
EXPLICIT DESCENT FOR JACOBIANS OF CYCLIC COVERS OF THE
PROJECTIVE LINE

BJORN POONEN AND EDWARD F. SCHAEFER

Abstract. We develop a general method for bounding Mordell-Weil ranks of Jacobians of
arbitrary curves of the form yp = f(x). As an example, we compute the Mordell-Weil ranks
over Q and Q(

√
−3) for a non-hyperelliptic curve of genus 8.
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1. Introduction

The usual proofs of the Mordell-Weil Theorem for abelian varieties involve working over
a field over which all the n-torsion is defined, for some n ≥ 2. This is fine in theory, but
from the computational point of view, it is disastrous already for Jacobians of genus 2 curves
over Q, since adjoining the coordinates of all 2-torsion points on such an abelian variety can
result in a number field of degree 720.

For such curves, Cassels [7] outlined a possible solution to this problem. For J the Ja-
cobian of X : y2 = f(x) with f(x) ∈ Q[x] of degree 5, he defined an explicit injective
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homomorphism1

(x− T ) : J(Q)/2J(Q) ↪→ ker
(
L∗/L∗2

Norm−→ Q∗/Q∗2
)
,

where L = Q[T ]/(f(T )). The first examples were worked out several years later, by Gordon
and Grant [10], who solved the problem in the case where all the 2-torsion was defined over
Q by writing down homogeneous spaces of J explicitly. The second author [17] later used
the (x − T ) map more directly to handle cases without the assumption on the 2-torsion,
and without having to write down homogeneous spaces of J . He also showed that the map
(x− T ) was equivalent to the usual 2-descent map from Galois cohomology, and generalized
to all hyperelliptic curves of odd degree. More recently [18], he generalized to curves of the
form yp = f(x) where f(x) had distinct roots, and deg f was prime to p.

The problem becomes much more complicated when p divides the degree of f(x). For
genus 2 curves X over Q of the form y2 = f(x) with deg f = 6, Cassels defined a homomor-
phism

(x− T ) : J(Q)/2J(Q) → ker
(
L∗/L∗2Q∗ Norm−→ Q∗/Q∗2

)
,

where L = Q[T ]/(f(T )) again, but this time the cohomological interpretation remained
mysterious; this map could not literally be the 2-descent map from Galois cohomology,
because as Cassels observed, the kernel of (x − T ) could be non-trivial in some cases! The
first example was worked out in [9], which also gave a practical characterization of this kernel.

One of the main achievements of this paper is to find a cohomological description of this
(x−T ) map by relating it to the descent map for a generalized Jacobian.2 The cohomological
description is necessary if one wants to compare the (x − T ) descent with the usual 2-
descent from Galois cohomology. It also lets one systematically derive many properties of
the homomorphism (x− T ) that are useful for carrying out the descent in practice.

In fact, we prove our theorems more generally for curves of the form yp = f(x) with deg f
divisible by p. This class of curves includes Fermat curves, for example. Although it may
seem as if the case where p divides deg f is special, in fact just the opposite is true: given a
curve with model yp = f(x) over a ground field k of characteristic not p, with p not dividing
f , one can always3 apply an automorphism of P1 to x (and adjust y accordingly) in order
to move all branch points of x : X → P1 away from ∞, and this results in a new model
yp = g(x) with deg g divisible by p. Conversely, however, given X : yp = f(x) over k with
f a p-th power free polynomial of degree divisible by p, application of an automorphism of
P1 to x can result in a curve yp = g(x) with p not dividing deg g only if f has a root in k.
This is a somewhat rare event if k is a number field and f has large random coefficients, for
instance.

1The name “(x−T )” for the homomorphism is borrowed from [17]. The reason for this name will be clear
from the definition in Section 5.

2One can give an explanation for the appearance of this generalized Jacobian. Usually when performing
a full or partial p-descent on the Jacobian of a curve, one needs functions whose divisors are p times a
divisor representing a p-torsion divisor class, so that adjoining the p-th roots of these functions gives rise to
unramified extensions. If f is a p-th power free polynomial of degree divisible by p, and α is a root of f ,
then the divisor of the function x−α on yp = f(x) does not have this property: adjoining a p-th root yields
a covering ramified above the points at infinity, and such coverings are classified by a generalized Jacobian
with modulus supported at these points at infinity.

3Actually this will be impossible over k in certain cases where k is a finite field.
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After setting up some notation in Section 2, we will need to discuss some technical period-
index questions, because we do not assume that our curves have k-rational points, or even
k-rational divisor classes of degree 1. Sections 4 and 5 define the curves we will work with,
and the various versions of the (x− T ) map. Sections 6, 7, and 8 culminate in Section 9, in
which the cohomological description of the (x− T ) map is given.

Section 10 uses this description to explain why we should expect in general that the
(x − T ) map will be definable only on the subgroup of J(k) consisting of k-divisor classes
representable by k-rational divisors. The cohomological description is then used in Sec-
tion 11 to prove a rather curious characterization (Theorem 11.3) of the kernel of (x − T ),
in Section 12 to derive restrictions on its image, and in Section 13 to relate the (x−T ) map
to the usual Selmer and Shafarevich-Tate groups.

We then use the methods we have developed to compute the Mordell-Weil rank over Q
and Q(

√
−3) of the Jacobian of a non-hyperelliptic curve of genus 8. As far as we know,

no one has ever computed a Mordell-Weil rank for any curve of genus greater than 3 over a
number field before, except for special curves, such as Fermat quotients4 and modular curves,
and curves whose Jacobians split. Combining the result of our computation with a result of
Coleman [8], we show that our genus 8 curve has at most 12 rational points, and at most 36
points over Q(

√
−3).

We conclude the paper with a number of open questions on average Mordell-Weil ranks.

2. Notation

Let k be a field, and let Gk = Gal(ksep/k). Throughout the paper we will use H i(A)
as an abbreviation for the cohomology group H i(Gk, A). Let X be a smooth projective
curve over k, and let Xsep = X ⊗k k

sep denote the same curve with the base field extended
to ksep. Let Div(Xsep) denote the group of divisors on Xsep, i.e., the free group on the
points X(ksep). Let ksep(X) denote the field of functions of Xsep. Let Princ(Xsep) denote
the subgroup of principal divisors. Let Div(X) = H0(Div(Xsep)), and let Princ(X) =
H0(Princ(Xsep)), which is also the group of divisors of functions in k(X), the field of functions
of X. Let Pic(Xsep) = Div(Xsep)/Princ(Xsep) denote the group of divisors on Xsep modulo
linear equivalence, and let Pic(X) = Div(X)/Princ(X). Although the map Pic(X) →
H0(Pic(Xsep)) is injective, it is not necessarily surjective; in other words there may exist
k-rational divisor classes that do not contain k-rational divisors.

Let S be a finite Gk-stable subset of X(ksep). A modulus with support S is a Gk-stable
divisor m =

∑
P∈SmPP ∈ Div(X) with mP > 0. A rational function ϕ on Xsep is said to

be 1 mod m if the valuation of 1− ϕ at each P ∈ S satisfies vP (1− ϕ) ≥ mP .
Let Divm(Xsep) denote the subgroup of Div(Xsep) of divisors with support disjoint from

m. Let Princm(Xsep) denote the subgroup of Princ(Xsep) consisting of divisors of func-
tions on Xsep that are 1 mod m. Let Divm(X) = H0(Divm(Xsep)), and let Princm(X) =
H0(Princm(Xsep)), which is also the group of divisors of k-rational functions on X that are
1 mod m. Let Picm(Xsep) = Divm(Xsep)/Princm(Xsep) and Picm(X) = Divm(X)/Princm(X).
Let Div0(Xsep) denote the subgroup of Div(Xsep) of divisors of degree zero, and similarly de-
fine Div0(X), Pic0

m(Xsep), etc. as the degree zero parts of the corresponding groups. Finally

let Pic(p)(Xsep) denote the subgroup of divisor classes of degree divisible by p in Pic(Xsep).

Similarly define Div(p)(Xsep), Pic(p)
m (X), etc.

4See [13] and the papers referenced there.
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Let J be the Jacobian of X, so that J(ksep) = Pic0(Xsep). Let Jm be the generalized Jaco-
bian (see [19]) of the pair (X,m), so that Jm(ksep) = Pic0

m(Xsep). Then Jm is a commutative
algebraic group that fits in an exact sequence

(1) 0 → T → Jm → J → 0

where T is a connected commutative linear algebraic group.
We will specialize some of these definitions and make a few more in Section 4.

3. Period and index

The reader is invited to skip this section until the results here are referred to. This section
considers questions of existence of rational divisor classes and rational divisors of given
degree, and questions of representability of rational divisor classes by rational divisors. As
mentioned in Section 2, the injection Pic(X) → H0(Pic(Xsep)) is not always an isomorphism;
in general there is an exact sequence

(2) 0 → Pic(X) → H0(Pic(Xsep))
θ→ Br(k) → Br(X) → H1(Pic(Xsep)) → H3(ksep∗),

where Br(k) = H2(ksep∗) is the Brauer group of k, and Br(X) can be defined as the kernel of
the natural homomorphism H2(ksep(X)∗) → H2(Div(Xsep)) since X is a curve. (See [12].)
There is also a pairing

(3) ρ0 : H1(Pic0(Xsep))×H0(Pic0(Xsep)) → Br(k).

The exact sequence

0 −→ Pic0(Xsep) −→ Pic(Xsep)
deg−→ Z −→ 0

gives rise to

(4) H0(Pic(Xsep))
deg−→ Z −→ H1(Pic0(Xsep)),

and we let c denote the image of 1 ∈ Z in H1(Pic0(Xsep)). Then for all x ∈ H0(Pic0(Xsep)),

(5) θ(x) = ρ0(c, x),

as in the proof of Corollary 1 in [12]5.
The index of a curve X over a field k is the greatest common divisor of the degrees of all

k-rational divisors. The period of a curve X over a field k is the greatest common divisor of
the degrees of all k-rational divisor classes.

Proposition 3.1. The cokernel of the injection Pic(X) → H0(Pic(Xsep)) is killed by the in-
dex I of X over k. In particular, if I = 1, then Pic(X) → H0(Pic(Xsep)) is an isomorphism.

Proof. Let D =
∑

P nPP be a k-rational divisor of degree I. For each P occuring in D,
choose a uniformizing parameter tP defined over k(P ). Assume that the choices are made
so that if P ′ is a Gk-conjugate of P , then tP ′ is the conjugate of tP . Define a map

ksep(X)∗
Φ→ ksep∗

f 7→
∏
P

(
f

tordP f
P

(P )

)nP

.

5Corollary 1 in [12] is stated for k a p-adic field, but the part of the proof verifying this formula for θ does
not use any properties of k.
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The composition

ksep∗ ↪→ ksep(X)∗
Φ→ ksep∗

is the I-th power map, so the kernel of

H2(ksep∗) → H2(ksep(X)∗)

is killed by I. This kernel is the same as the cokernel of Pic(X) → H0(Pic(Xsep)), by (2). �

Proposition 3.2. The cokernel of the injection Pic0(X) → H0(Pic0(Xsep)) is killed by the
period P of X over k. In particular, if P = 1, then Pic0(X) → J(k) is an isomorphism.

Proof. By (4), the order of c is P . Thus by (5), P · θ(x) = ρ0(P c, x) = 0 for all x ∈
H0(Pic0(Xsep)), as desired. �

If k is a global field6, we let Pv denote the period of X over a completion kv of k.

Proposition 3.3. Suppose X is a curve over a global field k. If Pv = 1 for all places v of
k, then the map Pic0(X) → H0(Pic0(Xsep)) = J(k) is an isomorphism.

Proof. This follows from Proposition 3.2 and the fact that Br(k) →
∏

v Br(kv) is injective.
See also [15, p. 168] and [12, pp. 130–131] for the number field case. �

Proposition 3.4. If k is a local field, then the period P of X over k divides g − 1.

Proof. We will model our proof on the proof given by Lichtenbaum [12] when k was a finite
extension of Qp. We retain the notation of the proof of Proposition 3.2. The homomorphism

ρ∗0 : H1(Pic0(Xsep)) → Hom(H0(Pic0(Xsep)),Br(k))

induced by the pairing ρ0 in (3) is an isomorphism, by [16, I.§3, Remark 3.7] for the
archimedean case, [12, Theorem 2] or [16, I.§3, Corollary 3.4] for the unequal character-
istic nonarchimedean case, and [16, III.§7, Theorem 7.8] for the equicharacteristic nonar-
chimedean case. The order of c in H1(Pic0(Xsep)) is P . By (5), ρ∗0(c) = θ, so the group
θ(H0(Pic0(Xsep))) has exponent P (exactly). On the other hand,

(P + g − 1)θ(H0(Pic0(Xsep))) = 0

as in the proof of Theorem 7 in [12]. Hence P+g−1 ≡ 0 (mod P ), which gives the result. �

In contrast with the situation with the usual Jacobian, k-rational points of generalized
Jacobians are always represented by k-rational divisors, as we now prove.

Proposition 3.5. If m is nonzero, then the natural injection Picm(X) → H0(Picm(Xsep)) is
an isomorphism.

Proof. Let ksep(X)m denote the subgroup of ksep(X)∗ consisting of functions with no zeros
or poles at points in m. Let ksep(X)m,1 denote the subgroup of functions that are 1 mod m.
Define k(X)m and k(X)m,1 as the Gk-invariants of these groups. Let Zm denote the free
abelian group generated by the distinct points in m. We have an exact sequence of Gk-
modules

1 → ksep(X)m → ksep(X)∗ → Zm → 1

6In this paper, a global field is a finite extension of Q or a finite extension of Fq(t) for some q. A local
field is the completion of a global field at some place.
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where the last map gives the m-part of the divisor of h ∈ ksep(X)∗. Taking Galois cohomology,
we obtain

k(X)∗ → H0(Zm) → H1(ksep(X)m) → H1(ksep(X)∗).

The first map is surjective, since standard approximation theorems let one find a k-rational
function having prescribed orders of vanishing at a finite set of points whenever the orders of
vanishing prescribed are equal at Gk-conjugate points. Also H1(ksep(X)∗) = 0 by Noether’s
generalization of Hilbert’s Theorem 90. Therefore H1(ksep(X)m) = 0.

Let OP denote the local ring at P on Xsep, and let aP denote its maximal ideal. Let
Rm =

∏
P∈S (OP/a

mP
P )∗. Then we have the exact sequence

1 → ksep(X)m,1 → ksep(X)m → Rm → 1

Taking Galois cohomology, we obtain

k(X)m → H0(Rm) → H1(ksep(X)m,1) → H1(ksep(X)m) = 0.

The first map is surjective, since standard approximation theorems let one find a k-rational
function with prescribed residues modulo powers of the maximal ideal at a finite set of
points, provided that the residues prescribed are Gk-conjugate at Gk-conjugate points. Thus
H1(ksep(X)m,1) = 0.

Since m is nonzero, the divisor map gives an isomorphism

ksep(X)m,1
∼= Princm(Xsep).

Thus H1(Princm(Xsep)) = 0 too. Taking Galois cohomology of

0 → Princm(Xsep) → Divm(Xsep) → Picm(Xsep) → 0

yields

0 → Princm(X) → Divm(X) → H0(Picm(Xsep)) → H1(Princm(Xsep)) = 0,

which yields

Picm(X) =
Divm(X)

Princm(X)
∼= H0(Picm(Xsep)),

as desired. �

4. Cyclic covers of the projective line

We retain the notation of Section 2, but now specialize to the types of curves we are
interested in. Let p be a prime. From now on, we assume that the field k is not of char-
acteristic p, and that k contains a primitive p-th root of unity ζ.7 Let π : X → P1 be
a cyclic cover of P1 over k of degree p, such that all the branch points are in P1(ksep).8

Applying an automorphism of P1 if necessary, we may assume that X is unramified above
the point ∞ ∈ P1, at least if the cardinality of k is greater than the number of branch

7If we are interested in Mordell-Weil ranks over fields k not containing a primitive p-th root of unity, we
can do all our computations over k(ζ) and at the end apply Lemma 13.4.

8We insist that the P1 actually be P1 over k, and not a twisted form. (Of course, we also want X and π
to be defined over k.) It is possible to have cyclic covers of twists of P1, even if k is a number field: in fact
there exist hyperelliptic curves of any odd genus g over k, that are not of the form y2 = f(x) over k. For
instance, the space curve over Q defined by the equations x2 +z2 = −1 and y2 = (x−1)(x−2)(x−3)(x−4)
is a double cover of the conic x2 + z2 = −1 ramified at 8 points, so it is a hyperelliptic curve of genus 3, but
its quotient by the hyperelliptic involution (x, y, z) 7→ (x,−y, z) is the conic, which has no rational point.
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points of π. (For simplicity, we will make this assumption.9) By Kummer theory, X has a

(possibly singular) model yp = f(x) where f(x) ∈ k[x] factors over ksep as c
∏d

i=1(x − αi)
ni

with 1 ≤ ni < p. The degree of f(x) must be divisible by p, since otherwise X would be
ramified above ∞. Applying the Riemann-Hurwitz formula to π shows that the genus g of
X equals (d− 2)(p− 1)/2.

We take as our modulus on X the divisor m = π∗∞ ∈ Div(X), which is a sum of p
distinct points individually defined over k(c1/p), where c ∈ k∗ is the leading coefficient of
f . Now T is a (p− 1)-dimensional torus, and the generalized Jacobian Jm is a semiabelian
variety. For example, if p = 2, then T is the twist Gm(c) of Gm associated to the (at most)
quadratic extension k(

√
c)/k. We can also define a (disconnected) commutative algebraic

group Jm over k such that Jm(ksep) = Picm(Xsep)/(Z · m′), where m′ denotes the class of
π∗P in Picm(Xsep) for any P ∈ A1(k) ⊂ P1(k).10 This class is independent of the choice of
P , because the functions (x− a)/(x− b) are 1 mod m. We have an exact sequence

(6) 0 −→ Jm −→ Jm
deg−→ Z/pZ −→ 0.

In abuse of notation, let ζ denote the automorphism (x, y) 7→ (x, ζy) of X. By extending
linearly, we obtain a map ζ∗ : Div(Xsep) → Div(Xsep). Let φ denote the formal sum
(1 − ζ) +

∑p−1
i=0 ζ

i and let ψ =
∑p−2

i=0 (p − 1 − i)ζ i. Then we define maps φ∗ and ψ∗ on
Div(Xsep) in the obvious way, and we have

φ∗ψ∗D = pD +
p2 − p− 2

2
(1 + ζ + ζ2 + · · ·+ ζp−1)∗D.

We should warn that (1+ζ+ζ2 + · · ·+ζp−1)∗ is not zero as a map on Div(Xsep) or Pic(Xsep).
Nevertheless, for any affine point Q ∈ X(ksep), the divisor Q+ ζ(Q) + ζ2(Q) + · · ·+ ζp−1(Q)
is trivial in Jm, so we obtain a well-defined action of the cyclotomic ring Z[ζ] on J , Jm, and
Jm, and also on T . In particular, φ and ψ act on all of these, and their composition φψ is
simply multiplication-by-p. Note that φ acts on these simply as 1− ζ.11

In the remaining paragraph of this section, let us suppose k is a global field, and let us
specialize some of the results of Section 3 to our situation. The existence of m forces Pv = 1
or Pv = p for each v. By Proposition 3.4, if g 6≡ 1 (mod p), then Pv = 1 for all v, so that
Pic0(X) → J(k) is an isomorphism, by Proposition 3.3. In particular if X is the hyperelliptic
curve y2 = f(x), and g is even, then Pv = 1 for all v. If p ≥ 3, the condition g 6≡ 1 (mod p)
is equivalent to d 6≡ 0 (mod p), since g = (d− 2)(p− 1)/2.

5. The (x− T ) maps

Let f0(x) = c0
∏d

i=1(x − αi) ∈ k[x] be the radical of f , where c0 may be chosen as any
fixed nonzero element of k. (When working over number fields, it may be convenient to
choose c0 so as to clear any denominators arising from the possible non-integrality of the αi.)
Let L be the separable algebra k[T ]/(f0(T )), and let Lsep = L ⊗ ksep. It will sometimes be
convenient to identify Lsep with ksep × ksep × · · · × ksep, with the image of T corresponding
to (α1, α2, . . . , αd). We say a divisor is good12 if its support is disjoint from m and the

9If k is a very small finite field, we can replace k by a finite extension without doing too much damage.
10We would like to take m′ to be m itself, but m is not in Divm(Xsep).
11The reason for not defining φ as 1−ζ in the first place is that we will need φ : Pic(Xsep) → Pic(p)(Xsep)

to be a surjection with finite kernel. (See Section 9.)
12The terminology differs slightly from that in [9]: there a good divisor also had to be k-rational.
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ramification points of π (the points where y = 0)13. When a divisor D =
∑
nPP and the

divisor of a function h have disjoint supports, recall that h(D) is defined as
∏

P h(P )nP . We
define (x− T )(D) similarly, even though (x− T ) is not literally a rational function on X: if
D =

∑
nPP ∈ Div(Xsep) is good, we define

(x− T )(D) =
∏
P

(xP − T )nP ∈ Lsep,

where xP denotes the x-coordinate of the affine point P . Since each xP is not a root of
f(x), (x − T )(D) ∈ Lsep∗. Moreover, if D is actually in Div(X), then by Galois theory,
(x− T )(D) ∈ L∗.

Suppose D = div h ∈ Princ(X) is a good k-rational divisor that is also principal. (Assume
h is defined over k as well.) For each root α of f(x), Weil reciprocity gives

(x− α)(D) = (x− α)(div h) = h(div(x− α)) =
h((α, 0))p

h(m)
,

so

(x− T )(D) =
h((T, 0))p

h(m)
∈ L∗pk∗.

If moreoverD ∈ Princm(X), then h(m) = 1, so (x−T )(D) ∈ L∗p. By standard approximation
theorems for valuations, every divisor in Div(X) is linearly equivalent to a good divisor in
Div(X), and every divisor in Divm(X) differs from a good divisor in Divm(X) by a divisor in
Princm(X), so from the above we obtain induced (x− T ) maps that fit into a commutative
diagram:

(7)

Picm(X)
(x−T )−−−→ L∗/L∗py y

Pic(X)
(x−T )−−−→ L∗/L∗pk∗.

Remark. In Section 10, it will be explained why one cannot expect to extend (x − T ) to
a map defined on all of J(k), at least not if one wants a homomorphism taking values in
L∗/L∗pk∗.

Proposition 5.1. The kernel of (x− T ) contains φPicm(X) (resp. φPic(X)). It also con-
tains m′ (resp. m). If there is a k-rational point ∞1 on X above ∞ ∈ P1, then it too is killed
by the (x− T ) map on Pic(X).

Proof. For any good k-rational divisor D, (x − T )(ζ∗D) = (x − T )(D) directly from the
definition, since ζ preserves x-coordinates. Hence

(x− T )(φ∗D) =
(x− T )(D)

(x− T )(D)
(x− T )(D)p ∈ L∗p.

For the second statement, it suffices to show that if E =
∑

P nPP is any k-rational divisor
on P1 with support away from ∞ and the branch points of π, then (x− T )(π∗E) is trivial.

13It is not true in general that all Weierstrass points of X are ramification points of π, even when g > 1.
See [22] for some quantitative statements.
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Let xP denote the coordinate of a point P ∈ P1. We find

(x− T )(π∗E) =

(∏
P

(xP − T )nP

)p

∈ L∗p,

as desired.
If ∞1 is k-rational, then we can write f(x) = apxnp + . . . with a ∈ k∗. Choose i so that

y/(ζ iaxn) has value 1 at ∞1. Let g(x) ∈ k[x] be a polynomial of degree m ≥ n, with leading
coefficient ζ ia and such that the degree of h(x) = g(x)p − x(m−n)pf(x) is mp − 1 and such
that g(x) shares no roots with f . Write h(x) = b

∏mp−1
i=1 (x − βi). Choose i(x), j(x) ∈ k[x]

monic of degrees l and l +m respectively, such that neither shares a root with f .14 Denote
the roots of i(x) and j(x) by γi and δi respectively. Define

D := div

(
j(x)

i(x)(g(x)− xm−ny)

)
=

l+m∑
i=1

p−1∑
j=0

(
γi, ζ

jyγi

)
−

l∑
i=1

p−1∑
j=0

(
δi, ζ

jyδi
)
−∞1 −

mp−1∑
i=1

(βi, yβi
) .

Note that D +∞1 is a k-rational good divisor. We have

(x− T )(∞1) ≡ (x− T )(D +∞1)

≡
[
(−1)l+mj(T )

]p
[(−1)li(T )]p

· b

(−1)mp−1 [g(T )p − T (m−n)pf(T )]

≡
[

j(T )

i(T )g(T )

]p
· (−1)sb (for some s)

≡ 1 (mod L∗pk∗).

�

If the natural injection Pic0(X) → J(k) is an isomorphism, we can rewrite the (x − T )
map on the degree zero part as

(8) (x− T ) : J(k)/φJ(k) → L∗/L∗pk∗.

The relationship between this map and the homomorphism originally defined by Cassels in [7]
is easy to describe. By the final paragraph of Section 4, Pic0(X) → J(k) is an isomorphism
in the special case (p = 2) of a genus 2 hyperelliptic curve y2 = f(x) with f ∈ Q[x] and
deg f = 6. Thus we obtain a map as in (8), and this coincides with Cassels’ map

(x− T ) : J(Q)/2J(Q) → L∗/L∗2Q∗.

Remarks. Although it may seem that the definition of (x − T ) depends on the choice of
parameter on P1, especially in light of the last part of Proposition 5.1, the dependence is
mainly superficial. Suppose that α(x) = (ax+ b)/(cx+ d) is an automorphism of P1 over k,
and that π̄ = α ◦ π : X → P1 is another cyclic cover unramified above ∞. We then obtain
a new model yp = f̄(x), a new algebra L̄ = k[T̄ ]/f̄(T̄ ), and a new map

(x− T̄ ) : Pic(X) → L̄∗/L̄∗pk∗.

14We can always take l = 0 except in certain cases when k is a very small finite field.
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But there is an isomorphism α̌ : L̄ → L of k-algebras taking T̄ to (aT + b)/(cT + d), and
one can easily check that

(9) α̌((x− T̄ )(D)) = (x− T )(D)

at least for D ∈ Pic(p)(X). (It suffices to check this for α(x) = ax+ b and α(x) = 1/x, since
such automorphisms generate Aut(P1).)

In Section 9 we will give an alternative description of (x − T ) using cohomology, that is

valid only on Pic(p)(X). The fact that (9) can fail for D ∈ Pic(X) \ Pic(p)(X) explains why
we should not expect such an ∞-independent description to extend to all of Pic(X).

6. Description of φ-torsion in terms of ramification points and Lsep

The purpose of this section is to give concrete descriptions of J [φ], Jm[φ] and Jm[φ] in terms
of the ramification points of π and the algebra Lsep. First let us compute their dimensions.
Throughout this paper, dimV will denote the Fp-dimension of V .

Lemma 6.1. We have dim J [φ] = d−2, dim T [φ] = 1, dim Jm[φ] = d−1, and dimJm[φ] = d.
Moreover, φ is surjective as an endomorphism of J(ksep), T (ksep), or Jm(ksep).

Proof. The endomorphism ζ on J satisfies Xp−1 + Xp−2 + · · · + 1 = 0. Its characteristic
polynomial P (X) is a polynomial in Z[X] of degree 2g = (d − 2)(p − 1), so it can only be
(Xp−1 + Xp−2 + · · · + 1)d−2. In particular the degree of φ = 1 − ζ equals P (1) = pd−2, so
dim J [φ] = d− 2. The endomorphism φ on J is an isogeny, so it is surjective on J(ksep).

Over k(c1/p), T becomes isomorphic to (Gm)p/Gm, where the last Gm is embedded diag-
onally, and ζ acts by cyclically permuting the coordinates. Thus T [φ] is one-dimensional,
generated by (1, ζ, ζ2, . . . , ζp−1), and φ : T (ksep) → T (ksep) is surjective. Applying the snake
lemma to

0 −−−→ T −−−→ Jm −−−→ J −−−→ 0yφ yφ yφ
0 −−−→ T −−−→ Jm −−−→ J −−−→ 0

shows that dim Jm[φ] = dim T [φ] + dim J [φ] = d − 1, and that φ : Jm(ksep) → Jm(ksep) is
surjective. Applying the snake lemma to

0 −−−→ Jm −−−→ Jm −−−→ Z/pZ −−−→ 0yφ yφ yp
0 −−−→ Jm −−−→ Jm −−−→ Z/pZ −−−→ 0

shows that dimJm[φ] = dim Jm[φ] + 1 = d. �

For 1 ≤ i ≤ d, let Wi be the point (αi, 0). Let W = ⊕d
i=1Z ·Wi ⊂ Div(Xsep). Let W0 be

the kernel of the degree map W → Z, and let S =
∑d

i=1 niWi ∈ W. (Recall that ni is the
multiplicity of (x− α) in f(x).)

Proposition 6.2. The map Div(Xsep) → Jm(ksep) induces an isomorphism of Z/pZ-graded
Gk-modules W/pW → Jm[φ]. Restricting to the degree zero parts gives W0/pW0 ∼= Jm[φ]. If
T is any fixed divisor of degree (deg f)/p in W, then S−pT generates a subgroup of W0/pW0

corresponding under this isomorphism to the kernel T [φ] of the surjection Jm[φ] → J [φ].
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Proof. Clearly φ(Wi) = m′ = 0 in Jm, so W maps into Jm[φ], and pW is in the kernel of the
map, since Jm[φ] is killed by p. Conversely, if D ∈ W is in the kernel, then degD must be
divisible by p, and after adding a multiple of pW1 (which is a form of m′), we may assume
D = div h where h is 1 mod m. The automorphism ζ fixes D, so D = div(h ◦ ζ−1) also.
Since h and h ◦ ζ−1 are both 1 mod m, we have h = h ◦ ζ−1, so h = h0(x) for some rational
function h0 of x. Then D = div h0(x) ∈ pW. Hence the map W/pW → Jm[φ] is injective.
But dim W/pW = d = dimJm[φ] by Lemma 6.1, so the map must be an isomorphism.

Restricting to the degree zero parts gives W0/pW0 ∼= Jm[φ]. If T is a divisor
∑
aiWi of

degree (deg f)/p, then S−pT is the divisor of y/
∏

(x−αi)ai . Therefore S−pT corresponds
under this isomorphism to an element of Jm[φ] that gets killed in J [φ]. On the other hand,
S − pT is nonzero in W0/pW0, and the kernel T [φ] of Jm[φ] → J [φ] is only 1-dimensional,
by Lemma 6.1, so we are done. �

Since 0 < ni < p, we may define an isomorphism of Gk-modules

ε : W/pW ∼= Jm[φ] → µp(L
sep)

Wi 7→ (1, . . . , 1, ζ(n−1
i mod p), 1, . . . , 1),

with the ζ in the i-th component of Lsep.15 It is designed so that ε(S − pT) equals the
diagonal embedding of ζ in µp(L

sep).

For β = (β1, . . . , βd) ∈ Lsep∗, define a “weighted norm” N(β) =
∏d

i=1 β
ni
i ∈ ksep∗. Then N

is a Galois-equivariant homomorphism Lsep∗ → ksep∗. If all the ni are 1 (which is automatic
if p = 2), then N is simply the norm map. The following alternative definition of N is
more suitable for computation. Let f(x) = c

∏
fj(x)

mj be the factorization of f over k into
irreducibles, and let Lj = k[T ]/(fj(T )), so that L =

∏
Lj is the decomposition of L into

fields, and let Lsep
j = Lj ⊗k k

sep. Let β(j) denote the component in Lsep
j of β ∈ Lsep∗, and

define N(β) =
∏

NormLsep
j /ksep(β(j))

mj . If β ∈ L∗, then N(β) =
∏

NormLj/k(β(j))
mj ∈ k∗.

The degree map W/pW → Z/pZ corresponds to N : µp(L
sep) → µp(k

sep) under the
isomorphisms ε : W/pW → µp(L

sep) and Z/pZ → µp(k
sep), where the latter takes 1 to

ζ. (This is the reason for defining N as above.) Thus W0/pW0 and Jm[φ] are isomorphic

to the kernel of µp(L
sep)

N−→ µp(k
sep). As mentioned before, S − pT ∈ W0/pW0 maps

to ζ ∈ µp(k
sep) ⊂ µp(L

sep) under this isomorphism, so by Proposition 6.2, we obtain the
isomorphism

J [φ] ∼= ker

(
µp(L

sep)

µp(ksep)

N−→ µp(k
sep)

)
,

which we will again denote ε.

7. An extended Weil pairing

In this section we define a “Weil pairing”

ep : Jm[p]× Jm[p] → µp(k
sep),

and show that it is related to the isomorphism ε of the previous section. If one restricts this
pairing ep to the degree zero part, Jm[p], then the subgroup T [p] is in the kernel on each
side, and one recovers the usual Weil pairing on J [p].

15The name ε is chosen in light of the results of the next section, where it is shown that ε can be related
to the Weil pairing.
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Given D1,D2 ∈ Jm[p], choose representing divisors D1, D2 ∈ Divm(Xsep), and let di =
degDi. Then there are unique functions hi such that x−dihi is 1 mod m and div(hi) =
pDi − dim. Define

(10) ep(D1,D2) = ep(D1, D2) = (−1)d1d2
∏
P

(−1)p(ordP D1)(ordP D2)h
ordP D1
2

hordP D2
1

(P ) ∈ ksep∗,

where the product is over all P ∈ X(ksep). For a divisor D, ordP D is defined to be the
coefficient of P in D; when h is a function, ordP h is defined to be ordP (div h). When D1 and
D2 have disjoint supports, we have the simpler formula ep(D1, D2) = (−1)d1d2h2(D1)/h1(D2).
If one considers only D1 and D2 of degree 0, we recover a well-known definition of the usual
Weil pairing, and this will vindicate the claim made at the beginning of this section, once
we show that ep is a well-defined pairing on Jm[p].

First let us check that the definition does not depend on the choice of D1. If D′
1 =

D1 + div j, where j is 1 mod m, then we must take h′1 = h1j
p, and we find

ep(D
′
1, D2)

ep(D1, D2)
=
∏
P

(−1)p(ordP j)(ordP D2) hordP j
2

jp ordP D2
(P ) (since deg div j = 0)

=
∏
P

(−1)(ordP j)(ordP h2+d2 ordP m) h
ordP j
2

jordP h2
(P ) (since j is 1 mod m)

=
∏
P

(−1)(ordP j)(d2 ordP m) (by Weil reciprocity)

= 1,

since the supports of div j and m are disjoint. If D′
1 = D1 + m′ where we abuse notation by

writing m′ for the particular divisor π∗(0) = m + div x =
∑p−1

i=0 ζ
iQ, where Q = (0, f(0)1/p),

then we must take h′1 = xph1, and we find

ep(D
′
1, D2)

ep(D1, D2)
= (−1)pd2

∏
P

(−1)p(ordP m′)(ordP D2) h
ordP m′

2

xp ordP D2
(P )

= (−1)pd2
∏
P

(−1)(ordP m′)(d2 ordP m+ordP h2) h
ordP (m+div x)
2

xordP (d2m+div h2)
(P )

(by definition of m′ and h2)

= (−1)pd2
∏
P

(−1)d2(ordP m′)(ordP m)
∏
P

(−1)(ordP m′−ordP x)(ordP h2)

×
∏
P

hordP m
2

xordP (d2m)
(P )

∏
P

(−1)ordP h2 ordP x h
ordP x
2

xordP h2
(P ).

The first product equals 1, since m and m′ have disjoint supports. The second product equals∏
P

(−1)(ordP m)(ordP h2) = (−1)pd2 ,
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since x−d2h2 is 1 mod m. The third product equals (x−d2h2)(m) = 1, again since x−d2h2 is
1 mod m. The fourth product equals 1 by Weil reciprocity. Hence we obtain

ep(D
′
1, D2)

ep(D1, D2)
= 1,

as desired. The same considerations show that the definition of ep does not depend on the
choice of D2. Bilinearity of ep is clear, and it follows that ep takes values in µp. Directly from
the definition, ep(D1,D2)ep(D2,D1) = 1, so ep is skew-symmetric if p > 2, and symmetric if
p = 2.

Proposition 7.1. If D ∈ Jm[p], then ε(ψD) = ep(D, (T, 0)).

Remark. The equality in the proposition is an abbreviation: what we mean is that for each i,
the i-th component of the left hand side in Lsep = ksep×ksep×· · ·×ksep equals ep(D, (αi, 0)).
We will use similar abbreviations later in the paper, often without further mention. One can
think of (x− T )(D) as being another such abbreviation.

Proof. Let D =
∑

P cPP ∈ Div(Xsep) be a good divisor representing the class D, and let
d1 = degD =

∑
P cP . Since φψ = p as an endomorphism of Jm, ψD ∈ Jm[φ], so by

Proposition 6.2 there exists a divisor E =
∑d

i=1 qiWi ∈ W and a function j on X such that
j is 1 mod m and ψ∗D = E + div j. Applying (1− ζ)∗ to both sides kills E, and we obtain(

p−
p−1∑
i=0

ζ i

)
∗

D = (1− ζ)∗ div j

pD −
∑
P

cP

p−1∑
i=0

ζ i(P ) = div j − ζ∗(div j)

pD − d1m− div

(∏
P

(x− xP )cP

)
= div

(
j

j ◦ ζ−1

)
,

since ζ∗(div j) = (ζ−1)
∗
(div j), where (ζ−1)

∗
is the pullback action on Div(Xsep) in the

opposite direction coming from the automorphism ζ−1 : X → X. Hence pD − d1m = div h1

where

h1 =

(
j

j ◦ ζ−1

)
·
∏
P

(x− xP )cP .

Since j is 1 mod m, we find that x−d1h1 is 1 mod m also.
The function h2 = x−αi satisfies div h2 = pWi−m, and x−1h2 is 1 mod m. By (the simple

case of) the definition of ep, we have

ep(D,Wi) = (−1)d1h2(D)/h1(Wi)

= (−1)d1
j ◦ ζ−1

j
(Wi)

∏
P (xP − αi)

cP∏
P (αi − xP )cP

= (−1)d1
j ◦ ζ−1

j
(Wi) (−1)

P
P cP

=
j ◦ ζ−1

j
(Wi).
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By definition of j, ordWi
(j) = −qi. On the other hand, ordWi

(y) = ni. Therefore the function

` = yqijni has no pole or zero at Wi. Using the fact that y◦ζ−1

y
is the constant function with

value ζ−1 ∈ k, we obtain

ep(D,Wi)
ni =

jni ◦ ζ−1

jni
(Wi)

=
`(ζ−1(Wi))

`(Wi)

y−qi ◦ ζ−1

y−qi
(Wi)

=
`(Wi)

`(Wi)

(
ζ−1
)−qi

= ζqi .

Since ep(D,Wi) ∈ µp(ksep), and 0 < ni < p, we find

ep(D,Wi) = ζ(n−1
i mod p)qi

which by definition of ε and qi equals the i-th component of ε(E) = ε(ψD), as desired. �

8. The main diagram

From the identifications of Section 6, we get the following commutative diagram (11) below
with exact rows and columns. If we identify T [φ] with µp(k

sep) (as is possible by the proof
of Lemma 6.1), the leftmost column becomes simply the exact sequence of φ-torsion in (1).

Let q denote the quotient map µp(L
sep) → µp(Lsep)

µp(ksep)
.

(11)

0 0y y
µp(k

sep) µp(k
sep)y y

0 −−−→ Jm[φ]
ε−−−→ µp(L

sep)
N−−−→ µp(k

sep) −−−→ 0y yq ∥∥∥
0 −−−→ J [φ]

ε−−−→ µp(L
sep)

µp(ksep)

N−−−→ µp(k
sep) −−−→ 0y y

0 0

We now compute the long exact sequences of cohomology for all the rows and columns.
Both H1(ksep∗) and H1(Lsep∗) are 0 (the latter is Exercise 2 on page 152 in [20]), so
H1(µp(k

sep)) = k∗/k∗p and similarly H1(µp(L
sep)) = L∗/L∗p. Also, H2(µp(k

sep)) = Br(k)[p],
the p-torsion of the Brauer group of k. We obtain our main diagram (12), in which all rows
and columns are exact.
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(12)

k∗/k∗p k∗/k∗py y
µp(L)

N−−−→ µp(k)
δ′−−−→ H1(Jm[φ])

ε−−−→ L∗/L∗p
N−−−→ k∗/k∗py ∥∥∥ y yq ∥∥∥

H0

(
µp(L

sep)

µp(ksep)

)
N−−−→ µp(k)

δ−−−→ H1(J [φ])
ε−−−→ H1

(
µp(L

sep)

µp(ksep)

)
−−−→ k∗/k∗pyΥ

y
Br(k)[p] Br(k)[p]

We denote by δ′, δ, and Υ the connecting homomorphisms in the diagram.

9. Cohomological reinterpretation of (x− T )

The map φ on Pic(Xsep) is not surjective, because it multiplies degrees by p. It is, however,
surjective as an endomorphism of the degree zero part J(ksep), by Lemma 6.1, so the map

φ : Pic(Xsep) → Pic(p)(Xsep) is surjective. Its kernel is contained in the degree zero part, so
we obtain

0 → J [φ] −→ Pic(Xsep)
φ−→ Pic(p)(Xsep) −→ 0.

The corresponding long exact sequence of cohomology results in a map

(13) ι : H0(Pic(p)(Xsep)) → H1(J [φ]).

with kernel φH0(Pic(Xsep)). Restricting to the degree zero part yields the more familiar
φ-descent homomorphism

J(k)/φJ(k) → H1(J [φ]).

Taking the long exact sequences of cohomology associated with the rows of

0 −−−→ J [p] −−−→ J
p−−−→ J −−−→ 0yψ yψ y1

0 −−−→ J [φ] −−−→ J
φ−−−→ J −−−→ 0

yields

(14)

0 −−−→ J(k)/pJ(k) −−−→ H1(J [p])y1

yψ
0 −−−→ J(k)/φJ(k)

ι−−−→ H1(J [φ]),

the compatibility relation between ι on J(k) and the usual p-descent map.
In exactly the same way, but remembering also Proposition 3.5, we obtain a map

(15) ι′ : Pic(p)
m (X) → H1(Jm[φ]),

whose restriction to the subgroup Jm(k) has kernel φJm(k).

Lemma 9.1. We have δ(ζ) = ι(m) and δ′(ζ) = ι′(m′). They are represented by the cocycle
ξσ = σWi −Wi in H1(J [φ]) or H1(Jm[φ]), respectively.
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Proof. Let ` = (ζn
−1
1 mod p, 1, 1, . . . , 1) ∈ µp(L

sep). Then N(`) = ζ, by definition of N , and
δ(ζ) is by definition represented by the cocycle σ 7→ Dσ where ε(Dσ) = σ`/`. But ε(W1) = `,
so ε(σW1 −W1) = σ`/`, which proves that ξ when i = 1 represents δ(ζ).

On the other hand, for any i, φWi = pWi, which is equivalent to m in Pic(Xsep), so ι(m)
is by definition represented by ξ.

The same proof verifies the analogous statements for Jm in place of J . �

Corollary 9.2. The kernel of ε : H1(J [φ]) → H1
(
µp(Lsep)

µp(ksep)

)
is generated by ι(m). The kernel

of ε : H1(Jm[φ]) → L∗/L∗p is generated by ι′(m′).

Proof. By (12), the first kernel is generated by δ(ζ), and the second kernel is generated by
δ′(ζ). Now use Lemma 9.1. �

Theorem 9.3. The restriction of

(x− T ) : Picm(X) → L∗/L∗p

to Pic(p)
m (X) coincides with the composition

ε ◦ ι′ : Pic(p)
m (X) → L∗/L∗p.

Proof. By Proposition 5.1 and Corollary 9.2, both maps kill m′, so it suffices to show that the
maps coincide on Pic0

m(X) = Jm(k). Given an element of Jm(k), let D ∈ Div0
m(X) be a good

divisor representing it. Choose a good divisor E ∈ Div0
m(Xsep) such that pE−D = div j for a

function j that is 1 mod m. Then ι′(D) is the cohomology class of the cocycle σ 7→ ψ(σE−E)
in H1(Jm[φ]). By Proposition 7.1, (ε ◦ ι′)(D) considered as an element of H1(µp(L

sep)) is the
cohomology class of the cocycle ξσ := ep(

σE −E, (T, 0)). We have div(σj/j) = p(σE −E) and
div(x− T ) = p(T, 0)−m. Hence

ξσ = ep(
σE − E, (T, 0))

=
(x− T )(σE − E)

(σj/j)((T, 0))
(by the simple case of the definition of e)

= σβ/β,

where β := (x− T )(E)/j((T, 0)) ∈ Lsep. Now

βp =
(x− T )(pE)

j(p(T, 0))

=
(x− T )(D + div j)

j(m + div(x− T ))

= (x− T )(D)
(x− T )(div j)

j(div(x− T ))
(since j is 1 mod m)

= (x− T )(D),

by Weil reciprocity. It follows that the cohomology class of ξ coincides with the image of
(x − T )(D) under the Kummer identification L∗/L∗p → H1(µp(L

sep)), which is what we
needed. �

Theorem 9.4. The restrictions of the maps

q ◦ (x− T ) : Pic(X) → L∗/L∗pk∗ ↪→ H1

(
µp(L

sep)

µp(ksep)

)
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and

ε ◦ ι : H0(Pic(p)(Xsep)) → H1

(
µp(L

sep)

µp(ksep)

)
to their common domain of definition Pic(p)(X) coincide.

Proof. We have a commutative diagram (with non-exact rows)

(16)

Pic(p)
m (X)

ι′−−−→ H1(Jm[φ])
ε−−−→ L∗/L∗py y yq

Pic(p)(X)
ι−−−→ H1(J [φ])

ε−−−→ H1

(
µp(L

sep)

µp(ksep)

)
and also the diagram (7). Since Pic(p)

m (X) → Pic(p)(X) is surjective, the desired result follows
from Theorem 9.3. �

Corollary 9.5. The composition

Pic(p)(X)
ι−→ H1(J [φ])

Υ−→ Br(k)[φ]

is zero.

Proof. This follows from Theorem 9.4 (and a diagram chase in (12)). �

10. The maximal domain of definition of (x− T )

The results of this section will not be needed in the rest of the paper, so it may be skipped
on a first reading.

Originally the (x− T ) map was not defined on all of J(k); instead it was defined (in the
degree zero part) only on the subgroup Pic0(X) of divisor classes represented by k-rational
divisors. Of course, the map would be more useful if it could be defined on all of J(k). Using

Theorem 9.3 and viewing q as an identification of L∗/L∗2k∗ with a subgroup of H1
(
µp(Lsep)

µp(ksep)

)
,

we can extend (x− T ) to the map

ε ◦ ι : J(k) −→ H1

(
µp(L

sep)

µp(ksep)

)
.

But if we want a homomorphism with values in L∗/L∗2k∗, we must restrict the domain of
the function to the kernel of Υ ◦ ι, as a diagram chase in (12) shows. In this section, we
relate Υ to two pairings taking values in Br(k), and hence show that the kernel of Υ ◦ ι is
exactly Pic0(X). This explains why the original domain of definition Pic0(X) is the largest
subgroup H of J(k) for which we can expect a natural homomorphism

(x− T ) : H → L∗/L∗2k∗.

The first pairing will be derived from the φ-Weil pairing on J . The automorphism ζ of
J respects the natural principal polarization, because it comes from an automorphism of
X. Therefore ζ† = ζ−1 where † denotes the Rosati involution defined by this polarization
(see [14, p. 139]). Hence φ† = 1− ζ−1 = ζ−1φ in End J . In particular, the kernel of the dual

isogeny φ̂ : Ĵ → Ĵ can be identified with J [φ]. Thus the φ-Weil pairing is a map

eφ : J [φ]× J [φ] → µp(k
sep).
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Lemma 10.1. Let a, b ∈ J [φ]. Then eφ(a, b) = eφ(b, a).

Proof. Let A and B be divisors of degree 0 such that ψ∗A and ψ∗B represent a and b in J [φ],
respectively. We may assume that the x-coordinates of the points in the support of A differ
from the x-coordinates of the points in the support of B. We have pA = divh, pB = divj
for some functions h and j. Also,

eφ(ψ∗A,ψ∗B) = ep(A,ψ∗B) and eφ(ψ∗B,ψ∗A) = ep(B,ψ∗A).

Let ψ† denote the endomorphism gotten by replacing ζ by ζ−1 in the definition of ψ. On J ,
the endomorphism ψ† is the image of ψ under the Rosati involution. Note that ψ† + ψ =
p+(p−2)(1+ . . .+ ζp−1). In order to compute ep(A,ψ∗B), we need to find a function whose
divisor is pψ∗B. We have

pψ∗B = ψ∗pB = ψ∗divj = div(j ◦ ψ†)

where j ◦ ψ† is the function sending a point P of C to the image of j on the divisor ψ†P .
Similarly, pψ∗A = div(h ◦ ψ†). Thus we have

eφ(a, b)

eφ(b, a)
=
ep(A,ψ∗B)

ep(B,ψ∗A)
=
j(ψ†∗A)

h(ψ∗B)
· j(ψ∗A)

h(ψ†∗B)
=
j((ψ† + ψ)∗A)

h((ψ† + ψ)∗B)

=
j(pA+ (p− 2)(1 + . . .+ ζp−1)∗A)

h(pB + (p− 2)(1 + . . .+ ζp−1)∗B)
=
j(divh)

h(divj)

(
j(div

∏
P∈A(x− xP ))

h(div
∏

P∈B(x− xP ))

)p−2

=

(∏
P∈A(x− xP )(pB)∏
P∈B(x− xP )(pA)

)p−2

=

(∏
P∈A(x− xP )(B)∏
P∈B(x− xP )(A)

)p(p−2)

= 1.

(In the product over P ∈ A, etc., we take P ’s with multiplicity.) �

The pairing eφ induces a cup product pairing

η : H1(J [φ])×H1(J [φ]) → H2(µp(k
sep)) = Br(k)[p].

Explicitly, if {ασ} and {βτ} are cocycles representing elements of H1(J [φ]), then η(α, β) is
represented by the 2-cocyle

(σ, τ) 7→ eφ (ασ,
σβτ ) .

Lemma 10.2. The cup product pairing η is anti-symmetric.

Proof. This follows from Lemma 10.1 and a standard property of the cup product. (See [1,
Proposition 9(ii)].) �

Proposition 10.3. For all x ∈ H1(J [φ]), Υ(x) = η(x, δ(ζ)).

Proof. We will prove that Υ(x) = −η(δ(ζ), x). The result then follows from the anti-
symmetry of η proven in Lemma 10.2. Let x be a 1-cocycle in H1(J [φ]). Let bσ be the
unique degree 0 divisor representing xσ of the form

bσ =

( ∑
1≤j≤d−2

αjWj

)
− (
∑

αj)Wd−1

with αj ∈ {0, . . . , p− 1}. (The existence and uniqueness follows from Proposition 6.2.)
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Recall that S =
∑
niWi and T is a divisor of degree (degf)/p supported on the Wi. We

have the short exact sequence16

0 → 〈S− pT〉
pW0

→ W0

pW0
→ J [φ] → 0.

The map Υ is the composition of the map from H1(J [φ]) to H2(〈S − pT〉/pW0) with the
isomorphism from H2(〈S − pT〉/pW0) to H2(µp(k

sep)) induced by ε. We see that x maps
to the class in H2(〈S− pT〉/pW0) of the 2-cocycle f1(σ, τ) = σbτ + bσ − bστ mod pW0. The
divisor σbτ + bσ − bστ is a principal divisor supported on the Wi. Note that the supports of
bστ and bσ do not contain Wd. Let γ = ordWd

σbτ . Then the number of S’s appearing in
σbτ + bσ − bστ is γ · (n−1

d mod p); call this product n. We have
σbτ + bσ − bστ ≡ n(S− pT) mod pW0.

Thus the image Υ(x) of f1 under ε in H2(µp(k
sep)) is represented by f ′1(σ, τ) := ζn.

The element −η(δ(ζ), x) of H2(µp(k
sep)) is represented by the 2-cocycle

f2(σ, τ) = eφ(
σWd −Wd,

σbτ )
−1 = eφ(Wd −σWd,

σbτ ).

Let D be a good divisor of degree 0 and j a function that is 1 mod m with ψ∗D = Wd −
σWd + div(j). We have

f2(σ, τ) = eφ(ψ∗D,
σbτ ) = ep(D,

σbτ ).

We see
(1− ζ)∗ψ∗D = (1− ζ)∗div(j),

hence

pD − (1 + . . .+ ζp−1)∗(D) = div
j

j ◦ ζ−1
.

The function

h =

(
j

j ◦ ζ−1

)
·
∏
P∈D

(x− xP )

is 1 mod m, and div(h) = pD. (In the product over P ∈ D, we take P ’s with multiplicity.)
From (10), we obtain

ep(D,
σbτ ) =

∏
P∈σbτ

(x− xP )(D)
j

j◦ζ−1 (σbτ )
∏

P∈D(x− xP )(σbτ )
=
j ◦ ζ−1

j
(σbτ ).

The supports of σbτ and divj can only have Wd in common. Since ordWd
(j) = −1, the

function ` = jndy has no zero or pole at Wd. We have(
j ◦ ζ−1

j
(Wd)

)nd

=
` ◦ ζ−1(Wd)

`(Wd)
· y

y ◦ ζ−1
(Wd) = ζ

as in the proof of Proposition 7.1. Hence

j ◦ ζ−1

j
(Wd) = ζn

−1
d mod p.

If i < d then
j ◦ ζ−1

j
(Wi) =

j(ζ−1Wi)

j(Wi)
= 1.

16In what follows, one should interpret 〈S − pT〉 as the 1-dimensional Fp-vector space generated by the
image of S− pT in W0/pW0.
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Since ordWd

σbτ = γ we have

j ◦ ζ−1

j
(σbτ ) = ζγ·n

−1
d mod p = ζn.

Thus the 2-cocycles f ′1 and f2 are the same in H2(µp(k
sep)). �

Let ν : H1(J [φ]) → H1(J(ksep)) = H1(Pic0(Xsep)) be the map coming from the inclusion
J [φ] → J(ksep). We next show that the pairing η is compatible with the pairing ρ0.

Lemma 10.4. For all x ∈ H1(J [φ]) and y ∈ H0(Pic0(Xsep)) = J(k),

η(x, ι(y)) = ρ0(ν(x), y).

Proof. By Lemma 10.2, it suffices to prove η(ι(y), x) + ρ(ν(x), y) = 0. For each σ ∈ Gk,
choose bσ ∈ Div0(Xsep) such that the divisor classes of the bσ define a cocycle representing
x. Then for each σ, τ ∈ Gk, pbσ and σbτ − bστ + bσ are the divisors of functions hτ and fσ,τ ,
respectively. By comparing divisors, we find

(fσ,τ )
p =

hσ ·σhτ
hστ

up to a constant in ksep∗, and by changing each fσ,τ we may assume the constant is 1.
Choose F ∈ Div0(Xsep) such that y is represented by pF . Using the compatibility of the

eφ and ep, and the compatibility of the φ-descent map ι with the p-descent map as in (14),
we find that η(ι(y), x) is represented by the 2-cocycle

(σ, τ) 7→ ep(
σF − F,σbτ )

=
(σhτ ) (σF − F )

gσ (σbτ )
(by definition of ep),

where gσ is a function with divisor p (σF − F ). On the other hand, using the definition of ρ0

in [12], we see that ρ0(ν(x), y) is represented by the 2-cocycle

(σ, τ) 7→ fσ,τ (pF )gσ(
σbτ )

=
hσ(F ) · (σhτ ) (F )

hστ (F )
gσ (σbτ ) ,

so η(ι(y), x) + ρ0(ν(x), y) is represented by the 2-cocycle

(σ, τ) 7→ hσ(F ) · (σhτ ) (F )

hστ (F )
· (σhτ ) (σF )

(σhτ ) (F )

=
hσ(F ) ·σ(hτ (F ))

hστ (F )
,

which is clearly a coboundary. �

Remark. At the bottom of page 54 in [16], Milne mentions that a compatibility result similar
to Lemma 10.4 holds for abelian varieties in general.

Recall the map θ and the element c ∈ H1(Pic0(Xsep)) from Section 3.

Corollary 10.5. The map Υ ◦ ι : J(k) → Br(k)[p] coincides with the restriction of −θ to
J(k), and its kernel is Pic0(X).
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Proof. By definition, c is represented by the 1-cocycle cσ := σD−D with values in Pic0(Xsep),
where D is any divisor class of degree 1 over ksep. In particular, if we choose D to be the
divisor class of Wi, and use Lemma 9.1, we find that c = ν(δ(ζ)). If P ∈ J(k), then

Υ(ι(P )) = η(ι(P ), δ(ζ)) (by Proposition 10.3)

= −η(δ(ζ), ι(P )) (by Lemma 10.2)

= −ρ0(ν(δ(ζ)), P ) (by Lemma 10.4)

= −ρ0(c, P ) (by the remarks above)

= −θ(P ) (by (5)).

The kernel of θ : J(k) → Br(k) is Pic0(X), by (2). �

Corollary 10.6. The group Pic0(X) is the largest subgroup of J(k) whose image under

ε ◦ ι : J(k) −→ H1

(
µp(L

sep)

µp(ksep)

)
is contained in the subgroup L∗/L∗pk∗.

Proof. A diagram chase in (12) shows that this largest subgroup is exactly the kernel of Υ◦ι.
Now apply Corollary 10.5. �

Remark. Suppose that p = 2, k = R, and X is (a nonsingular projective model of) the
curve y2 = −x4 − 1. Let ∞1 and ∞2 denote the points on X above x = ∞ on P1. One can
check that the divisor ∞1−∞2 represents a real (i.e., R-rational) divisor class that does not
contain any real divisor, so its image under θ is the non-trivial element of Br(R). For this
curve over R, one cannot expect to extend (x−T ) to all of J(R) in a natural way. (Thanks
to David Grant for mentioning to us this example of a degree zero k-rational divisor class
without k-rational divisors.)

11. The kernel of (x− T )

In the following two sections, we indicate how the cohomological description of the (x−T )
maps given in the last section can be used to derive some of their properties. Here we
describe the kernels.

Proposition 11.1. The kernel of the map

(x− T ) : Pic(p)
m (X) −→ L∗/L∗p

is generated by φPicm(X) and m′. The kernel of the map

(x− T ) : Pic(p)(X) −→ L∗/L∗pk∗

is generated by Pic(p)(X) ∩ φH0(Pic(Xsep)) and the divisor class of m.

Proof. By Theorem 9.3, the first kernel is the same as the kernel of ε ◦ ι′. The kernel of ι′

is φPicm(X) by construction, and the kernel of ε is generated by ι′(m′), by Corollary 9.2.
This proves the first statement, and the second is proved in exactly the same way, using
Theorem 9.4. �

Let us now concentrate on a more concrete description of the size of the kernel for the
(x− T ) map on Pic0(X).



22 BJORN POONEN AND EDWARD F. SCHAEFER

Lemma 11.2. The horizontal map N : H0
(
µp(Lsep)

µp(ksep)

)
−→ µp(k) in (12) is surjective if and

only if

a) f(x) has a factor in k[x] of degree prime to p
or

b) p = 2, g is even, and f(x) factors over some quadratic extension K of k as
ch(x)h̄(x) where c ∈ k∗, h(x) ∈ K[x] and h̄(x) is the Gal(K/k)-conjugate
of h(x).

Proof. If f(x) has a factor in k[x] of degree prime to p, then it must have an irreducible
factor h(x) of degree prime to p. The element ` of

Lsep = ksep × ksep × · · · × ksep

that is ζ in each component corresponding to a root of h(x) and 1 in every other component

is in µp(L), and the image of ` in H0
(
µp(Lsep)

µp(ksep)

)
maps under N to N(`) = ζnh deg h(x), where nh

is the multiplicity with which h(x) appears in the factorization of f(x). Since 1 ≤ nh ≤ p−1,

N(`) is a non-trivial element of µp(k). Thus N : H0
(
µp(Lsep)

µp(ksep)

)
−→ µp(k) is surjective.

Next suppose p = 2, g is even, K is a quadratic extension of k, and f(x) = ch(x)h̄(x) where
c ∈ k∗, h(x) ∈ K[x] and h̄(x) is the Gal(K/k)-conjugate of h(x). Let ` ∈ Lsep be the element
which is 1 in components corresponding to roots of h(x) and −1 in components corresponding
to roots of h̄(x). Although ` 6∈ L, automorphisms in Gk at worst send ` to −`, so ` does

correspond to an element of H0
(
µ2(Lsep)
µ2(ksep)

)
. We have N(`) = (−1)deg h̄(x) = (−1)(deg f)/2. Since

p = 2, the roots of f(x) are distinct, and deg f = d = 2g + 2, so N(`) = (−1)g+1 = −1.

Thus N : H0
(
µ2(Lsep)
µ2(ksep)

)
−→ µ2(k) is surjective.

Conversely, suppose N : H0
(
µp(Lsep)

µp(ksep)

)
−→ µp(k) is surjective. Pick ` ∈ Lsep corresponding

to an element in H0
(
µp(Lsep)

µp(ksep)

)
such that N(`) = ζ. Let hj(x) =

∏
(x − αi)

ni where the

product is over all i for which the corresponding component of ` is ζj. Then

(17) ζ = N(`) =

p−1∏
j=0

(ζj)deg hj ,

so there is some j for which deg hj is prime to p. If hj(x) ∈ k[x], we are done. Otherwise,
the action of Gk multiplies ` by non-trivial elements of µp(k), so Gk acts transitively on the
hj. In particular, deg hj is independent of j, and the right hand side of (17) equals

ζ(
Pp−1

j=0 j)(deg h0) = ζ
1
2
p(p−1)(deg h0).

If p ≥ 3 or p divides deg h0, then the exponent on the right is divisible by p, contradicting (17).
Thus p = 2, deg h0 is odd, and f(x) = ch0(x)h1(x), with c ∈ k∗ the leading coefficient of
f(x), and with Gk acting transitively on {h0, h1}. Finally, deg f = 2g + 2 as before, so
deg h0 = g + 1, making g even. �

Recall from Proposition 3.2 that the existence of a k-rational divisor class of degree 1 is
enough to guarantee that Pic0(X) → J(k) is an isomorphism. The following generalizes
Proposition 5 in [9], which is the special case where p = 2, g = 2, and X(k) is non-empty.
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Theorem 11.3. If X has no k-rational divisor class of degree 1, then

(18) (x− T ) :
Pic0(X)

Pic0(X) ∩ φH0(Pic0(Xsep))
−→ L∗/L∗pk∗

is injective. If X does have a k-rational divisor class D of degree 1, then the kernel of

(x− T ) : J(k)/φJ(k) −→ L∗/L∗pk∗

is generated by m− φD. This kernel has order

1 if a) f(x) has a factor in k[x] of degree prime to p,
or b) p = 2, g is even, and f(x) factors over some quadratic exten-
sion K of k as ch(x)h̄(x) where c ∈ k∗, h(x) ∈ K[x] and h̄(x) is the
Gal(K/k)-conjugate of h(x).

p otherwise.

Proof. If E0 ∈ Pic0(X) is in the kernel of (x − T ), then by Proposition 11.1, E0 = φE − rm
for some E ∈ H0(Pic(Xsep)) and r ∈ Z. Taking degrees of both sides shows deg E = r. If X
has no k-rational divisor class of degree 1, then X has no k-rational divisor class of degree
prime to p (because deg m = p), so r ∈ pZ. In this case, E0 = φ(E − (r/p)m), so we see
that (18) is injective.

From now on we assume that there is a k-rational divisor class D of degree 1. Then m−φD
is in the kernel by Proposition 11.1. Moreover, any element E0 ∈ J(k) of the kernel is of the
form φE − rm with E ∈ H0(Pic(Xsep)) and r = deg E as above. We can always rewrite E0 as
φ(E − rD)− r(m− φD), so m− φD generates the kernel (modulo φJ(k)).

The group J(k)/φJ(k) is killed by p, so the order of m − φD in it is either 1 or p. The
order is 1 if and only if ι(m− φD) is trivial. We have

ι(m− φD) = ι(m) = δ(ζ),

by Lemma 9.1. By (12), δ(ζ) vanishes if and only if the map N : H0
(
µp(Lsep)

µp(ksep)

)
−→ µp(k) is

surjective. Hence we obtain the criterion of Lemma 11.2. �

12. The image of (x− T )

Although we cannot realistically hope to find an effective description of the image of
(x− T ) in general (this would let one compute Mordell-Weil ranks in many situations), we
can use the cohomological description to derive some restrictions on the image. Some of
these restrictions were previously known for the case p = 2 (see [9]).

Proposition 12.1. The image of

(x− T ) : Pic0(X) −→ L∗/L∗pk∗

is contained in the kernel of the map N : L∗/L∗pk∗ → k∗/k∗p.

Proof. This follows from Theorem 9.4 and the exactness of the rows in (12). �

If A is an abelian variety over a local field k of residue characteristic not p, and if A has good
reduction, then the image of the usual p-descent map A(k)/pA(k) → H1(A[p]) is contained
in the subgroup of cohomology classes that are unramified, meaning that their restrictions
to H1(I, A[p]) are trivial, where I is the inertia group. This facilitates the computation of
the Selmer group for abelian varieties over global fields.
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To prove an analogue for the (x− T ) map, we need a notion of unramified for elements of
L∗/L∗p and L∗/L∗pk∗. Let k be a local field with ring of integers Ok. An element of L∗/L∗p is
said to be unramified if its image under the Kummer isomorphism L∗/L∗p → H1(µp(L

sep)) is
an unramified cohomology class. Similarly, an element of L∗/L∗pk∗ is said to be unramified
if its image under the injection L∗/L∗pk∗ ↪→ H1 (µp(L

sep)/µp(k
sep)) induced by the map q

of (12) is unramified.

Proposition 12.2. Let k be a local field of finite residue characteristic not p, and suppose
J has good reduction. Then the image of

(x− T ) : Pic0(X) −→ L∗/L∗pk∗

is unramified.

Proof. This is a corollary of Theorem 9.4 and the well-known fact that the image of ι :
J(k)/φJ(k) → H1(J [φ]) is unramified. �

In the next proposition, we give a more computable criterion for checking whether elements
are unramified. Let L ∼=

∏
Li be the decomposition of L into fields Li. Let OLi

be the ring
of integers of Li. If ` ∈ L, we denote by `i ∈ Li the image of ` in Li.

Proposition 12.3. Let k be a local field of residue characteristic not p. An element of
L∗/L∗p represented by ` ∈ L∗ is unramified if and only if the fractional OLi

-ideal (`i) is a
p-th power for all i. An element of L∗/L∗pk∗ represented by ` ∈ L∗ is unramified if and only
if there exists a fractional Ok-ideal a such that the fractional OLi

-ideal a · (`i) is a p-th power
for all i.

Remark. Since Ok has class number 1, we could have made the final statement of Proposi-
tion 12.3 with an element a ∈ k instead of an ideal. We have chosen the given formulation
so as to conform more closely with Proposition 12.5 below, in which case this substitution
cannot be made in general.

Proof. Let kunr denote the maximal unramified extension of k, let I denote the inertia group
Gal(ksep/kunr), and let Lunr = L ⊗k k

unr. We have the following commutative square with
horizontal isomorphisms:

(19)

L∗/L∗p −−−→ H1(µp(L
sep))y y

Lunr∗/Lunr∗p −−−→ H1(I, µp(L
sep)).

Therefore the element of L∗/L∗p represented by ` ∈ L∗ is unramified if and only if ` becomes
trivial in Lunr∗/Lunr∗p. The residue field of each component of Lunr is separably closed of
characteristic not p, so by Hensel’s Lemma, an element of Lunr∗ is in Lunr∗p if and only if its
valuation in each component is divisible by p. This proves the first part.

Similarly we have a commutative square with horizontal injections:

(20)

L∗/L∗pk∗ −−−→ H1

(
µp(L

sep)

µp(ksep)

)
y y

Lunr∗/Lunr∗pkunr∗ −−−→ H1

(
I,
µp(L

sep)

µp(ksep)

)
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An element of L∗/L∗pk∗ represented by ` ∈ L∗ is unramified if and only if ` becomes trivial
in Lunr∗/Lunr∗pkunr∗; i.e., if and only if there exists a ∈ kunr∗ such that a` is in Lunr∗p. By
Hensel’s Lemma again, kunr∗/kunr∗p is isomorphic to Z/pZ via the discrete valuation, so we
may modify a by an element of kunr∗p to assume without loss of generality that a ∈ k∗. Then
by the earlier part of this proof, a` is in Lunr∗p if and only if the fractional ideal (a)(`i) in Li
is a p-th power for all i. This proves the second part. �

From now on, we let k be a global field of characteristic not p. For each nonarchimedean
place v of k, let kv denote the completion. Let Gv = Gal(ksep

v /kv) and Iv = Gal(ksep
v /kunr

v )
be the decomposition group and inertia group, respectively. Let Lv = L ⊗ kv, and let
Lsep
v = L⊗ ksep

v . Also let Lunr
v = L⊗ kunr

v , where kunr
v is the maximal unramified extension of

the local field kv. If S is a set of places of k including all the archimedean places, an element
of L∗/L∗p or L∗/L∗pk∗ is said to be unramified outside S if it is unramified at each v 6∈ S.17

Let (L∗/L∗p)S and (L∗/L∗pk∗)S denote the subgroups of elements unramified outside S of
L∗/L∗p and L∗/L∗pk∗, respectively.

Proposition 12.4. Let S be a set of places of k containing all places of bad reduction for
J , all the archimedean places, and all places of k above p. Then the image of

(x− T ) : Pic0(X) −→ L∗/L∗pk∗

is contained in (L∗/L∗pk∗)S.

Proof. This is a corollary of Proposition 12.2. �

Remark. If v is a nonarchimedean place such that the coefficients of f(x) are integral at v,
the leading coefficient is a v-adic unit, and v does not divide p or the discriminant of f(x),
then J will have good reduction at v. One can let S be the set of archimedean places together
with the nonarchimedean places violating one of the conditions in the previous sentence.

If one wishes to use Proposition 12.4 in practice, one needs a more concrete description of
(L∗/L∗pk∗)S. We devote the rest of this section to finding such a description.

Proposition 12.5. Let S be a set of places of k including all the archimedean places and
all places above p. An element of L∗/L∗p represented by ` ∈ L∗ is unramified outside S if
and only if the prime-to-S part of the ideal (`i) of Li is a p-th power for all i. An element
of L∗/L∗pk∗ represented by ` ∈ L∗ is unramified outside S if and only if there exists an ideal
a of k such that the prime-to-S part of the ideal a · (`i) of Li is a p-th power for all i.

Proof. This is a corollary of Proposition 12.3. �

Let OS denote the ring of S-integers of k. Let OLi,S denote the ring of elements of Li that
are integral at all places above all places of k outside S. Let OL,S =

∏
OLi,S ⊂ L. For any

Dedekind domain R, let Cl(R) denote the class group of R. Define Cl(OL,S) =
∏

Cl(OLi,S).

17For L∗/L∗p, this definition agrees with the definition given in [9] for the case p = 2. In [9], however,
an element of L∗/L∗pk∗ was called unramified outside S if and only if it was the image of some element
of L∗/L∗p unramified outside S. This older definition agrees with ours in the case where the ring OS of
S-integers of k has class number prime to p, but is less stringent in general. The present definition is superior
in two regards: first, it is local in nature, and second, Proposition 12.4 (the generalization of Proposition 3
in [9]) is true for it, regardless of the class number of OS .
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Proposition 12.6. If S is a nonempty set of places of k including all the archimedean places
and all places above p, then there is an exact sequence

0 → O∗
L,S/O

∗p
L,S → (L∗/L∗p)S → Cl(OL,S)[p] → 0.

Proof. We write w|v if w is a valuation on some Li extending v on k. Then we have an exact
sequence

0 −−−→ O∗
L,S −−−→ L∗

Q
w−−−→

∏
w|v,v 6∈S Z −−−→ Cl(OL,S) −−−→ 0

By Proposition 12.5, we have also an exact sequence

0 −−−→ (L∗/L∗p)S −−−→ L∗/L∗p
Q
w−−−→

∏
w|v,v 6∈S Z/pZ.

By applying the snake lemma to the middle two rows of

(21)

0 0 0y y y
O∗
L,S

p−−−→ O∗
L,S −−−→ (L∗/L∗p)Sy y y

L∗
p−−−→ L∗ −−−→ L∗/L∗p −−−→ 0yQ

w

yQ
w

yQ
w

0 −−−→
∏

w|v,v 6∈S Z
p−−−→

∏
w|v,v 6∈S Z −−−→

∏
w|v,v 6∈S Z/pZ −−−→ 0y y y

Cl(OL,S)
p−−−→ Cl(OL,S) −−−→ Cl(OL,S)

pCl(OL,S)
−−−→ 0y y y

0 0 0
we obtain the desired exact sequence. �

Recall that dimV denotes the Fp-dimension of V . By a valuation on L, we mean the
composition of a projection L→ Li and a valuation of the field Li.

Corollary 12.7. Let S be a nonempty set of places of k including all the archimedean places
and all places above p, and let W denote the set of valuations w on L such that w|v for some
v ∈ S. Then dim(L∗/L∗p)S = #W + dim Cl(OL,S)[p].

Proof. If Wi denotes the set of valuations w of Li above some v in S, then the rank of O∗
Li,S

is #Wi − 1, and dimO∗
Li,S

/O∗p
Li,S

= #Wi, since the torsion subgroup of O∗
Li,S

is cyclic of

order divisible by p. Sum over i to get dimO∗
L,S/O

∗p
L,S = #W , and use Proposition 12.6. �

In fact, Proposition 12.6 gives us an algorithm for computing (L∗/L∗p)S. (As usual, S is a
nonempty set of places of k including all the archimedean places and all places above p.) Let
ζi be a root of unity in Li of maximal order, or at least of index prime to p in the group of
all roots of unity in Li. If Li is a number field, let Oi denote the ring of integers in Li. If Li
is a function field, let Oi denote the ring of elements that are integral away from some fixed
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place wi above some place in S. Let Bi be a basis for the free part of the unit group O∗
i of Li

if Li is a number field, and let Bi = {} if Li is a function field. Let pi,1, pi,2, . . . , pi,r denote
the prime ideals of OLi,S corresponding to the places of Li above the finite v ∈ S, excluding
wi if Li is a function field. For j = 1, 2, . . . , r, inductively take the smallest power of pi,j that
is in the subgroup of Cl(Oi) generated by pi,1, . . . , pi,j−1, and let βi,j be the generator of the
corresponding principal ideal pr1i,1p

r2
i,2 · · · p

rj
i,j. Then Bi ∪ {ζi} ∪ {βi,j : 1 ≤ j ≤ r} is a basis for

O∗
Li,S

/O∗p
Li,S

. For each element āj of Cl(OLi,S)[p], choose a representing ideal aj, and let γj
be a generator of apj . Then Bi ∪{ζi}∪ {βi,j : 1 ≤ j ≤ s}∪ {γj}j is a basis for (L∗i /L

∗p
i )S, and

taking the union over i yields a basis for (L∗/L∗p)S.

We next develop a down-to-earth description for (L∗/L∗pk∗)S. Let (k∗/k∗p)S be defined
in the obvious way, either as the subgroup of k∗/k∗p mapping into elements of H1(µp(k

sep))
unramified outside S, or as the subgroup represented by elements β ∈ k∗ such that the
prime-to-S part of the ideal of β is a p-th power. (The proof of Proposition 12.5 shows that
these definitions are equivalent.) In applying Proposition 12.8 below, note that the criterion
of Néron-Ogg-Shafarevich implies that if v is a nonarchimedean place of k not above p, and
v ramifies in some Li, then v is automatically a place of bad reduction for J , because k(J [φ])
is the splitting field of f(x) over k.

Proposition 12.8. If S is a nonempty set of places of k including all places that ramify in
some Li, all the archimedean places, and all places above p, then there is an exact sequence

(k∗/k∗p)S → (L∗/L∗p)S → (L∗/L∗pk∗)S →
Cl(OS)

pCl(OS)
→ Cl(OL,S)

pCl(OL,S)
.

Proof. The valuation v induces an isomorphism

kunr
v

∗/kunr
v

∗p ∼= Z/pZ.

Similarly

Lunr
v

∗/Lunr
v

∗p ∼=
∏
w|v

Z/pZ.

The rightmost column of (21) is thus the same as

0 → (L∗/L∗p)S → L∗/L∗p →
∏
v 6∈S

Lunr
v

∗/Lunr
v

∗p → Cl(OL,S)

pCl(OL,S)
→ 0.

Similarly we obtain

0 → (k∗/k∗p)S → k∗/k∗p →
∏
v 6∈S

kunr
v

∗/kunr
v

∗p → Cl(OS)

pCl(OS)
→ 0.

Also the map

kunr
v

∗/kunr
v

∗p → Lunr
v

∗/Lunr
v

∗p

is injective for each v that is unramified in all the Li. (In fact, it would suffice to have v
unramified in one of the Li.) Thus we may apply the snake lemma to the middle two rows
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of

(22)

0 0 0y y y
(k∗/k∗p)S −−−→ (L∗/L∗p)S −−−→ (L∗/L∗pk∗)Sy y y
k∗/k∗p −−−→ L∗/L∗p −−−→ L∗/L∗pk∗ −−−→ 0y y y

0 −−−→
∏
kunr
v

∗/kunr
v

∗p −−−→
∏
Lunr
v

∗/Lunr
v

∗p −−−→
∏
Lunr
v

∗/Lunr
v

∗pkunr
v

∗ −−−→ 0y y
Cl(OS)

pCl(OS)
−−−→ Cl(OL,S)

pCl(OL,S)y y
0 0

to obtain the desired exact sequence. �

We can use Proposition 12.8 to outline an algorithm for computing a basis for (L∗/L∗pk∗)S.
Compute a basis for (L∗/L∗p)S as in the paragraph after Corollary 12.7. Similarly find a
basis for (k∗/k∗p)S, and express the images in (L∗/L∗p)S of these basis elements in terms of
the previous basis. Compute a basis B ⊂ (L∗/L∗pk∗)S for the quotient of (L∗/L∗p)S by the

image of (k∗/k∗p)S. Find ideals a that represent a basis for the kernel of Cl(OS)
pCl(OS)

→ Cl(OL,S)

pCl(OL,S)
.

For each a and i, choose an ideal ai of OLi,S such that aapi is a principal fractional ideal of
OLi,S. Let ci ∈ Li be a generator of this principal ideal, and let c = (ci) be the corresponding
element of L∗. Then B and the c’s associated to the a’s form a basis for (L∗/L∗pk∗)S.

We conclude this section with two lemmas that are useful when computing the local images
of (x− T ). Lemma 12.9 holds for both local and global fields.

Lemma 12.9. Let n denote the number of distinct irreducible factors of f(x) over k. Suppose
that at least one of these factors has degree prime to p. Then dim J(k)[φ] = n− 2.

Proof. By Proposition 6.2, dim J(k)[φ] = dimV − 1, where V is the subspace of W0/pW0

represented by divisors D ∈ W0 on which Gk acts by addition of multiples of S modulo
pW0. (It is one less, because S− pT is trivial in J(k)[φ].)

Let f1(x) be an irreducible factor of f(x) of degree prime to p. If σ ∈ Gk, then in the cycle
decomposition of σ acting on the roots of f1(x) there is a cycle of length m prime to p. Then
σm fixes at least one root of f1(x), so it is impossible for σm(D)−D to be a nonzero multiple
of S modulo pW0. Since m is prime to p, and S is Gk-stable, it follows that σ(D) − D
cannot be a nonzero multiple of S modulo pW0. Thus V is the subspace of Gk-invariants of
W0/pW0.

The space of Gk-invariants of W/pW has dimension n, and there is a Gk-invariant of
degree prime to p, corresponding to f1(x), so dimV = n− 1, whence the result. �
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If kv is the completion of a number field k with respect to a place v, we let | |v denote
the corresponding absolute value, normalized so that it literally extends the usual or `-adic
absolute value on Q. The following generalizes Corollary 4.7 in [18].

Lemma 12.10. Let v be a place of the number field k, lying above the place ` of Q. Then

#J(kv)/φJ(kv) = |p|−g[kv :Q`]/(p−1)
v #J(kv)[φ].

Proof. Since J(kv) is a compact Lie group over Q` of dimension g[kv : Q`], multiplication-by-

p locally multiplies Haar measure by |p|g[kv :Q`]
v . Since p equals φp−1 up to an automorphism,

multiplication-by-φ locally multiplies Haar measure by |p|g[kv :Q`]/(p−1)
v . Thus the Haar mea-

sure of the image φ(J(kv)) is

|p|g[kv :Q`]/(p−1)
v

#J(kv)[φ]

times the Haar measure of J(kv), and

#J(kv)/φJ(kv) = |p|−g[kv :Q`]/(p−1)
v #J(kv)[φ].

�

13. The Selmer and Shafarevich-Tate groups

In this section, we assume k is a global field of characteristic not p containing the p-th
roots of unity, and that X has a kv-rational divisor class of degree 1 for each place v of
k. By Propositions 3.2 and 3.3, the latter hypothesis implies that Pic0(X) → J(k) is an
isomorphism, and similarly over every completion. Also recall from the final paragraph of
Section 4 that this hypothesis is automatically satisfied if g 6≡ 1 (mod p). Then we have a
commutative diagram

(23)

J(k)/φJ(k)
(x−T )−−−→ L∗/L∗pk∗y y∏

v J(kv)/φJ(kv)
(x−T )−−−→

∏
v L

∗
v/L

∗p
v k

∗
v .

We define the fake φ-Selmer group Selφfake(J, k) to be the subgroup of elements of L∗/L∗pk∗

that map down in L∗v/L
∗p
v k

∗
v into the image of the local (x − T ) map for all v. First let us

prove an analogue of Proposition 12.1 and Proposition 12.4 for Selφfake(J, k).

Proposition 13.1. Let S be a nonempty set of places of k containing all places of bad
reduction for J , all the archimedean places, and all places of k above p. Then the group
Selφfake(J, k) is contained in the kernel of

N : (L∗/L∗pk∗)S → k∗/k∗p.

Proof. First we show that if ` ∈ Selφfake(J, k), then N(`) ∈ k∗p. If not, then by the Chebotarev

Density Theorem applied to the Kummer extension k(N(`)1/p)/k, we would find N(`) 6∈ k∗pv
for some v. On the other hand, ` = (x−T )(D) for some D ∈ J(kv), so this would contradict
Proposition 12.1 over kv.

The fact that Selφfake(J, k) is unramified at v 6∈ S follows from Proposition 12.2. �
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Remark. Given that we have an algorithm for computing (L∗/L∗pk∗)S, it is easy to see from

Proposition 13.1 that Selφfake(J, k) is effectively computable. To make this practical, all one
needs is a good algorithm for finding a basis for J(kv)/φJ(kv) for v ∈ S.

Recall that the actual Selmer group Selφ(J, k) is the subgroup of elements of H1(J [φ])
that map in H1(Gv, J [φ]) into the image of J(kv)/φJ(kv) → H1(Gv, J [φ]) for all v.

Theorem 13.2. Suppose X has a kv-rational divisor class of degree 1 for each place v of k.
Then there is an exact sequence

(24) µp(k)
δ−→ Selφ(J, k)

ε−→ Selφfake(J, k) −→ 0.

The image of µp(k) in Selφ(J, k) is trivial if and only if f(x) has a factor in k[x] of degree
prime to p, or p = 2, g is even, and f(x) factors over some quadratic extension K of k as
ch(x)h̄(x) where c ∈ k∗, h(x) ∈ K[x], and h̄(x) is the conjugate of h(x) under Gal(K/k).

Remark. The condition for the triviality of the image of µp(k) is the same as the condition
for the triviality of the kernel of (x − T ) in Theorem 11.3 when X has a k-rational divisor

class of degree 1. But the map Selφ(J, k) → Selφfake(J, k) may have a non-trivial kernel even
if the map

(x− T ) : J(k)/φJ(k) → Selφfake(J, k)

is injective. (This will happen if the image of ζ in Selφ(J, k) maps to a non-trivial element
of the Shafarevich-Tate group.)

Proof. From (12) we have an exact sequence

(25) H0

(
µp(L

sep)

µp(ksep)

)
N−→ µp(k)

δ−→ H1(J [φ])
ε−→ H1

(
µp(L

sep)

µp(ksep)

)
−→ k∗/k∗p.

Let Dv denote a kv-rational divisor class of degree 1. Then by Lemma 9.1,

δ(ζ) = ι(m) = ι(m− φDv) ∈ ι(J(kv)),

where we abusively use ι to denote the map analogous to (13) for kv. Thus δ(µp(k)) ∈
Selφ(J, k). The condition for its triviality follows from Lemma 11.2 and the exactness of (25).

Next let us show that if ξ ∈ Selφ(J, k) then ε(ξ) is in Selφfake(J, k). (To make sense of this,

we identify L∗/L∗pk∗ with a subgroup of H1
(
µp(Lsep)

µp(ksep)

)
using the vertical map q in (12).)

Since ξ ∈ H1(J [φ]) comes locally from a point in J(kv)/φJ(kv), it maps to zero in Br(kv)[p]
by Corollary 9.5. Since Br(k) →

∏
v Br(kv) is injective, ξ maps to zero in Br(k)[p]. By a

diagram chase in (12), ε(ξ) ∈ H1
(
µp(Lsep)

µp(ksep)

)
comes from a (unique) element ` ∈ L∗/L∗pk∗.

Since ξ is in the image of the local ι map on J(kv)/φJ(kv), ` will be in the image of the local

(x− T ) map, by Theorem 9.4. Thus ` ∈ Selφfake(J, k).
The exactness of (24) in the middle follows from the exactness of (25) at the term

H1(J [φ]). Finally let us show that Selφ(J, k) → Selφfake(J, k) is surjective. By Proposi-

tion 13.1, Selφfake(J, k) is contained in the kernel of

N : L∗/L∗pk∗ ⊂ H1

(
µp(L

sep)

µp(ksep)

)
→ k∗/k∗p

so by (25) any element in Selφfake(J, k) comes from some ξ ∈ H1(J [φ]). For each v, its restric-

tion ξv ∈ H1(Gv, J [φ]) maps under ε to ε(ι(Pv)) ∈ H1
(
µp(Lsep)

µp(ksep)

)
for some Pv ∈ J(kv)/φJ(kv),
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by definition of Selφfake(J, k). Hence ξv − ι(Pv) ∈ ker ε, and by the exactness of the local ver-
sion of (25), we have ξv − ι(Pv) ∈ δ(µp(kv)). But δ(µp(kv)) ⊆ ι(J(kv)/φJ(kv)) by the first

part of this proof, so ξv ∈ ι(J(kv)/φJ(kv)) as well. This holds for all v, so ξ ∈ Selφ(J, k). �

Let X(J, k) denote the Shafarevich-Tate group of J over k. Recall that there is an exact
sequence

0 → J(k)/φJ(k) → Selφ(J, k) → X(J, k)[φ] → 0

By Lemma 9.1, ι(m) = δ(ζ) ∈ H1(J [φ]), so ι(m) ∈ Selφ(J, k) by Theorem 13.2. By
Lemma 9.1, the image of ι(m) in X(J, k)[φ] equals the cohomology class of βσ = σW −W
in H1(J(ksep)), where W is any point in X(ksep). Hence this image also equals the ele-
ment c ∈ H1(J(ksep)), which is the homogeneous space Pic1(Xsep) of J , defined in Sec-
tion 3. The element c is trivial if and only if X has a k-rational divisor of degree 1. Define
(X(J, k)[φ])fake = X(J, k)[φ]/〈c〉.18

Theorem 13.3. Suppose X has a kv-rational divisor class of degree 1 for each place v of k.
Then we have an exact sequence

J(k)/φJ(k)
(x−T )−−−→ Selφfake(J, k) −−−→ (X(J, k)[φ])fake −−−→ 0.

Proof. Take the cokernels of the vertical maps in

0 −−−→ 0 −−−→ µp(k) −−−→ µp(k) −−−→ 0y y y
0 −−−→ J(k)/φJ(k) −−−→ Selφ(J, k) −−−→ X(J, k)[φ] −−−→ 0.

(The rightmost vertical map sends ζ to c.) �

Remarks. The kernel of (x − T ) is completely described by Theorem 11.3. It is tempting
also to let J(k)/ ker(x− T ) be denoted by (J(k)/φJ(k))fake!

Finally let us mention that if we are interested in computing the Mordell-Weil rank of one
of our Jacobians over a global field k not necessarily containing a primitive p-th root of unity,
a reasonable strategy is first to find the Mordell-Weil rank over k(ζ), and then to apply the
following lemma, which was suggested to us independently by A. Brumer, M. Stoll, and the
referee.

Lemma 13.4. Let k be a global field of characteristic not p, not necessarily containing a
primitive p-th root of unity ζ ∈ ksep. Let f(x) be a p-th power-free polynomial with zeros in
ksep, and let J be the Jacobian of yp = f(x), as usual. Then

rank J(k) =
rank J(k(ζ))

[k(ζ) : k]
.

Proof. Let ζp be a primitive p-th root of unity in Q. Identify Gal(k(ζ)/k) in the natural way
with a subgroup of (Z/pZ)∗, and let K be the subfield of Q(ζp) fixed by the corresponding
subgroup G of Gal(Q(ζp)/Q). Because of the automorphism (x, y) 7→ (x, ζy) of the curve
yp = f(x) over k(ζ), the group V := J(k(ζ))⊗Q has a natural Q(ζp)-vector space structure.
Moreover, Gal(k(ζ)/k) acts on the group V , and we may reinterpret this action as an action

18We could have written Xfake(J, k)[φ] instead, but this would have been very abusive of notation since
there is no natural Xfake(J, k) of which it is the φ-torsion subgroup!



32 BJORN POONEN AND EDWARD F. SCHAEFER

of G. This latter action respects the Q(ζp)-vector space structure in the following sense: if
σ ∈ G and v ∈ V , then σ(ζpv) = σ(ζp)σ(v).

If we fix a Q(ζp)-basis for V , the action of G defines a 1-cocycle with values in GLr(Q(ζp)),
where r = dimQ(ζp) V . But H1(G,GLr(Q(ζp))) = 0 (see [20, Proposition 3, p. 151]), and
it follows that some other choice of basis would have been G-stable; in other words, if
V G denotes the K-vector space of vectors in V fixed by G, then the K[G]-modules V and
V G ⊗K Q(ζp) are isomorphic. Hence

rank J(k(ζ)) = dimQ V = [Q(ζp) : K] · dimQ

(
V G
)

= [k(ζ) : k] · rank J(k).

�

14. Example

In this section we will demonstrate the practicality of our methods by proving the following
theorem.

Theorem 14.1. Let J denote the Jacobian of the genus 8 curve

X : y3 = (x2 − x+ 6)2(x8 + 3x+ 3)

over Q. Then J(Q) has rank 2 and J(Q(
√
−3)) has rank 4.

All computations will be done using GP-PARI, except when explicitly stated otherwise.
Before beginning the computation, let us make a few remarks about our choice of curve. Let
k = Q(ζ) where ζ is a primitive p-th root of unity; we will soon choose p = 3. To make the
computation challenging, we wanted our curve to have the following properties:

(1) The curve X should not be hyperelliptic.
(2) None of the ramification points should be k-rational.
(3) The polynomial f(x) should have a multiple factor.19

(4) One of the factors should define a field extension of k having class number divisible
by p.

(5) One of the factors should have large Galois group over k.
(6) The endomorphism ring of the Jacobian J should be no larger than Z[ζ].20

In hope of satisfying (1), we chose p = 3, so that k = Q(
√
−3). To satisfy (2), we needed to

make deg f divisible by 3, and to choose f(x) with no linear factors over k. To satisfy (4),
we chose one of the factors of f(x) to be x2 − x + 6, a root of which generates Q(

√
−23)

over Q, the first quadratic imaginary number field of class number 3. The field k(
√
−23)

has class number 3 also. To satisfy (3), we chose to make x2 − x + 6 a repeated factor. To
satisfy (5), we chose to have only one other irreducible factor, with the full symmetric group
as Galois group over k. Thus we chose to set

f(x) = (x2 − x+ 6)2h(x)

where deg h(x) would be constrained to be 2 modulo 3. The computation would eventually
require calculating the class group and fundamental units in the number field obtained by

19Although handling the multiple factor requires more thought, since for instance N is not simply the
norm, the computation time is actually reduced because of it, since the degree of the largest number field
we need to work in is less than it would have been otherwise.

20The reason for this restriction is that an exceptionally large endomorphism ring can in some cases
simplify the computation of the Mordell-Weil group. We want to rule out such “cheats.”
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Prime ` Characteristic polynomial

2 X16 +X14 +X12 +X10 − 20X8 + 4X6 + 16X4 + 64X2 + 256
5 X16 + 14X14 + 132X12 + 963X10 + 5340X8 + 24075X6 + 82500X4 +

218750X2 + 390625
7 X16 +6X15 +19X14 +84X13 +307X12 +792X11 +2497X10 +7074X9 +

16759X8+49518X7+122353X6+271656X5+737107X4+1411788X3+
2235331X2 + 4941258X + 5764801

Table 1. The characteristic polynomials of Frobenius for J` over F`.

adjoining a root of h to k; in order that this not take an inordinate amount of time, we chose
to have deg h = 8, so that the large number field would have absolute degree 16.

We chose to set h(x) = x8 + ax+ b for positive integers a and b. We chose a and b so that
X would have bad reduction at at most three finite primes of Q other than 3.21 The pair
(a, b) of positive integers satisfying this condition with a + b minimal was (3, 3). Hence we
took

f(x) = (x2 − x+ 6)2(x8 + 3x+ 3).

The factorization of the discriminant of f0(x) = (x2 − x + 6)(x8 + 3x + 3) is −39 · 23 ·
5534112 · 14306587. Let S0 = {3, 23, 553411, 14306587}. Then X has bad reduction at most
at the primes in S0. (We did not have to add 3 to the list, since it already appeared in the
discriminant. Without further work, however, we cannot say whether 3 actually is a prime
of bad reduction.)

Proposition 14.2. The curve X is not hyperelliptic.

Proof. Let X ′ denote the image of the canonical map X → Pg−1. Let K and K ′ denote the
function fields over k of X and X ′, respectively. We have [K : K ′] = 2 if X is hyperelliptic,
and [K : K ′] = 1 otherwise. One can check that the differentials dx/y and x dx/y on X are
regular, so we have k(x) ⊆ K ′ ⊆ K. But [K : k(x)] = 3, so [K : K ′] cannot be 2. �

Proposition 14.3. The Galois group of x8 +3x+3 over k = Q(
√
−3) is the full symmetric

group S8.

Proof. The program galp by M. Olivier and Y. Eichenlaub (available by anonymous ftp at
megrez.math.u-bordeaux.fr) shows that the Galois group of x8 + 3x + 3 over Q is S8.
Hence the Galois group of x8 + 3x+ 3 over k has order at least 8!/2. But the only subgroup
of S8 of index 2 is A8, and the Galois group cannot be A8, because the discriminant of
x8 + 3x+ 3 is 37 · 14306587, which is not a square in k. �

Table 1 gives the characteristic polynomial of Frobenius for the reduction J` of J mod-
ulo the first three primes ` of Q outside S0. These were computed by exhausting over
x-coordinates to count points on X over F`i for 1 ≤ i ≤ 8.

Proposition 14.4. The Jacobian J is absolutely simple, and End J = Z[ζ].

Proof. We first use the recipe described in [23] to compute the decomposition of J5 and J7

into simple factors up to isogeny over F5 and F7, respectively.

21Having more primes of bad reduction would have made the computation more tedious, but without
otherwise affecting the difficulty much.
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From Table 1, we compute that the characteristic polynomial of J5 over F25 is

P25(X) =
(
X8 + 14X7 + 132X6 + 963X5 + 5340X4 + 24075X3

+82500X2 + 218750X + 390625
)2
.

The octic polynomial is irreducible, and the number field K1 generated by a root π has one
nontrivial subfield, according to the program KASH: the totally real quartic subfield F1 fixed
by the automorphism σ of K1 sending π to 25/π. If some power of π did not generate K1

over Q, it would be in the subfield F1, and σπ/π would be a root of unity in K1. The only
roots of unity in K1 are 1 and −1, and (σπ/π)2 6= 1, so K1 = Q(πn) for any n ≥ 1. The
simple abelian variety A over F25 corresponding to the Weil number π is hence absolutely
simple, and its endomorphism algebra is an order in a division algebra E with center K1. The
invariant of E at a place v of K1 equals (fv ordv π)/2 mod 1 if v divides 5, and 0 otherwise,
where fv denotes the residue field degree of v, and ordv is the Z-valued discrete valuation at
v. We compute that fv or ordv π is even at each v, so E is trivial in the Brauer group, A is
4-dimensional with (EndA)⊗Q = K1, and J5 is isogenous over F25 to A× A.

The characteristic polynomial P7 of J7 over F7 factors over Q as

(X2 + 5X + 7) · (X6 − 6X5 + 24X4 − 67X3 + 168X2 − 294X + 343)

· (X8 + 7X7 + 25X6 + 91X5 + 295X4 + 637X3 + 1225X2 + 2401X + 2401),

so J7 is isogenous to E1 × B × C over F7, where E1 is an elliptic curve with j = 0, and B
and C are F7-simple abelian varieties of dimensions 3 and 4, respectively. To check that B
is absolutely simple, we must show that powers of a root ρ of the sextic factor of P7 generate
the field K2 := Q(ρ). The nontrivial subfields of K2 are Q(

√
−3) and the cubic field F2 fixed

by the automorphism ρ 7→ 7/ρ. That no power of ρ lies in F2 can be checked as above for π
and F1. Since ρ divides 7, if ρn ∈ Q(

√
−3) for some n ≥ 1, the vector of valuations of ρ at the

primes of K2 above 7 would have to be a Q-linear combination of the corresponding vectors
for 2 +

√
−3 and 2−

√
−3 in K2. We compute that this is not the case. Thus Q(ρn) = K2

for all n ≥ 1, and B is absolutely simple. Similarly we prove that C is absolutely simple.
If J split up to isogeny over Q at all, it would split as D1 × D2, where each Di was

4-dimensional, because of the splitting of J5. If D1 and D2 were not isogenous, then the
automorphism ζ of J would have to act on each independently, and then ζ would also act
on the mod 5 reductions, which would both be A. This contradicts the fact that Q(ζ) is not
a subfield of K1. Thus J would have to be isogenous to a square, but this is inconsistent
with the splitting of J7. Hence J is absolutely irreducible. Moreover, End J contains Z[ζ]
and maps into the endomorphism ring of E, so End J must equal Z[ζ]. �

Proposition 14.5. The torsion subgroup J(k)tors is trivial.

Proof. The prime-to-2 part of J(k)tors injects under reduction modulo 2 into J(F4), and
#J(F4) = 24 · 38, which we obtain using Table 1. The prime-to-7 part22 of J(k)tors injects
under reduction modulo 2+

√
−3 into J(F7), and #J(F7) = 32 ·133 ·787, again obtained using

Table 1. Hence it remains to show that there is no 3-power torsion. Since multiplication-by-3
on J equals φ2 up to an automorphism, if there were a 3-torsion point in J(k), there would
also be a φ-torsion point. But dim J(k)[φ] = 0, by Lemma 12.9. �

22In fact the whole group J(k)tors injects into J(F7), since the absolute ramification index of 2 +
√
−3 is

less than 7− 1.



EXPLICIT DESCENT 35

Prime (e, f)’s in L1 (e, f)’s in L2

3 (2, 1), (2, 1) (8, 1), (8, 1)
23 (2, 2) (1, 2), (1, 2), (1, 2), (1, 10)

553411 (1, 1), (1, 1), (1, 1), (1, 1) (1, 1), (1, 1), (1, 1), (1, 1), (1, 6), (1, 6)
14306587 (1, 1), (1, 1), (1, 1), (1, 1) (1, 1), (1, 1), (1, 1), (1, 1), (2, 1), (2, 1), (1, 4), (1, 4)

Table 2. The splitting of primes in S0 in L1 and L2.

The curve X has three points above ∞ ∈ P1, and they can be distinguished by the value
of the rational function y/x4, which will be 1, ζ, or ζ2. We name them ∞1, ∞2, and ∞3,
respectively. Only ∞1 is defined over Q; the other two are defined over k.

The only prime in S0 that remains inert in k is 23. The others factor as follows: 3 = −p2
3,

where p3 =
√
−3; 553411 = p553411p̄553411, where p553411 = −644 + 215

√
−3 and p̄553411 is

its conjugate; and 14306587 = p14306587p̄14306587, where p14306587 = (−7475− 671
√
−3)/2 and

p̄14306587 is its conjugate. Let S be the set of primes of k above primes in S0, together with
the infinite place ∞. Thus we have #S = 7, and Corollary 12.7 implies dim(k∗/k∗3)S = 7,
and we can easily find a basis using the algorithm given after that corollary.

Let L1 = k[T ]/(T 2 − T + 6) and L2 = k[T ]/(T 8 + 3T + 3) and L = k[T ]/f0(T ) = L1 ×L2.
Applying the PARI functions compositum and initalgred we find that L1 is generated over
Q by a root of

h1(x) = x4 − 4x3 + 19x2 − 30x+ 39

and that L2 is generated over Q by a root of

h2(x) = x16 − 8x14 + 28x12 − 56x10 + 70x8 − 56x6 + 28x4 − 5x2 + 1.

The element T ∈ L is represented by (−1/10)x3 +(3/10)x2− (21/10)x+12/5 in Q[x]/h1(x)
and x2 − 1 in Q[x]/h2(x).

Both L1 and L2 contain Q(
√
−3), so they are totally complex, and their groups of units

have ranks 1 and 7, respectively. The class groups have size 3 and 1, respectively; a prime
p3 of L1 above 3 generates the class group of L1. In particular, Cl(OL,S) is trivial.

The ramification indices e and residue degrees f of the primes of L1 and L2 above the
primes in S0 are listed in Table 2. By Corollary 12.7, it follows that dim(L∗/L∗3)S = 41. We
find a basis for (L∗/L∗3)S by using the algorithm given after that corollary, with help from
the PARI function isprincipalgen, which can find generators of all the necessary ideals.
We can compute the image of the basis of (k∗/k∗3)S in (L∗/L∗3)S (with respect to its basis),
using the PARI functions nfval and isunit. Similarly we can compute the image of N on
the basis of (L∗/L∗3)S, expressed in terms of the basis of (k∗/k∗3)S.

We find that the map (k∗/k∗3)S → (L∗/L∗3)S induced by the inclusion map is injective.
Also, Cl(k) is trivial, so Cl(OS) is trivial. Hence by Proposition 12.8, dim(L∗/L∗3k∗)S = 34.
The map N : (L∗/L∗3)S → (k∗/k∗3)S, on the other hand, turns out to be surjective, so

dim ker
(
(L∗/L∗3k∗)S

N−→ (k∗/k∗3)S

)
= 27,

and again we can compute representatives for a basis.
Table 2 also lets us compute the factorizations of f(x) over each relevant completion kv of

k, and also the F3-dimensions of the groups J(kv)[φ] and J(kv)/φJ(kv) for each place v of k.
These are listed in Table 3. To obtain the kv-factorizations from the information in Table 2,
we need only note that k/Q is Galois, and that the primes 3, 23, 553411, and 14306587 of Q



36 BJORN POONEN AND EDWARD F. SCHAEFER

Place v kv-factorization of f(x) dim J(kv)[φ] dim J(kv)/φJ(kv)

p3 12 · 12 · 4 · 4 2 10
23 22 · 1 · 1 · 1 · 5 3 3

p553411 12 · 12 · 1 · 1 · 6 3 3
p̄553411 12 · 12 · 1 · 1 · 6 3 3
p14306587 12 · 12 · 1 · 1 · 2 · 4 4 4
p̄14306587 12 · 12 · 1 · 1 · 2 · 4 4 4
∞ 12 · 12 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 8 0

Table 3. The degrees and multiplicities of the factors of f(x) over kv, and
the F3-dimensions of J(kv)[φ] and J(kv)/φJ(kv).

` dim
(k ⊗Q`)

∗

(k ⊗Q`)∗3
dim

(L1 ⊗Q`)
∗

(L1 ⊗Q`)∗3
dim

(L2 ⊗Q`)
∗

(L2 ⊗Q`)∗3
dim

(L⊗Q`)
∗

(L⊗Q`)∗3(k ⊗Q`)∗

3 4 8 20 24
23 2 2 8 8

553411 4 8 12 16
14306587 4 8 16 20

Table 4. Dimensions of cokernels of z 7→ z3 in some local multiplicative groups.

ramify, remain inert, split, and split in k, respectively. Lemmas 12.9 and 12.10 let us verify
the remaining columns of Table 3.

To do computations in L∗v/L
∗3
v k

∗
v , we work within L∗v/L

∗3
v and compute the image of a basis

of k∗v/k
∗3
v in it. We group together v above the same prime ` ∈ S0; for example, we work

within the group (L⊗Q553411)
∗/(L⊗Q553411)

∗3. Since L = L1 ×L2, we can work with each
factor independently. To solve the “discrete logarithm problem” in (L2 ⊗ Q553411)

∗/(L2 ⊗
Q553411)

∗3, for example, given an element of L2, we divide by powers of chosen generators
of the ideals above 553411 to make it a unit (keeping track of the valuations modulo 3),
and then use the PARI command zideallog applied to (OL2/(553411))∗ to compute the
discrete logarithm of the 553411-adic unit modulo 3. (For ` = 3, we work in (OL2/(9))

∗,
since a 3-adic unit that is 1 modulo 9 is a 3-adic cube.)

The dimensions of some of these groups are listed in Table 4. Note that for each `,

(k ⊗Q`)
∗

(k ⊗Q`)∗3
−→ (L⊗Q`)

∗

(L⊗Q`)∗3

turned out to be injective.
Since X has a Q-rational point at infinity, and since f(x) has a factor of degree prime to

p = 3 even over Q, Theorem 11.3 tells us that

J(k)/φJ(k)
(x−T )−→ L∗/L∗3k∗

is injective, and the corresponding maps over each completion of k are injective also.
The only part of the calculation that would be difficult to automate completely is the

search for the generators of J(kv)/φJ(kv) for the bad places v ∈ S. Although we know
the dimension a priori, and in theory could simply search the space of kv-rational divisors
systematically, to higher and higher v-adic precision until the right number of generators



EXPLICIT DESCENT 37

` Basis for
J(k ⊗Q`)

φJ(k ⊗Q`)
Dimen-
sion

3 3, 8, 9, 40, x2 + 2x+ 5, x2 − 2x+ 5, x2 − 3x+ 4,
x2 + 1

2
(−9+

√
−3)x+(−3−

√
−3), x2 + 1

2
(−9−

√
−3)x+(−3+

√
−3),

x4+(27+20
√
−3)x3+(48+14

√
−3)x2+(24+22

√
−3)x+(15+14

√
−3)

10

23 1
2
(3 +

√
−3), 1

2
(13 +

√
−3), 1

2
(19 +

√
−3) 3

553411 3, 10, 1
2
(−29 +

√
−3), 1

2
(−7 +

√
−3), 665952, 665952 + (2 +

√
−3)p2

553411 6
14306587 0, 1, 6, 11, 1

2
(−11 +

√
−3), 1

2
(27 +

√
−3), 1

2
(31 +

√
−3), 1

2
(41 +

√
−3) 8

Table 5. Generators of J(k ⊗Q`)/φJ(k ⊗Q`) for ` ∈ S0.

was found, the time required for this could be prohibitive, especially in certain cases when
v lies above a large prime of Q (such as 553411). If some of the required generators reduce
to points on a non-identity component of the special fiber of the Néron model, they may be
scrunched up in a tiny p-adic neighborhood of a point with singular reduction in our original
model. In this case, we are better off looking at points in such a neighborhood, which is
what we did to find some of the generators at 3 and at 553411. (For instance, note that the
number 665952 in Table 5 is a common root modulo 553411 of x2 − x+ 6 and x8 + 3x+ 3.)

We list generators for J(k ⊗Q`)/φJ(k ⊗Q`) in Table 5, coded as follows: an element α
of k represents the class of the divisor P −∞1, where P ∈ X(k ⊗Q`) has x-coordinate α;
a polynomial h(x) ∈ k[x] represents the class of the divisor D − (degD)∞1, where D is a
Gk-stable sum of X(k⊗Q`) points whose x-coordinates are the roots of h(x) in k. To verify
that these generate, we simply check for each ` that their images under (x− T ) generate an

F3-vector space of the correct dimension inside
(L⊗Q`)

∗

(L⊗Q`)∗3(k ⊗Q`)∗
.

For each ` ∈ S0, we compute the image of these generators and the image of the basis

elements for L∗/L∗3k∗ in
(L⊗Q`)

∗

(L⊗Q`)∗3(k ⊗Q`)∗
. It is then a matter of linear algebra over F3

to find Selφfake(J, k), as a subgroup of (L∗/L∗3k∗)S. It turns out that dim Selφfake(J, k) = 2. By
Theorem 13.2, we have an isomorphism

Selφ(J, k)
ε−→ Selφfake(J, k),

so dim Selφ(J, k) = 2 also.
At this point, we hope to find elements in J(k) whose images under (x − T ) generate

Selφfake(J, k). Define divisors

D1 = (−1, 4)−∞1,

D2 =

(
1 +

√
−23

2
, 0

)
+

(
1−

√
−23

2
, 0

)
− 2∞1.

By Proposition 5.1, (x − T )(D1) = −1 − T . We cannot compute (x − T )(D2) immediately
from the definition and Proposition 5.1, since D2 involves points with y = 0. Instead note
that

div(y − (x2 − x+ 6)) = 2D2 +D3 − (a divisor supported at infinity),
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where D3 is a k-rational sum of eight points whose x-coordinates are the roots of the octic
polynomial

f(x)− (x2 − x+ 6)3

(x2 − x+ 6)2
= x8 − x2 + 4x− 3,

which is relatively prime to f(x). Hence, by Proposition 5.1,

(x− T )(D2) = (x− T )(D3) = (−1)8(T 8 − T 2 + 4T − 3)

modulo cubes in L∗.
We check that (x − T )(D1) and (x − T )(D2) are in Selφfake(J, k), as they should be. In

fact, it turns out that they are independent, and hence form a basis for Selφfake(J, k). From
Theorem 13.3, it follows that (X(J, k)[φ])fake and X(J, k)[φ] are trivial, and that J(k)/φJ(k)
is 2-dimensional over F3, with the images of D1 and D2 being a basis.

By Proposition 14.5, J(k)[φ] is trivial, so J(k) ⊗Z Q = J(k) ⊗Z[ζ] k is a 2-dimensional
k-vector space with the images of D1 and D2 as a basis. In particular, J(k) has rank 4
(over Z). By Lemma 13.4, J(Q) has rank 2, and indeed the divisor classes of D1 and D2 are
independent points of infinite order. This completes the proof of Theorem 14.1.

Remark. The fact that the ranks over Q and Q(
√
−3) are 2 and 4, respectively, are not

surprising once one realizes that X has rational points above x = −1 and x = ∞ on P1, and
that f(x) factors over Q.

Corollary 14.6. We have #X(Q) ≤ 12 and #X(Q(
√
−3)) ≤ 36.

Proof. Coleman’s effective version [8] of Chabauty’s argument proves that if X is a curve of
genus g over a number field k with Mordell-Weil rank at most g − 1, if p is an unramified
prime of k at which X has good reduction, and if the residue characteristic of p is greater
than 2g, then

#X(k) ≤ #X(Fp) + 2g − 2.

We take k = Q(
√
−3) and p = 4 +

√
−3. We find #X(F19) = 22, so #X(Q(

√
−3)) ≤ 36.

To obtain the bound for #X(Q), note that each rational point on X gives rise to three
Q(
√
−3)-rational points on X, by taking the orbit under the automorphism ζ. �

The truth is probably that the numbers of rational points over Q and Q(
√
−3) are much

smaller; the upper bounds could probably be reduced substantially with further analysis.

We conclude this section with a few words on the computing time required for this example.
The computations were done on a Sun SPARCstation-20. By far the most expensive part
was the certification of the class group and units for the degree 16 number field L2: it took
PARI ten minutes of CPU time to compute these assuming GRH, but then 47 hours to check
that the results were correct independent of GRH. The rest of the descent computations were
done in well under an hour, and the time for them could probably have been reduced to a
few minutes if we had taken care to optimize our code. The only other expensive part was
the computation of the characteristic polynomial of J over F7 by näıvely enumerating points
on X over F7i for i = 1, . . . , 8. This took 44 hours, but it is worth mentioning that this
computation was not needed in the descent; we used it only in order to demonstrate that the
endomorphism ring was no larger than expected, and to completely determine the torsion
subgroup of J(k). Also, we probably could have reduced this time somewhat by writing a
special-purpose program in C, say, instead of using the high-level language of GP-PARI.
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15. Concluding remarks

It would be interesting to know what Mordell-Weil rank we can expect to find on average.
More precisely, fix a number field k and a positive integer g, let Sh denote the set of k-
isomorphism classes of g-dimensional abelian varieties over k having Faltings height at most
h, and define the “average Mordell-Weil rank” as

f(k, g) := lim
h→∞

∑
A∈Sh

rank A(k)

#Sh
,

assuming that the limit exists. There are then many (well-known) questions one could ask:

Question 1. Can one determine f(k, g) for any k and g (or even prove that it exists)?

Assuming standard conjectures, the sign of the functional equation of the L-series forces
half the abelian varieties to have rank at least 1, so we can expect f(k, g) ≥ 1/2 for every
k and g. Brumer [3] proved under standard conjectures that f(Q, 1) ≤ 2.3, and he and
Heath-Brown have improved this to f(Q, 1) ≤ 2.23 Computer experiments seem to suggest
that f(Q, 1) > 1/2, but the evidence is not yet strong enough to say this with conviction.
(See [5].) As for unconditional results, virtually nothing is known for number fields: even the
possibilities f(Q, 1) = 0 and f(Q, 1) = ∞ have not been ruled out yet. On the other hand,
Brumer and Heath-Brown’s upper bounds mentioned above are proved unconditionally over
the function field Fq(t).

Question 2. For fixed k, how does f(k, g) grow as a function of g? For example, is it
bounded, or is it perhaps O(g) as g →∞?

If it were o(g) as g → ∞, this would be good news for the method of Chabauty and
Coleman [8].

Question 3. For fixed g, is f(k, g) independent of the number field k? If not, is it at least
uniformly bounded as a function of k?

The answers may be entirely different if one restricts attention to Jacobians. There is good
reason to expect different behavior for our cyclic covers when p ≥ 3, since the endomorphism
ring of the Jacobian is then larger than Z. See also [4] for some results on the rank of J0(N)
and for further musings on ranks.

One can ask similar questions about the Selmer groups and Shafarevich-Tate groups.
Cassels [6], Bölling [2], and Kramer [11] have shown that the Shafarevich-Tate group can be
arbitrarily large in certain families of elliptic curves over number fields. Wong [24] has given
an asymptotic formula for the average rank of the 2-Selmer group in a family of twists of an
elliptic curve with full rational 2-torsion over any number field with odd class number.

Of course, we cannot base any conjectures on our one example, but at least we have laid
down some of the groundwork for more extensive numerical investigations.
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