ldots, P_r \in (H_{\text{sing}})(k)$. If $j \in R[x_0, \ldots, x_n]$ is a degree d homogeneous polynomial, and $J = \text{Proj} R[x_0, \ldots, x_n]/(j)$ is such that $(J_{\text{sing}})^{-1} = \{P_1, \ldots, P_r\}$, then $v(\Delta(j)) \geq r$ by Theorem 6.2, so the corresponding coefficient tuple mod m belongs to $Z(k)$. By Lemma 8.3, any coefficient tuple mod m corresponding to a hypersurface whose singular locus contains $\{P_1, \ldots, P_r\}$ also belongs to $Z(k)$. This applies in particular to the coefficient tuple of f mod m, so $v(\Delta(m)) \geq r$ by definition of Z. □

9. When the Discriminant Has Valuation 1

Proof of Theorem 1.1. Case 1: $\text{char } k = 2$ and n is odd. By [Sai12, Theorem 4.2], if the sign of Δ is chosen appropriately, then $\Delta = A^2 + 4B$ for some polynomials A, B, so $v(\Delta(f)) \neq 1$. On the other hand, by Remark 4.3, H_k cannot have a nondegenerate double point. Thus (i) and (ii) both fail.

Case 2: $\text{char } k \neq 2$ or n is even. The hypersurface $H \to \text{Spec } R$ is the pullback of $H_R \to \mathbb{A}^N_R$ by some R-morphism $\nu: \text{Spec } R \to \mathbb{A}^N_R$. Let $P = \nu(\text{Spec } k) \in \mathbb{A}^N(k)$.

(i)⇒(ii): Suppose that $\nu(\Delta(f)) = 1$. By Theorem 8.4, $(H_k)_{\text{sing}}$ is finite. The surjection $R[\{a_i\}] \to R$ sending the a_i to the corresponding coefficients a_1 of f maps Δ to $\Delta(f)$, so the $a_i - a_1$ and Δ are local parameters for \mathbb{A}^N_R at P. Thus $D_R = \text{Spec } R[\{a_i\}]/(\Delta)$ is regular at P, so D_R is normal at P. Let U be the largest normal open subscheme of D_R such that $\varphi^{-1}U \to U$ has finite fibers. The fiber above P is $(H_k)_{\text{sing}}$, so $P \in U$. By Proposition 6.1, φ is a proper birational morphism, so $\varphi^{-1}U \to U$ has finite fibers by Zariski’s main theorem [EGA III, Corollaire 4.4.9]. In particular, the fiber $(H_k)_{\text{sing}}$ consists of a single reduced k-point Q. By Remark 1.2, Q is a nondegenerate double point of H_k.

Choose an $\mathbb{A}^N_R \subset \mathbb{P}^n_R$ containing Q; let f_0 be the corresponding dehomogenization of f. The point $(H_k)_{\text{sing}}$ is cut out in \mathbb{A}^N_R by f_0 and its partial derivatives; these $n + 1$ functions are
therefore local parameters for \mathbb{P}^n_R at Q, so the local ring $\mathcal{O}_{H,Q} = \mathcal{O}_{\mathbb{P}^n_R,Q}/(f_0)$ is regular too. On the other hand, $H - \{Q\}$ is smooth over $\text{Spec } R$. Thus H is regular everywhere.

(ii)\Rightarrow(i): Now suppose that H is regular and $(H_k)_{\text{sing}}$ consists of a nondegenerate double point $Q \in H(k)$. Hence the underlying space of H_{sing} is $\{Q\}$.

Since the tangent space of $(H_k)_{\text{sing}}$ at Q is 0, the projection $(H_k)_{\text{sing}} \to \mathbb{A}^n_k$ induces an injection between the tangent spaces at Q and P. Since Q is the only point in $(H_k)_{\text{sing}}$ above P, this implies that $(H_k)_{\text{sing}} \to D_R$ is étale at Q. Pulling back $(H_k)_{\text{sing}} \to D_R \hookrightarrow \mathbb{A}^n_R$ by ι shows that $H_{\text{sing}} \to \text{Spec}(R/(\Delta(f)))$ is étale. These are connected 0-dimensional schemes with the same residue field, so $H_{\text{sing}} \simeq \text{Spec}(R/(\Delta(f)))$.

Let f_0 be as above, so f_0 and its partial derivatives lie in the maximal ideal $m_{\mathbb{P}^n_R,Q} \subset \mathcal{O}_{\mathbb{P}^n_R,Q}/(f_0)$. The partial derivatives are independent in $m_{\mathbb{P}^n_R,Q}/m_{\mathbb{P}^n_R,Q}^2$ since they form a basis for $m_{\mathbb{P}^n_k,Q}/m_{\mathbb{P}^n_k,Q}^2$, since Q is a nondegenerate double point. On the other hand, the image of f_0 in $m_{\mathbb{P}^n_R,Q}/m_{\mathbb{P}^n_R,Q}^2$ is nonzero (since $\mathcal{O}_{H,Q} = \mathcal{O}_{\mathbb{P}^n_R,Q}/(f_0)$ is regular) and in fact independent of the partial derivatives (since it maps to 0 in $m_{\mathbb{P}^n_k,Q}/m_{\mathbb{P}^n_k,Q}^2$). Thus f_0 and its partial derivatives form a basis of $m_{\mathbb{P}^n_R,Q}/m_{\mathbb{P}^n_R,Q}^2$, so by Nakayama’s lemma, they generate $m_{\mathbb{P}^n_R,Q}$, so $H_{\text{sing}} \simeq \text{Spec } k$.

The conclusions of the two previous paragraphs imply $v(\Delta(f)) = 1$. \hfill \Box

Acknowledgments

We thank Parimala and Jean-Pierre Tignol for providing information about quadratic forms over discrete valuation rings of residue characteristic 2.

References

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA

Email address: poonen@math.mit.edu
URL: http://math.mit.edu/~poonen/

Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany

Email address: Michael.Stoll@uni-bayreuth.de
URL: http://www.mathe2.uni-bayreuth.de/stoll/