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0.1. Prerequisites

A person interested in reading this book should have the following back-
ground:

• Algebraic geometry (e.g., [Har77]: up to Chapter II, §8 as a minimum,
but familiarity with later chapters is also needed at times)—this is not
needed so much in our Chapter 1.
• Algebraic number theory (e.g., [Cas67,Frö67] or [Lan94, Part One] or
[Neu99, Chapters I and II]).
• Some group cohomology (e.g., [AW67] or [Mil13, Chapter 2]).

0.2. What kind of book this is

The literature on rational points is vast. To write a book on the subject, an
author must

1. write thousands of pages to cover all the topics comprehensively, or
2. focus on one aspect of the subject, or
3. write an extended survey serving as an introduction to many topics, with

pointers to the literature for those who want to learn more about any
particular one.

Our approach is closest to 3, so as to bring newcomers quickly up to speed
while also providing more experienced researchers with directions for further
exploration.

This book originated as the lecture notes for a semester-long course,
taught during spring 2003 at the University of California, Berkeley, and fall

v
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vi Preface

2008 and fall 2013 at the Massachusetts Institute of Technology. But it
has grown since then; probably now it is about 50% too large for a single
semester, unless students are willing to read much of it outside of class.

0.3. The nominal goal

Many techniques have been used to decide whether a variety over a number
field has a rational point. Some generalize Fermat’s method of infinite de-
scent, some use quadratic reciprocity, and others appear at first sight to be
ad hoc. But over the past few decades, it was discovered that nearly all of
these techniques could be understood as applications of just two cohomolog-
ical obstructions, the étale-Brauer obstruction and the descent obstruction.
Moreover, while this book was being written, it was proved that the étale-
Brauer obstruction and the descent obstruction are equivalent! The topics
in this book build up to an explanation of this “grand unified theory” of
obstructions.

0.4. The true goal

Our ulterior motive, however, is to introduce readers to techniques that they
are likely to need while researching arithmetic geometry more broadly. Along
the way, we mention open problems and applications that are interesting in
their own right.

0.5. The content

Chapter 1 introduces fields of special interest to arithmetic geometers, and it
discusses properties and invariants (the Cr property, cohomological dimen-
sion, and the Brauer group) that control the answers to some arithmetic
questions about fields in general. Not all of Chapter 1 is needed in future
chapters, but the Brauer group plays a key role later on (in Chapters 6
and 8).

Chapter 2 discusses aspects of varieties with particular attention to the
case of ground fields that are not algebraically closed. Ultimately, we aim to
treat global fields of positive characteristic as well as number fields, so we do
not require our ground field to be perfect. Among other topics, this chapter
discusses properties of varieties under base extension (e.g., irreducible vs.
geometrically irreducible), the functor of points of a scheme, closed points
and their relation to field-valued points, and genus change of curves under
field extension. A final section introduces the main questions about rational
points that motivate the subject, such as the questions of whether the local-
global principle and weak approximation hold.
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0.5. The content vii

Chapter 3 begins with morphisms of finite presentation in order to discuss
spreading out (e.g., extending a variety over a number field k to a scheme
over a ring of S-integers in k). But the heart of the chapter is an extended
introduction to smooth and étale morphisms, going beyond the treatment
in [Har77, III.§10]. This, together with a section on flat morphisms, pro-
vides the basis for the definitions of the Grothendieck topologies commonly
used for cohomology theories (see Chapter 6). The chapter also includes
sections on rational maps and Frobenius morphisms: the latter are used to
understand the Weil conjectures in Chapter 7.

The word “descent” has two unrelated meanings in arithmetic geometry.
One meaning is as in Fermat’s method of infinite descent and its generaliza-
tions, in which it is the height of rational points that descends in the course
of a proof. The second meaning is that of descent of the ground field: the
problem here is to decide whether a variety over a field extension L ⊇ k arises
as the base extension of a variety X over k (and to describe all possibilities
for X). Chapter 4 studies this problem and its analogue for morphisms, and
its generalizations to schemes. It also gives applications to the classification
of twists of geometric objects (different k-forms of the same object over a
field extension L), and to restriction of scalars, which transforms varieties
over a field extension L ⊇ k into varieties over k.

Chapter 5 is a survey on group schemes and algebraic groups over fields.
After discussing their general properties, it defines special types of algebraic
groups, and it states the classification theorem that decomposes arbitrary
smooth algebraic groups into those types. The final section of Chapter 5
introduces torsors, which are needed to define the descent obstruction in
Chapter 8. For algebraic groups over global fields, we discuss weak and
strong approximation (Section 5.10) and the local-global principle for their
torsors (Section 5.12.8).

Chapter 6 is an introduction to étale cohomology and its variants such
as fppf cohomology. These cohomology theories are applied to generalize
from torsors of algebraic groups over a field to torsors of group schemes over
an arbitrary base scheme, and we prove finiteness results for torsors over
a global field that are unramified at all but finitely many places. Another
application is to generalize the cohomological definition of the Brauer group
of a field to Grothendieck’s definition of the cohomological Brauer group of a
scheme. We end by discussing tools for computing these Brauer groups (the
Hochschild–Serre spectral sequence, and residue homomorphisms) and give
many examples since these will be needed to understand the Brauer–Manin
obstruction in Section 8.2.

Although not needed for the main story of obstructions to rational points,
we include in Chapter 7 the motivating application of étale cohomology,
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viii Preface

namely the Weil conjectures on varieties over finite fields. There we also
discuss related issues, such as the étale cohomology classes of algebraic cycles
and the Tate conjecture.

Chapter 8 defines the cohomological obstructions to the local-global prin-
ciple and weak approximation for a variety X over a global field; these are
expressed as subsets of the set X(A) of adelic points that constrain where
k-points may lie. First is the Brauer–Manin obstruction, coming from el-
ements of the Brauer group of X. Next is the descent obstruction coming
from torsors of algebraic groups; this is motivated by an example of a genus 2
curve in which the algebraic group is simply a finite group. Next we define
hybrids of these two obstructions and compare their strengths for constrain-
ing k-points. Finally, we explain why all these obstructions are still not
enough to decide whether a variety has a k-point.

Chapter 9 is a survey of the geometry and arithmetic of higher-dimen-
sional varieties, with special attention paid to surfaces. It begins with the
crude classification given by Kodaira dimension, and it compares the prop-
erties of being rational, unirational, rationally connected, and so on. Next
we give the classification of surfaces over an arbitrary ground field, and we
discuss the arithmetic of del Pezzo surfaces in some detail since these serve
as excellent examples for the techniques presented earlier in the book. We
end by discussing very briefly what is proved and conjectured for curves of
genus > 1 and more generally for varieties of general type. The reasons
for not exploring this in greater detail are first, that it would require a few
hundred more pages to develop the required theory of height functions and
diophantine approximation, and second, that several books on these topics
exist already (we cite some of them).

A few appendices serve various purposes. Appendix A discusses some
set theory that is implicitly used when discussing sheafification, for instance.
Appendix B defines certain interesting classes of fields that did not make it
into Chapter 1. Appendix C contains reference tables with lists of adjectives
that can be applied to morphisms, varieties, or algebraic groups; the tables
indicate where to find definitions, and propositions about their preservation
under base extension, descent, and so on.

0.6. Anything new in this book?

Almost all of the theorems in this book existed previously in the published
literature in some form, but in many places we have tried to make proofs
more readable and to organize topics so as to form a coherent exposition.
There are a few new results: For example, the finiteness of Selmer sets (see
Theorems 6.5.13 and 8.4.6) and Minchev’s theorem on the failure of strong
approximation (Corollary 8.4.11) were previously known only over number
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0.7. Standard notation ix

fields, whereas we generalize them to all global fields; these generalizations
require extra arguments in the function field case because of the failure of
Hermite’s finiteness theorem on extensions of bounded degree unramified
outside a fixed set of places. A few smaller innovations include an improved
proof of Theorem 9.3.1(b)(ii) stating that proper birational morphisms be-
tween smooth surfaces factor into blowups at separable points, the use of the
Lang–Nishimura theorem to avoid general position arguments in the proof of
Lemma 9.4.18 on degree 6 del Pezzo surfaces, and the k-rationality of degree 5
del Pezzo surfaces over even the smallest of finite fields (Theorem 9.4.29).

The book whose content overlaps the most with ours is probably [Sko01].
That book also discusses torsors and the Brauer–Manin and descent obstruc-
tions, and it is written by a leading expert. Our book can serve as prepara-
tion for reading that one, since ours includes more background material (on
algebraic groups, on étale and fppf cohomology, etc.), while [Sko01] goes fur-
ther in other directions, proving theorems on the Brauer–Manin obstruction
for conic bundle surfaces and for homogeneous spaces of simply connected
algebraic groups, for instance.

0.7. Standard notation

Following Bourbaki, define

N := the set of natural numbers = {0, 1, 2, . . . },
Z := the ring of integers = {. . . ,−2,−1, 0, 1, 2, . . . },

Q := the field of rational numbers =
{ m
n

: m,n ∈ Z, n 6= 0
}
,

R := the field of real numbers,

C := the field of complex numbers = { a+ bi : a, b ∈ R }, where i =
√
−1,

Fq := the finite field of q elements,
Zp := the ring of p-adic integers = lim←−Z/pnZ,
Qp := the field of p-adic numbers = the fraction field of Zp.

The cardinality of a set S is denoted #S or sometimes |S|. If (Ai)i∈I
is a collection of sets, and for all but finitely many i ∈ I a subset Bi ⊆ Ai
is specified, then the restricted product

∏′
i∈I(Ai, Bi) is the set of (ai) ∈∏

i∈I Ai such that ai ∈ Bi for all but finitely many i (with no condition
being placed at the i for which Bi is undefined).

If a, b ∈ Z, then a | b means that a divides b, that is, that there exists
k ∈ Z such that b = ka. Similarly, a - b means that a does not divide b.
Define Z≥1 := {n ∈ Z : n ≥ 1 }, and so on.
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x Preface

Rings are associative and have a 1 by definition [Poo14]. Suppose that
R is a ring. Let R× denote the unit group of R. Let R[t1, . . . , tn] denote
the ring of polynomials in t1, . . . , tn with coefficients in R. Let R[[t1, . . . , tn]]
denote the ring of formal power series in t1, . . . , tn with coefficients in R.
The ring R((t)) := R[[t]][t−1] is called the ring of formal Laurent series in t
with coefficients in R; its elements can be written as formal sums

∑
n∈Z ant

n,
where an ∈ R for all n and an = 0 for sufficiently negative n. If R is an
integral domain, then FracR denotes its fraction field.

Suppose that k is a field. The characteristic of k is denoted char k.
The rational function field k(t1, . . . , tn) is Frac k[t1, . . . , tn]. The ring k((t))
defined above is a field, isomorphic to Frac k[[t]]. Given an extension of
fields L/k, a transcendence basis for L/k is a subset S ⊂ L such that S
is algebraically independent over k and L is algebraic over k(S); such an S
always exists, and #S is determined by L/k and is called the transcendence
degree tr deg(L/k).

Suppose that R is a ring and n ∈ Z≥0. Then Mn(R) denotes the R-
algebra of n × n matrices with coefficients in R, and we define the group
GLn(R) := Mn(R)×. If R is commutative, a matrix A ∈ Mn(R) belongs to
GLn(R) if and only if its determinant det(A) is in R×.

If A is a category, then Aopp denotes the opposite category, with the
same objects but with morphisms reversed. We can avoid dealing with an
anti-equivalence of categories A → B by rewriting it as an equivalence of
categories Aopp → B. Let Sets be the category whose objects are sets
and whose morphisms are functions. Let Groups denote the category of
groups in which the morphisms are the homomorphisms. Let Ab denote the
category of abelian groups; this is a full subcategory of Groups, where “full”
means that for A,B ∈ Ab, the definition of Hom(A,B) in Ab agrees with
the definition of Hom(A,B) in Groups. We work in a fixed universe so that
the objects in each category form a set (instead of a class); see Appendix A.
From now on, we will usually not mention the universe.
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Chapter 1

Fields

The first section of this chapter describes some types of fields. The other
sections are concerned with questions one can ask about a field k in order to
quantify how far it is from being algebraically closed:

(1) How many variables must a degree d homogeneous form over k have
before it is guaranteed to have a nontrivial zero? (the Cr property)

(2) How complicated is the absolute Galois group of k? (cohomological
dimension)

(3) How complicated is the set of isomorphism classes of finite-dimensional
central division algebras over k? (the Brauer group)

1.1. Some fields arising in classical number theory

1.1.1. Closures. Let k be a field. Let k denote a fixed algebraic closure
of k. Let ks denote the separable closure of k in k, so ks is the maximal
separable extension of k contained in k. Let kperf denote the perfect closure
of k, so kperf is the smallest perfect field containing k and contained in k.
Equivalently, if char k = p > 0, then, in order to form a more perfect union,
one can define kperf :=

⋃
n≥1 k

1/pn ⊆ k. The absolute Galois group of k is
the profinite group Gk := Gal(ks/k) ' Aut(k/k).

1.1.2. Local fields.

(References: [Frö67], [Ser79], [RV99, §4.2])

A local field is a field k satisfying one of the following equivalent condi-
tions:

(1) k is a finite extension of R, Qp, or Fp((t)), for some prime p.

1
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2 1. Fields

(2) k is isomorphic to one of the following:
• R,
• C,
• a finite extension of Qp for some prime p, or
• Fq((u)) for some prime power q.

(3) k is R or C, or else k is the fraction field of a complete discrete valuation
ring with finite residue field.

(4) k is a nondiscrete locally compact topological field (more precisely, k is
locally compact and Hausdorff with respect to some nondiscrete topol-
ogy for which the field operations are continuous).

(5) k is the completion of a global field (see Section 1.1.3) with respect to
a nontrivial absolute value.

See Theorem 4-12 in [RV99] for a proof of the difficult part of the equiva-
lence, namely that nondiscrete locally compact topological fields satisfy the
other conditions.

If k is R or C, then k is called archimedean; other local fields are called
nonarchimedean.

1.1.3. Global fields.

(Reference: [Cas67])

A number field is a finite extension of Q. A global function field is
a finite extension of Fp(t) for some prime p or, equivalently, is the function
field of a geometrically integral curve over a finite field Fq, where q is a power
of some prime p. (See Section 2.2 for the meaning of “geometrically integral
curve”.) When we say that k is a global field, we mean that k is either a
number field or a global function field.

Equivalently, a global field is the fraction field of a finitely generated
Z-algebra that is an integral domain of Krull dimension 1.

By a place of k, we always mean a nontrivial place of k. Let Ωk be the
set of places of k.

Definition 1.1.1. If S is a finite nonempty subset of Ωk containing all the
archimedean places, then the ring of S-integers in k is

Ok,S := { a ∈ k : v(a) ≥ 0 for all v /∈ S }.
If k is a number field, also define the ring of integers of k as Ok := Ok,S
where S is the set of archimedean places.

If v is a place of k, then kv denotes the completion of k at v. Let Ov
be the valuation ring of kv if v is nonarchimedean, and let Ov = kv if v



Un
offi
cia
l v
ers
ion

for
inc
ide
nta

l o
nli
ne
use

1.2. Cr fields 3

is archimedean. Equip kv and its subset Ov with the analytic (i.e., v-adic)
topology coming from the place.

The adèle ring A = Ak of k is defined as the restricted product∏′

v∈Ωk
(kv,Ov);

it is a k-algebra for the diagonal embedding of k, and it is equipped with the
unique topology such that

• A is a topological group under addition,
• the subset

∏
v∈Ωk

Ov is open, and
• the subspace topology on

∏
v∈Ωk

Ov agrees with the product topology.

The image of k in A is discrete, and A/k is compact.

1.1.4. Other fields. For some other kinds of fields, see Appendix B.

1.2. Cr fields

(References: [Gre69], [Sha72], [Pfi95, Chapter 5])

Definition 1.2.1 ([Lan52]). Let k be a field, and let r ∈ R≥0. Then k is
Cr if and only if every homogeneous form f(x1, . . . , xn) of degree d > 0 in
n variables with n > dr has a nontrivial zero in kn. The adjective quasi-
algebraically closed is a synonym for C1.

1.2.1. Norm forms and normic forms.

Definition 1.2.2. Let L be a finite extension of a field k. Let e1, . . . , en
be a k-basis of L. Write L′ = L(x1, . . . , xn) and k′ = k(x1, . . . , xn), where
x1, . . . , xn are indeterminates. If NL′/k′ denotes the norm from L′ to k′, then
NL′/k′(x1e1 + · · ·+ xnen) is called a norm form for L over k.

Example 1.2.3. Let k = Q and L = Q(
√

7). The norm form for L over k
associated to the basis 1,

√
7 is x2

1 − 7x2
2.

Each norm form for L over k is a degree n homogeneous polynomial
in k[x1, . . . , xn], where n = [L : k]. Although it depends on the choice
of basis, changing the basis changes the norm form only by an invertible
k-linear transformation of the variables. The value of the norm form at a
point (b1, . . . , bn) ∈ kn equals NL/k(b1e1 + · · ·+ bnen).

Definition 1.2.4. Let k be a field. A homogeneous form f ∈ k[x1, . . . , xn]
is called normic if deg f = n and f has only the trivial zero in kn.

Any norm form is normic. To construct other normic forms, we introduce
some notation. If f and g are homogeneous forms, let f(g | g | · · · | g) be
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4 1. Fields

the homogeneous form obtained by substituting a copy of g for each variable
in f , except that a new set of variables is used after each occurrence of |.
If f is of degree d in n variables, and g is of degree e in m variables, then
f(g | g | · · · | g) is of degree de in nm variables. If f and g are normic, then
so is f(g | g | · · · | g).

Lemma 1.2.5. If k is a field and k is not algebraically closed, then k has
normic forms of arbitrarily high degree.

Proof. Since k is not algebraically closed, it has a finite extension of degree
d > 1. Let F1 = f be an associated norm form. For ` ≥ 2, let

F` = F`−1(f | f | · · · | f).

By induction, F` is normic of degree d`. �

1.2.2. Systems of forms.

Proposition 1.2.6 (Artin, Lang, Nagata). Let k be a Cr field, and let
f1, . . . , fs be homogeneous forms of the same degree d > 0 in n common
variables. If n > sdr, then f1, . . . , fs have a nontrivial common zero in kn.

Proof. Suppose that k is algebraically closed. Since n > sdr ≥ s, the
projective dimension theorem [Har77, I.7.2] implies that the intersection of
the s hypersurfaces fi = 0 in Pn−1 contains a point.

Therefore, from now on assume that k is not algebraically closed. Sup-
pose also that the fi have no nontrivial common zero. We will inductively
build forms Φm of degree Dm in Nm variables, each having no nontrivial
zero, and get a contradiction for large m. By Lemma 1.2.5, we can find a
normic form Φ0 of arbitrarily high degree e (later we will specify how large
we need e to be). So D0 = N0 = e. For m ≥ 1, define

Φm = Φm−1(f1, . . . , fs | f1, . . . , fs | · · · | f1, . . . , fs | 0, 0, . . . , 0),

where within each block f1, . . . , fs the same n variables are used, but new
variables are used after each |, and we use as many blocks as possible (namely,
bNm−1/sc blocks) and pad with zeros to get the right number of arguments
to Φm−1. Thus Dm = dDm−1 and Nm = nbNm−1/sc. By induction on m,
the form Φm has no nontrivial zero.

By induction, Dm = dme. If we could ignore the b c, then Nm would be
(n/s)me, and

Nm

Dr
m

=
( n

sdr

)m
e1−r > 1

for sufficiently large m, since n > sdr. But we cannot quite ignore b c, so we
choose β ∈ R with dr < β < n/s and choose the degree e of the normic form
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1.2. Cr fields 5

Φ0 so that nbx/sc ≥ βx holds for all x ≥ e. Then Nm ≥ βme by induction
on m, and

Nm

Dr
m

≥
(
β

dr

)m
e1−r > 1

for m sufficiently large.
Since k is Cr, the form Φm has a nontrivial zero, a contradiction. �

1.2.3. Transition theorems.

Theorem 1.2.7. Let k be a Cr field, and let L be a field extension of k.

(i) If L is algebraic over k, then L is Cr.

(ii) If L = k(t), where t is an indeterminate, then L is Cr+1.

(iii) If tr deg(L/k) = s, then L is Cr+s.

Proof.

(i) Let f ∈ L[x1, . . . , xn] be a form of degree d > 0, where n > dr. Since
L is algebraic over k, the coefficients of f generate a finite extension
L0 of k. If we find a nontrivial zero of f over L0, then the same is a
nontrivial zero over L. Thus we reduce to the case where L is a finite
extension of k.

Choose a basis e1, . . . , es of L over k. Introduce new variables yij
with 1 ≤ i ≤ n and 1 ≤ j ≤ s, and substitute

xi =
s∑
j=1

yijej

for all i into f , so that

f(x1, . . . , xn) = F1e1 + · · ·+ Fses,

where each F` ∈ k[{yij}] is a form of degree d in ns variables. Since
n > dr, we have ns > sdr, so Proposition 1.2.6 implies that the F`
have a nontrivial common zero (yij) over k. This means that f has a
nontrivial zero over L.

(ii) Let f ∈ k(t)[x1, . . . , xn] be a form of degree d > 0, where n > dr+1.
Multiplying f by a polynomial in k[t] to clear denominators, we may
assume that f has coefficients in k[t]. Let m be the maximum of the
degrees of these coefficients. Choose s ∈ Z>0 large (later we will say
how large), introduce new variables yij with 1 ≤ i ≤ n and 0 ≤ j ≤ s,
and substitute

xi =

s∑
j=0

yijt
j
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6 1. Fields

for all i into f , so that

f(x1, . . . , xn) = F0 + F1t+ · · ·+ Fds+mt
ds+m,

where each F` ∈ k[{yij}] is a form of degree d in n(s + 1) variables.
Because n > dr+1,

n(s+ 1) > (ds+m+ 1)dr

holds for sufficiently large s, and then Proposition 1.2.6 implies that
the F` have a nontrivial common zero (yij) over k. This means that f
has a nontrivial zero over k[t], hence over k(t).

(iii) This follows from (i) and (ii), by induction on s. �

1.2.4. Examples of Cr fields.

(1) A field is C0 if and only if it is algebraically closed. For a generalization,
see Exercise 1.3.

(2) The following special case of Theorem 1.2.7 is known as Tsen’s theorem:
If L is the function field of a curve over an algebraically closed field
k (that is, L is a finitely generated extension of k of transcendence
degree 1), then L is C1.

(3) The Chevalley–Warning theorem states that finite fields are C1. This
was conjectured by E. Artin and was proved first by Chevalley [Che36],
who proved more generally that over a finite field Fq, a (not necessarily
homogeneous) polynomial f of total degree d in n > d variables with
zero constant term has a nontrivial zero. Warning’s proof [War36] of
this proceeded by showing that the total number of zeros, including the
trivial zero, was a multiple of p := charFq. Ax [Ax64] showed moreover
that the number of zeros was divisible by q, and in fact divisible by qb,
where b = dn/de − 1 is the largest integer strictly less than n/d. For an
improvement in a different direction, observe that Warning’s theorem
says that a hypersurface X in Pn−1 over Fq defined by a homogeneous
form of degree d < n satisfies #X(Fq) ≡ 1 (mod p); this can be ex-
tended to some varieties that are not hypersurfaces, such as smooth
projective rationally chain connected varieties [Esn03, Corollary 1.3];
see [Wit10] for a survey about this and further generalizations.

(4) Lang proved that if k is complete with respect to a discrete valuation
having algebraically closed residue field, then k is C1. More generally, if
k is a henselian discrete valuation field with algebraically closed residue
field such that the completion k̂ is separable over k, then k is C1. (See
Section B.3 for the definition of henselian.) This applies in particular if
k is the maximal unramified extension of a complete discrete valuation
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1.2. Cr fields 7

field with perfect residue field. For example, the maximal unramified
extension Qunr

p of Qp is C1. See [Lan52] for all these results.
(5) A local field of positive characteristic is C2; see [Lan52, Theorem 8].

More generally, if k is Cr, then k((t)) is Cr+1 [Gre66].

1.2.5. Counterexamples. The field R is not Cr for any r, since for every
n ≥ 1 the equation x2

1 + · · · + x2
n = 0 has no nontrivial solution. The same

argument applies to any formally real field.
E. Artin conjectured that nonarchimedean local fields were C2, the expec-

tation being that if a field k is complete with respect to a discrete valuation
with a Cr residue field, then k should be Cr+1. That nonarchimedean local
fields satisfy the C2 property restricted to degree d forms was proved for d = 2
[Has24] and d = 3 [Dem50,Lew52]. Also Ax and Kochen [AK65] nearly
proved that the field Qp is C2: using model theory they showed that for each
d, for all primes p outside a finite set depending on d, every homogeneous
form of degree d in > d2 variables over Qp has a nontrivial zero. But then
Terjanian [Ter66] disproved Artin’s conjecture by finding a homogeneous
form of degree 4 in 18 variables over Q2 with no nontrivial zero. Later it was
shown that if [k : Qp] < ∞, then k is not Cr for any r [AK81,Ale85]. It
follows that if k is a number field, then k is not Cr for any r (Exercise 1.8).

1.2.6. Open questions.

Question 1.2.8. Is there a field k and r ∈ R≥0 such that k is Cr but not
Cbrc?

Question 1.2.9 (E. Artin). Let Qab be the maximal abelian extension of
Q. (The Kronecker–Weber theorem states that Qab is obtained by adjoining
all roots of 1 to Q.) Is Qab a C1 field?

Definition 1.2.10. A field k is called C ′r if whenever one has homogeneous
forms f1, . . . , fs in n common variables of degrees d1, . . . , ds, respectively,
with n > dr1 + · · ·+ drs, the forms have a nontrivial common zero in kn.

Question 1.2.11 ([Gre69, p. 21]). Is Cr equivalent to C ′r?

By definition, C ′r implies Cr. The converse holds at least for fields k
such that for every d ≥ 1 there exists a homogeneous form of degree d in
dr variables over k with no nontrivial zero [Lan52, Theorem 4]. The C ′r
property is studied in more detail in [Pfi95, Chapter 5].

Question 1.2.12. What general classes of varieties are guaranteed to have
a k-point whenever k is C1?

Question 1.2.13 (Ax). Is every perfect PAC field C1? (See Section B.5 for
the definition of PAC.)
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8 1. Fields

By [Kol07a, Theorem 1], every PAC field of characteristic 0 is C1, and
even C ′1. See [FJ08, 21.3.6] for a few other positive partial results toward
Question 1.2.13.

1.3. Galois theory

1.3.1. Gk-sets. Let k be a field. Let Gk be the profinite group Gal(ks/k).
A Gk-set is a set S (with the discrete topology) equipped with a continuous
action of Gk. A morphism of Gk-sets is a map of sets respecting the Gk-
actions. A Gk-set is called finite if it is finite as a set. For example, if H is
an open subgroup of Gk, then Gk/H equipped with the left multiplication
action of Gk is a finite Gk-set.

A continuous action of Gk on a set S is called transitive if S 6= ∅ and
for every s1, s2 ∈ S there exists g ∈ Gk such that gs1 = s2. In this case, if
we fix s ∈ S and define H = StabGk(s) := {g ∈ Gk : gs = s}, then H is
open and the map Gk/H → S sending gH ∈ Gk/H to gs is an isomorphism
of Gk-sets; in particular, S is finite. Every Gk-set decomposes uniquely as a
disjoint union of transitive Gk-sets, the orbits.

1.3.2. Étale algebras. The problem with field extensions L ⊇ k is that if
we change the base by tensoring with a field extension k′ of k, the resulting
algebra L ⊗k k′ over k′ need not be a field. The notion of étale algebra
generalizes the notion of finite separable field extension in order to fix this
problem.

Definition 1.3.1. A k-algebra L is called étale if it satisfies any of the
following equivalent conditions:

• L is a direct product of finite separable extensions of k;
• the ks-algebra L⊗k ks is a finite product of copies of ks;
• the morphism of schemes SpecL→ Spec k is finite and étale in the sense
of Section 3.5.8 (see Proposition 3.5.35).

A morphism between two étale k-algebras is a homomorphism of k-
algebras. If L is an étale k-algebra and k′ is any field extension of k, then
L⊗k k′ is an étale k′-algebra.

The following is Grothendieck’s restatement and generalization of Galois
theory.

Theorem 1.3.2 ([SGA 1, V.7 and Proposition V.8.1]). The functors

{finite Gk-sets}opp ←→ {étale k-algebras},
S 7−→ HomGk-sets(S, ks) = Homsets(S, ks)

Gk

Homk-algebras(L, ks)←− [ L
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1.3. Galois theory 9

are inverse equivalences of categories.

Example 1.3.3. If S is a transitive Gk-set, say S = Gk/H for an open sub-
group H ≤ Gk, then the corresponding étale algebra is the H-fixed subfield
HomGk-sets(Gk/H, ks) = (ks)

H of ks, i.e., the finite separable extension of k
associated to H by classical Galois theory.

In general, a finite Gk-set S is a finite disjoint union
∐
Si of transi-

tive Gk-sets. If Si corresponds to the finite separable extension Li, then S
corresponds to the étale algebra

∏
Li.

Example 1.3.4. If S is a finite set with trivial Gk-action, the corresponding
étale algebra is a finite product of copies of k. Such étale algebras are called
split.

1.3.3. Galois étale algebras. Just as étale algebras generalize finite sep-
arable field extensions, Galois étale algebras generalize finite Galois field
extensions:

Definition 1.3.5. Let L be an étale k-algebra with a left action of a finite
group G. If Ω ⊇ k is a field extension, then L⊗kΩ is an étale Ω-algebra with
left G-action, and so is

∏
g∈G Ω = Homsets(G,Ω) via the right translation

G-action on G. Call L a Galois étale k-algebra with Galois group G if for
some field extension Ω ⊇ k we have L ⊗k Ω ' ∏g∈G Ω as étale Ω-algebras
with left G-action.

�

Warning 1.3.6. The group Aut(L/k) can be larger than G, and in fact G
is not determined by L/k. For example, if L = k × k × k × k, then L can
be equipped with actions of Z/4Z or Z/2Z× Z/2Z making it a Galois étale
algebra, but Aut(L/k) ' S4. This explains why in Definition 1.3.5 the group
G and its action on L must be specified in advance.

Remark 1.3.7. If an Ω as in Definition 1.3.5 exists, then one such Ω is ks.

1.3.4. Galois descent for vector spaces. Let L ⊇ k be a finite Galois
extension of fields with Galois group G. An action of G on an L-vector space
W is semilinear if σ(`w) = (σ`)(σw) for all σ ∈ G, ` ∈ L, and w ∈W .

Example 1.3.8. The coordinatewise action of G on Ln is semilinear. More
generally, if V is any k-vector space, then V ⊗k L is an L-vector space with
semilinear G-action.

Let WG = {w ∈W : gw = w for all g ∈ G}; this is a k-vector space.
Lemma 1.3.9. Let V be a k-vector space. Then the k-linear map

V −→ (V ⊗k L)G

v 7−→ v ⊗ 1
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10 1. Fields

is an isomorphism.

Proof. For V = k, this is the Galois theory fact LG = k. Any V is a direct
sum of copies of the 1-dimensional space k, and the formation of the map
respects direct sums. �

Lemma 1.3.10. LetW be an L-vector space with semilinear G-action. Then
the L-linear map

WG ⊗k L −→W

w ⊗ ` 7−→ `w

is an isomorphism.

Proof. We will prove that the same holds even if L is only a Galois étale
k-algebra with Galois group G (and W is an L-module with semilinear G-
action). The advantage of considering this more general statement is that
now we can extend the ground field by applying ⊗kΩ to k, L, and W . The
operation of taking G-invariants and the property of a linear map being an
isomorphism are preserved by such a base change, so after renaming Ω as k,
we reduce to the split case L =

∏
g∈G k. Let eg = (0, . . . , 0, 1, 0, . . . , 0) ∈ L,

with 1 in the gth coordinate. Then the L-module W is
∏
g∈GWg for some

k-vector spaces Wg := egW . An element g ∈ G maps eg to e1, and hence
provides an isomorphism Wg

∼→ W1. Then WG is the diagonal image of
W1 ↪→

∏
g∈GWg. Finally, the map WG ⊗k L → W restricts to an isomor-

phism WG ⊗k keg ∼→Wg for each g, so it is an isomorphism. �

Theorem 1.3.11. Let L ⊇ k be a finite Galois extension of fields with Galois
group G. The functors

{k-vector spaces}
⊗kL // {L-vector spaces with semilinear G-action}

take G-invariants
oo

are inverse equivalences of categories.

Proof. The two compositions are isomorphic to the identity functors, by
Lemmas 1.3.9 and 1.3.10. �

Corollary 1.3.12. Let L ⊇ k be a finite Galois extension of fields with
Galois group G. For each r ∈ Z≥0, there is only one r-dimensional L-vector
space with semilinear G-action, up to isomorphism.

Proof. The functor ⊗kL in Theorem 1.3.11 respects dimension: dimk V =
dimL(V ⊗k L). There is only one r-dimensional k-vector space, up to iso-
morphism. �
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1.3. Galois theory 11

Remark 1.3.13. Theorem 1.3.11 and its proof generalize to the theory of
descent developed by Weil and Grothendieck. See Chapter 4.

1.3.5. Hilbert’s theorem 90 and generalizations. Let us gather a few
fundamental results in Galois cohomology. Let L+ denote the additive group
of a field L. If k is a field, and n ∈ Z≥1 is not divisible by char k, let µn
denote the group of nth roots of 1 in ks×.

Definition 1.3.14. If A is a commutative group scheme (see Section 5.1)
over a field k, then the notation Hq(k,A) denotes the Galois cohomology
group Hq(Gk, A(ks)). (This definition is made so as to agree with the étale
cohomology group Hq

et(Spec k,A) of the sheaf defined by A on the étale site
of Spec k; see Section 6.4.3.) If A is noncommutative, the same definition is
made for q = 0, 1.

Proposition 1.3.15. Let L ⊇ k be a Galois extension of fields.

(i) We have Hq(Gal(L/k), L+) = 0 for all q ≥ 1. In particular, we have
Hq(k,Ga) = 0 for all q ≥ 1.

(ii) (“Hilbert’s theorem 90”) We have H1(Gal(L/k), L×) = 0. In particular,
H1(k,Gm) = 0.

(iii) For each r ∈ Z≥0, we have H1(Gal(L/k),GLr(L)) = 0. In particular,
H1(k,GLr) = 0.

Remark 1.3.16. Hilbert’s original theorem 90 was essentially the special
case of (ii) in which Gal(L/k) is a finite cyclic group; see Exercise 1.10. It
was E. Noether who generalized it to arbitrary (finite) Galois extensions.

Proof. We may assume that [L : k] <∞, since the general case then follows
by taking a direct limit.

(i) By the normal basis theorem, L+ is an induced Gal(L/k)-module, so
it has trivial cohomology.

(ii) This is the r = 1 case of (iii), which we will now prove.
(iii) Let G = Gal(L/k). Given a 1-cochain (i.e., function) ξ : G→ GLr(L),

letWξ be Lr equipped with the function G×Lr → Lr sending (σ,w) to
ξσ(σw). Exercise 1.9a shows that this describes a semilinear G-action
(i.e., the group action axiom (στ)∗w = σ∗(τ ∗w) is satisfied) if and only
if ξ is a cocycle. Exercise 1.9b shows also that given two 1-cocycles ξ
and ξ′, we have Wξ 'Wξ′ as L-vector spaces with semilinear G-action
if and only if ξ and ξ′ are cohomologous. Thus we obtain a bijection

H1(G,GLr(L))←→ {r-dimensional L-vector spaces with semilinear G-action}
isomorphism

.
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12 1. Fields

By Corollary 1.3.12, the latter set has one element, so H1(G,GLr(L)) =
0 too. �

Remark 1.3.17. There is an alternative proof of (iii) that proceeds by
showing directly that every 1-cocycle ξ : G→ GLr(L) is cohomologous to the
trivial 1-cocycle, by writing down a Poincaré series; see [Ser79, Chapter X,
Proposition 3]. This proof has the advantage of being short and needing little
beyond Dedekind’s theorem on linear independence of automorphisms, but
it is harder to remember and does not readily generalize to give the theory
in Chapter 4.

Remark 1.3.18. Suppose that L is an extension of k. Choose an embed-
ding ι : ks ↪→ Ls; we then get an inclusion homomorphism A(ks) → A(Ls)
and a restriction homomorphism GL → Gk. Thus we get a homomorphism
Hq(k,A)→ Hq(L,A), and it is independent of ι, since the conjugation action
of a group G on any cohomology group Hq(G,M) is trivial, as can be proved
by dimension shifting.

1.4. Cohomological dimension

(Reference: [Ser02])

This section is almost never used in the rest of the book, so it may be
skipped upon a first reading.

1.4.1. Definitions. Let G be a profinite group. When we say that A is a
G-module, we mean that A is an abelian group with an action of the abstract
group G such that the map G × A → A giving the action is continuous for
the profinite topology on G and the discrete topology on A.

A G-module A is called torsion if and only if every element of the abelian
group A has finite order. If B is an abelian group and n is an integer, define
B[n] := { b ∈ B : nb = 0 }. If p is a prime number, define B[p∞] :=⋃
n≥1B[pn].

Definition 1.4.1. Let G be a profinite group, and let p be a prime number.

(i) The p-cohomological dimension of G, denoted cdp(G), is the smallest
n ∈ N such that for all torsion G-modules A and all integers q > n,
Hq(G,A)[p∞] = 0. If no such n exists, then cdp(G) = +∞.

(ii) The strict p-cohomological dimension of G, denoted scdp(G), is de-
fined in the same way as cdp(G), except that the word “torsion” is
omitted.

(iii) The cohomological dimension of G is cd(G) := supp cdp(G).
(iv) The strict cohomological dimension of G is scd(G) := supp scdp(G).
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1.4. Cohomological dimension 13

Proposition 1.4.2. For any profinite group G and any prime number p,
scdp(G) equals cdp(G) or cdp(G) + 1.

Proof. Clearly scdp(G) ≥ cdp(G). To complete the proof, we assume that
cdp(G) = n <∞ and attempt to prove that scdp(G) ≤ n+ 1.

Let A be a G-module. Take the long exact sequences associated to

0→ A[p]→ A
p→ pA→ 0

and
0→ pA→ A→ A/pA→ 0.

For q > n + 1, the hypothesis cdp(G) = n implies Hq(G,A[p]) = 0 and
Hq−1(G,A/pA) = 0, so the long exact sequences give injections Hq(G,A)

p
↪→

Hq(G, pA) and Hq(G, pA) ↪→ Hq(G,A), respectively. The composition of
these injections is multiplication by p on Hq(G,A), so Hq(G,A)[p∞] = 0.
Thus scdp(G) ≤ n+ 1, by definition. �

Recall that if k is a field, then Gk denotes the profinite group Gal(ks/k).

Definition 1.4.3. If k is a field, then cdp(k) := cdp(Gk). Define scdp(k),
cd(k), and scd(k) similarly.

1.4.2. Transition theorems. The condition cd(k) ≤ r on a field behaves
under field extensions similarly to the Cr condition. To prove such results, we
need to develop analogous transition theorems for cohomological dimension
of groups.

Let us first recall the definition of induced modules, and Shapiro’s lemma.

Definition 1.4.4. Suppose that H is a closed subgroup of a profinite group
G. Given an H-module A, the induced module IndGH(A) is the group of
continuous maps φ : G → A such that φ(hx) = hφ(x) for all x ∈ G and
h ∈ H. Each g ∈ G acts on IndGH(A) by (gφ)(x) = φ(xg); this makes
IndGH(A) a G-module.

Lemma 1.4.5 (Shapiro’s lemma). Let H be a closed subgroup of a profinite
group G. For each H-module A, we have Hq(G, IndGH(A)) ' Hq(H,A).

Next is a transition theorem for cohomological dimension of groups:

Proposition 1.4.6. Let H be a closed subgroup of a profinite group G, and
let p be prime. Then cdp(H) ≤ cdp(G) and scdp(H) ≤ scdp(G). Equality
holds in both, if either

(i) the index (G : H) is prime to p, or
(ii) the subgroup H is open in G and cdp(G) <∞.
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14 1. Fields

Remark 1.4.7. The condition “(G : H) is prime to p” means that each
open subgroup of G containing H has index prime to p. Alternatively (but
equivalently), (G : H) can be interpreted as a supernatural number [Ser02,
I.1.3].

Proof of Proposition 1.4.6. Let A be a torsion H-module. Then the G-
module A′ := IndGH(A) is torsion, and it satisfies Hq(G,A′) ' Hq(H,A)
(Shapiro’s lemma). Thus cdp(H) ≤ cdp(G) by definition.

Now suppose (i). The corestriction-restriction formula Cor ◦Res = n on
cohomology for subgroups of finite index n implies that

Res: Hq(G,A)[p∞]→ Hq(H,A)[p∞]

is injective, at least if (G : H) is finite (and prime to p). In fact, this holds
also for (G : H) infinite (and prime to p), by expressing the cohomology as
direct limits over cohomology of finite groups. Hence cdp(G) ≤ cdp(H).

Now suppose (ii) instead. Let n = cdp(G). We may assume n ≥ 1.
Choose a torsion G-module A such that Hn(G,A)[p∞] 6= 0. Let A′ =
IndGH(A). There is a surjection of G-modules π : A′ → A mapping φ to∑

x∈G/H x · φ(x−1) (where x ranges over a set of coset representatives for H
in G). If B = kerπ, then we have an exact sequence

Hn(G,A′)→ Hn(G,A)→ Hn+1(G,B).

These groups are torsion, so taking p-primary parts is exact. Since cdp(G) =
n, we have Hn+1(G,B)[p∞] = 0, so Hn(G,A′)[p∞] � Hn(G,A)[p∞] is sur-
jective. Thus Hn(G,A′)[p∞] is nonzero, and Shapiro’s lemma identifies this
with Hn(H,A)[p∞]. Hence cdp(H) ≥ n = cdp(G).

The same proofs work for scdp. �

Given an algebraic extension L ⊇ k, let [L : k]s denote the separable de-
gree; then “[L : k]s is prime to p” means that every finite separable extension
of k inside L has degree prime to p.

Corollary 1.4.8. Let L be an algebraic extension of k, and let p be prime.
Then cdp(L) ≤ cdp(k). Equality holds in both, if either

(i) [L : k]s is prime to p, or
(ii) [L : k]s <∞ and cdp(k) <∞.

Corollary 1.4.8 can be strengthened for finite extensions.

Proposition 1.4.9. Suppose [L : k] <∞. Then cdp(L) = cdp(k) unless the
following are simultaneously satisfied:

(i) p = 2,
(ii) k is formally real, and
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1.4. Cohomological dimension 15

(iii) cd2(L) <∞.

Proof. See [Ser02, II.§4.1, Proposition 10′]. �

Remark 1.4.10. We have cd2(R) = ∞ but cd2(C) = 0, so the “unless”
clause in Proposition 1.4.9 cannot be eliminated.

Proposition 1.4.11. Let L be an extension of k with tr deg(L/k) = s, and
let p be prime. Then cdp(L) ≤ cdp(k) + s. Equality holds if L is finitely
generated over k, cdp(k) <∞, and p 6= char k.

Proof. See [Ser02, II.§4.2, Proposition 11]. �

Proposition 1.4.12. Let L be complete with respect to a discrete valuation
with residue field k, and let p be prime. Then cdp(L) ≤ cdp(k) + 1. Equality
holds if cdp(k) <∞ and p 6= charL.

Proof. See [Ser02, II.§4.3, Proposition 12]. �

1.4.3. Examples.

(1) If k is a separably closed field, then Gk is trivial, so cdp(k) = scdp(k) = 0
for all p.

(2) If k is a finite field, then Gk = Ẑ, and cdp(k) = 1 and scdp(k) = 2 for
all p.

(3) If k is a nonarchimedean local field, then cdp(k) = scdp(k) = 2 for all
p 6= char k. (For cdp this follows from Proposition 1.4.12. For scdp in
the case of finite extensions of Q`, see [Ser02, II.§5.3, Proposition 15].
For a proof of the more general fact that an n-dimensional local field k
in the sense of Section B.1 has cdp(k) = scdp(k) = n+ 1 for p 6= char k,
see [Koy03].)

(4) Suppose that k is a global field and p 6= char k. If k has a real place,
suppose that p 6= 2. Then cdp(k) = scdp(k) = 2. (See [Ser02, II.§4.4,
Proposition 13] and [NSW08, Theorems 8.3.17 and 10.2.3].)

(5) Let k0 be a finite field or a number field. Let p be a prime not equal
to char k0. In the case where k0 is a number field having a real place,
assume in addition that p 6= 2. Then for any finitely generated field
extension k of k0,

cdp(k) =

{
tr deg(k/k0) + 1 if k0 is a finite field,
tr deg(k/k0) + 2 if k0 is a number field.

This follows from the previous examples by using Proposition 1.4.11.
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16 1. Fields

1.5. Brauer groups of fields

(Reference: [GS06])

1.5.1. Azumaya algebras over a field.

Definition 1.5.1. An Azumaya algebra1 over a field k is a k-algebra A
(associative and with 1, but possibly noncommutative) such that A⊗k ks is
isomorphic as a ks-algebra to the matrix algebra Mn(ks) for some n ≥ 1.

Equivalent definitions are given in Proposition 1.5.2. Some of these def-
initions require additional terminology, which we now provide. Let A be a
(possibly noncommutative) k-algebra. Then A is said to be finite-dimen-
sional if and only if the dimension of A as a k-vector space is finite. We say
that A is central if and only if its center is the image of k in A. Finally, A
is simple if and only if A has exactly two 2-sided ideals, namely 0 and A.

Proposition 1.5.2 (Characterizations of Azumaya algebras). The following
conditions on a k-algebra A are equivalent:

(i) There exists a finite separable extension L ⊇ k such that the L-algebra
A⊗k L is isomorphic to the matrix algebra Mn(L) for some n ≥ 1.

(ii) The ks-algebra A⊗k ks is isomorphic to the matrix algebra Mn(ks) for
some n ≥ 1; i.e., A is an Azumaya algebra over k.

(iii) There exists a field extension L ⊇ k such that the L-algebra A⊗k L is
isomorphic to the matrix algebra Mn(L) for some n ≥ 1.

(iv) The algebra A is a finite-dimensional central simple algebra over k.
(v) There is a k-algebra isomorphism A ' Mr(D) for some integer r ≥ 1

and some finite-dimensional central division algebra D over k.

In (v), r and D are uniquely determined by A.

Sketch of proof. The implications (i) ⇔ (ii) ⇒ (iii) ⇒ (iv) and the im-
plication (v) ⇒ (iv) are left as Exercise 1.14. The implication (iv) ⇒ (v)
and the uniqueness of r and D are a consequence of Wedderburn’s theo-
rem [GS06, Theorem 2.1.3]: the idea is to choose a simple A-module M , to
recover D as EndAM , and to show that the homomorphism A → EndDM
is an isomorphism. The implication (v) ⇒ (ii), or equivalently the state-
ment that a finite-dimensional division algebra over a separably closed field
is commutative, is due to Noether and Köthe (for a proof, see [Bou12, §13.2,
Proposition 3]). �

1Azumaya algebras over a field are more commonly called central simple algebras, while the
term “Azumaya algebra” is reserved for the generalization in which the field is replaced by a ring
or scheme. Our reason for calling them Azumaya algebras even over a field is (1) to use a single
term consistently for all bases and (2) to highlight that the property of being a twist of a matrix
algebra is often more useful or relevant than the properties of being central and simple.
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1.5. Brauer groups of fields 17

Let Azk be the category of Azumaya algebras over k, with k-algebra
homomorphisms as the morphisms. Each A of dimension d can be described
by d3 elements of k expressing the product of each pair from a basis in terms
of the basis. It follows that the isomorphism classes in Azk form a set (in the
universe U we are working in, as in Appendix A), in contrast with, say, the
category of isomorphism classes of arbitrary k-algebras, which is too large
to be a set (in U).

The opposite algebra Aopp of A is the k-algebra with the same underly-
ing k-vector space structure, but with multiplication · defined by a · b = ba,
the reverse of the original multiplication.

Proposition 1.5.3.

(i) If A ∈ Azk, then Aopp ∈ Azk.
(ii) If A,B ∈ Azk, then A⊗k B ∈ Azk.
(iii) If A ∈ Azk and L is a field extension of k, then A⊗k L ∈ AzL.

Proof. We leave this as Exercise 1.15. �

Definition 1.5.4. A quaternion algebra over k is a 4-dimensional Azumaya
algebra over k.

1.5.2. Splitting fields.

Definition 1.5.5. An Azumaya algebra A is called split if it is isomorphic
to Mn(k). A field L such that the L-algebra A⊗k L is isomorphic to Mn(L)
for some n ≥ 1 is called a splitting field for A, and then one says that L
splits A.

Proposition 1.5.6. Let A ∈ Azk. Let L be a field with k ⊆ L ⊆ A. Then
[L : k]2 ≤ [A : k]. If equality holds, then L splits A.

Proof. Let n = [L : k]. View A as a right L-vector space; let r be its
dimension. Left multiplication by any a ∈ A defines an L-endomorphism
A → A. Thus we obtain a k-algebra homomorphism A ⊗k L → EndLA '
Mr(L). Since A⊗k L is simple, this homomorphism is injective. Thus

rn = [A : k] = [A⊗k L : L] ≤ [Mr(L) : L] = r2.

Multiply the inequality rn ≤ r2 by n/r to obtain n2 ≤ rn = [A : K].
If equality holds, then A ⊗k L → EndLA ' Mr(L) must have been an
isomorphism. �

Proposition 1.5.7. Let D be a central division algebra of degree r2 over a
field k. Then D contains a degree r separable field extension L ⊇ k.

Proof. See [GS06, Proposition 4.5.4]. �
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18 1. Fields

1.5.3. Reduced norm and reduced trace. If A ∈ Azk, the composi-
tion nrι of an isomorphism ι : A⊗k ks ∼→ Mr(ks) with the determinant map
Mr(ks) → ks is independent of the choice of ι, since any two ι’s differ by a
ks-algebra automorphism of Mr(ks), and any such automorphism is given by
conjugation by an element of GLr(ks). (More generally, any automorphism
of an Azumaya algebra over a field is inner, i.e., conjugation by a unit. Even
more generally, the Skolem–Noether theorem [GS06, Theorem 2.7.2] states
that for any two k-algebra homomorphisms f, g from a simple k-algebra A
to an Azumaya k-algebra B, there exists b ∈ B× such that f(x) = b g(x) b−1

for all x ∈ A.)
If σ ∈ Gk, then σ acts on A ⊗k ks (through the second factor) and on

Mr(ks) (entry-by-entry), so we get a ks-algebra isomorphism σι, characterized
by the fact that it makes the diagram

A⊗k ks ι //

σ

��

Mr(ks)

σ

��
A⊗k ks

σι // Mr(ks)

commute. The independence of nrι on ι implies that nr := nrι is Gk-
equivariant, meaning that σnr(x) = nr(σx) for all σ ∈ Gk and x ∈ A ⊗k ks.
By Galois theory, nr restricts to a multiplicative map nr = nrA/k : A → k,
called the reduced norm. It restricts further to a group homomorphism
A× → k×.

Similarly, one can define the reduced trace trA/k : A → k, by using the
trace instead of the determinant. It is a k-linear map.

Example 1.5.8. Let k = R, and let A = H be Hamilton’s ring of quater-
nions, which is a 4-dimensional R-algebra generated by i and j satisfying
i2 = −1, j2 = −1, and ji = −ij. There is a C-algebra isomorphism
H ⊗R C ∼→ M2(C) sending α ⊗ 1 to left-multiplication-by-α on the right
R(i)-vector space H = R(i)⊕ jR(i) with basis 1, j. Explicitly, we have

H⊗R C ∼−→ M2(C)

1⊗ 1 7−→
(

1 0
0 1

)
i⊗ 1 7−→

(
i 0
0 −i

)
j ⊗ 1 7−→

(
0 −1
1 0

)
ij ⊗ 1 7−→

(
0 −i
−i 0

)
.
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1.5. Brauer groups of fields 19

If α = a+ bi+ cj + dij, where a, b, c, d ∈ R, then

nrH/R(α) = det

(
a+ bi −c− di
c− di a− bi

)
= a2 + b2 + c2 + d2,

trH/R(α) = tr

(
a+ bi −c− di
c− di a− bi

)
= 2a.

1.5.4. Definition of the Brauer group. Call two elements A,B ∈ Azk
similar (or Brauer equivalent), and write A ∼ B, if either of the following
equivalent conditions holds:

(1) There exist m,n ≥ 1 and a division algebra D ∈ Azk such that
A ' Mm(D) and B ' Mn(D) as k-algebras.

(2) There exist m,n ≥ 1 such that Mn(A) ' Mm(B) as k-algebras.

Define Br k as the set Azk /∼ of similarity classes. It turns out that the
operations (A,B) 7→ A⊗kB and A 7→ Aopp on Azk induce the multiplication
and inverse maps for a group structure on Br k. The abelian group Br k is
called the Brauer group of k. (Equivalently, but slightly less elegantly,
one can define Br k as the set of isomorphism classes of finite-dimensional
central division algebras over k, and define the product of D and D′ to be
the division algebra D′′ such that D ⊗k D′ ' Mn(D′′) for some n ≥ 1.)

If L is a field extension of k, then A 7→ A⊗kL induces a group homomor-
phism Br k → BrL. In fact, Br is a covariant functor from fields to abelian
groups.

1.5.5. Cohomological interpretation of the Brauer group.

Proposition 1.5.9. For each r ≥ 1, there is a natural injection
{Azumaya k-algebras of dimension r2}

k-isomorphism
↪→ H1(Gk,PGLr(ks)).

Proof. Let A ∈ Azk be such that [A : k] = r2. Choose a ks-algebra iso-
morphism φ : Mr(ks)

∼→ A ⊗k ks. As in Section 1.5.3, Gk acts on such
isomorphisms. Define

ξσ := φ−1 (σφ) ∈ Autks-algebras(Mr(ks)) ' PGLr(ks);

the last isomorphism is due to the fact that every automorphism of a matrix
algebra is inner. If σ, τ ∈ Gk, then

ξστ = φ−1 (στφ) = φ−1 (σφ)
(
σφ−1

)
(στφ) = φ−1 (σφ) · σ

(
φ−1 (τφ)

)
= ξσ · σξτ .

In other words, ξ is a 1-cocycle. Changing φ (i.e., composing φ with an
automorphism of Mr(ks)) changes ξ to a cohomologous cocycle, so we get an
element of H1(Gk,PGLr(ks)) depending only on A.
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20 1. Fields

Finally, we must prove that the map just defined is injective. Sup-
pose that A,B ∈ Azk satisfy [A : k] = [B : k] = r2, and that choices
of φ : Mr(ks)

∼→ A ⊗k ks and ψ : Mr(ks)
∼→ B ⊗k ks give rise to coho-

mologous cocycles. Then, after changing ψ, the cocycles become equal :
φ−1 (σφ) = ψ−1 (σψ) for all σ ∈ Gk. Rewriting this as ψφ−1 =

(
ψφ−1

)σ
shows that the ks-algebra isomorphism ψφ−1 : A ⊗k ks ∼→ B ⊗k ks restricts
to a k-algebra isomorphism A

∼→ B. �

Remark 1.5.10. In fact, the injection of Proposition 1.5.9 is a bijection.
This is an elementary special case of descent theory, Theorem 4.5.2 in par-
ticular: an Azumaya algebra of dimension r2 is the same thing as a twist of
the matrix algebra Mr(k).

Taking cohomology of the short exact sequence of Gk-modules

1→ ks
× → GLr(ks)→ PGLr(ks)→ 1

and applying Proposition 1.3.15(iii) gives a map of pointed sets

(1.5.11) H1(Gk,PGLr(ks))→ H2(Gk, ks
×).

The latter is denoted H2(k,Gm). Composing Proposition 1.5.9 with (1.5.11)
lets us associate to each A ∈ Azk an element [A] ∈ H2(k,Gm).

Theorem 1.5.12. The map taking each A ∈ Azk to the associated element
of H2(k,Gm) induces an isomorphism of abelian groups Br k

∼→ H2(k,Gm).

Proof. See [Ser79, Chapter X, §5]. �

Proposition 1.5.13. Let k be a field.

(i) If char k - n, then H1(k, µn) ' k×/k×n.
(ii) If char k - n, then H2(k, µn) ' (Br k)[n].
(iii) For any Galois extension L ⊇ k of fields,

H2(Gal(L/k), L×) ' ker (Br k → BrL) .

Proof.

(i) Take the long exact sequence of cohomology associated to

0→ µn → ks
× → ks

× → 0

and apply Hilbert’s theorem 90.
(ii) Same proof as (i), but using Theorem 1.5.12.
(iii) Since H1(L,Gm) = 0 by (ii), we get an inflation-restriction sequence

for H2,

0 −→ H2(Gal(L/k), L×)
inf−→ H2(k,Gm)

res−→ H2(L,Gm).
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1.5. Brauer groups of fields 21

(To construct this sequence and prove it is exact, one can either use
cocycles explicitly or deduce it from the Hochschild–Serre spectral se-
quence; see Corollary 6.7.4.) Now apply Theorem 1.5.12 to the two
groups on the right. �

Remark 1.5.14. Parts (i) and (ii) of Proposition 1.5.13 can be generalized
to the case where char k | n, but in place of Galois cohomology one must use
the fppf cohomology to be introduced in Section 6.4.1.

1.5.6. Period and index.

Definition 1.5.15. The index of a finite-dimensional central division alge-
bra D over k is

√
[D : k], which is a positive integer by Proposition 1.5.2.

More generally, the index of Mr(D) is defined to be the index of D. This
makes index a well-defined function Br k → Z>0.

Definition 1.5.16. The period of an element A ∈ Azk (or of its class [A])
is the order of [A] in Br k.

Proposition 1.5.17. If A is an Azumaya algebra of dimension r2 over k,
then r[A] = 0 in Br k. In other words, period divides index.

Proof. Write A ' Mn(D) for a central division algebra D over k. Then
[D : k] divides [A : k], and A and D have the same period and the same
index, so we may reduce to the case that A is a central division algebraD. By
Proposition 1.5.7, D contains a degree r separable field extension L ⊇ k. By
Proposition 1.5.6, L is a splitting field for D. Then [D] ∈ ker(Br k → BrL).
By Exercise 1.19, we have r[D] = 0.

For a different proof, see the proof of Theorem 6.6.17(ii). �

Remark 1.5.18. If k is a local or global field, every element of Br k has
period equals index (Theorems 1.5.34(iv) and 1.5.36(iv)), so the injection
H1(Gk,PGLr(ks))→ (Br k)[r] is a bijection for each r ≥ 1.

�

Warning 1.5.19. For general k, the image of H1(Gk,PGLr(ks)) ↪→ Br k
need not even be a subgroup! For example, if r = 2, the image consists
of the classes of quaternion algebras, but a tensor product of quaternion
algebras can be a division algebra, in which case it is not similar to another
quaternion algebra. Explicitly, if k0 is a field of characteristic not 2, and
k = k0(t1, t2, t3, t4), then the k-algebra (t1, t2) ⊗ (t3, t4) (in the notation of
Section 1.5.7.4) turns out to be a division algebra [GS06, Example 1.5.7].
Its period is 2, but its index is 4.

1.5.7. Cyclic algebras.
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22 1. Fields

1.5.7.1. Cyclic algebras from cyclic fields. Let L ⊇ k be a degree n cyclic
extension of fields. Given a ∈ k× and a generator σ of Gal(L/k), we construct
a k-algebra as follows. Let L[x]σ denote the twisted polynomial ring having
the same additive group as L[x], but whose multiplication is defined so that
x` = (σ`)x. Let A be the quotient of L[x]σ by the ideal generated by the
central element xn−a. Then one can show that A ∈ Azk; see Exercise 1.20.
1.5.7.2. Cyclic algebras from étale algebras. One can generalize the construc-
tion by allowing L to be only an étale k-algebra instead of a field extension.

Start with an element a ∈ k× and a continuous homomorphism χ : Gk →
Z/nZ. Let S = Z/nZ, and let each g ∈ Gk act on S by s 7→ s + χ(g). By
Theorem 1.3.2, S corresponds to an étale k-algebra L, and the automorphism
s 7→ s + 1 of the Gk-set S corresponds to a k-algebra automorphism σ of
L. As in Section 1.5.7.1, form A := L[x]σ/(x

n − a). Again it turns out that
A ∈ Azk; see Exercise 1.20.

Definition 1.5.20. The k-algebra A just constructed, or its class in Br k,
is denoted (a, χ). Such an algebra is called a cyclic algebra.

One advantage of allowing L to be an étale algebra instead of insisting
on a field is that now if A is a cyclic algebra over k, and k′ ⊇ k is a field
extension, then A⊗k k′ is a cyclic algebra over k′.
1.5.7.3. First cohomological interpretation. The construction of (a, χ) can
also be understood cohomologically. For simplicity, suppose that χ : Gk →
Z/nZ is surjective, or equivalently that L is a field. Let G = Gal(L/k), so
χ induces χ : G

∼→ Z/nZ. By definition of Tate cohomology, Ĥ
0
(G,L×) =

k×/NL/k(L
×), and we may consider the image of a in this group. The gener-

ator σ = χ−1(1) of G determines a generator u of the cyclic group Ĥ
2
(G,Z),

and “cup product with u” gives an isomorphism Ĥ
0
(G,L×)

∼→ Ĥ
2
(G,L×)

[AW67, §8, Theorem 5]. The latter is isomorphic to ker (Br k → BrL) by
Proposition 1.3.15(iii), and one can show that the composition

(1.5.21) k× � Ĥ
0
(G,L×)

∼→ Ĥ
2
(G,L×) ↪→ Br k,

maps any a ∈ k× to the class of the cyclic algebra (a, χ), maybe with a sign
error, depending on the definition of u. The following two propositions are
consequences of this.

Proposition 1.5.22. Let L and χ be as above. Suppose that A ∈ Azk and
that [A : k] = [L : k]2. Then A is split by L if and only if A ' (a, χ) for
some a ∈ k×.

Proof. By (1.5.21), A is split by L if and only if it is similar to (a, χ) for
some a ∈ k×. But A and (a, χ) have the same dimension, so similar is
equivalent to isomorphic. �
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1.5. Brauer groups of fields 23

Proposition 1.5.23. Let L and χ be as above. For a ∈ k×, the k-algebra
(a, χ) is split if and only if a ∈ NL/k(L

×).

Proof. The kernel of the composite homomorphism in (1.5.21) equals the
kernel of the first homomorphism, which is NL/k(L

×). �

1.5.7.4. Second cohomological interpretation. We can give a another coho-
mological interpretation of (a, χ), at least when char k - n. The element a
can be mapped to an element of k×/k×n ∼→ H1(k, µn). On the other hand,
χ ∈ Hom(Gk,Z/nZ) ' H1(k,Z/nZ). Under the cup product

H1(k, µn)×H1(k,Z/nZ)→ H2(k, µn) ' (Br k)[n],

a and χ pair to give an element of (Br k)[n], which turns out to be the class
of the cyclic algebra (a, χ), at least up to a sign.

Suppose now that char k - n and that k contains a primitive nth root
of unity, ζ. Then ζ determines an isomorphism Z/nZ ∼→ µn of Gk-modules,
so we get an isomorphism H1(k,Z/nZ) ' H1(k, µn) ' k×/k×n. Now given
a, b ∈ k×, we can take the cup product of their images under

H1(k, µn)×H1(k,Z/nZ)→ H2(k, µn) ' (Br k)[n]

to get an element of Br k. Alternatively, from a and the étale k-algebra
L = k[t]/(tn − b) equipped with the automorphism σ mapping t to ζt, one
can construct a cyclic algebra (a, b)ζ ∈ Azk representing the element of Br k
defined in the previous sentence. When n = 2, one writes simply (a, b) for
(a, b)−1.

Remark 1.5.24. Exercise 1.23 shows that every quaternion algebra is cyclic.
In particular, if char k 6= 2, then every quaternion algebra D over k is of the
form (a, b) for some a, b ∈ k×: this algebra has a k-basis 1, i, j, ij where
i2 = a, j2 = b, and ji = −ij. (The elements a and b are not uniquely
determined by D.)

1.5.8. Connections with the Cr property and cohomological dimen-
sion.

Proposition 1.5.25. Let k be a field. The following eight conditions are
equivalent:

(i) cd k ≤ 1, and if char k = p > 0, then (BrK)[p∞] = 0 for every algebraic
extension K of k.

(ii) BrK = 0 for every algebraic extension K of k.
(iii) If K is an algebraic extension of k and L/K is a finite Galois extension,

then Hq(Gal(L/K), L×) = 0 for all q ≥ 1.
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24 1. Fields

(iv) If K is an algebraic extension of k and L/K is a finite Galois extension,
then NL/K : L× → K× is surjective.

(i′), (ii′), (iii′), (iv′): Same as (i),. . . ,(iv), but restricted to extensions K that
are finite and separable over k.

Proof. See [Ser02, II.§3.1, Proposition 5]. �

Definition 1.5.26. A field k is said to be of dimension ≤ 1 if it satisfies
the equivalent conditions of Proposition 1.5.25. We then write dim k ≤ 1.

�

Warning 1.5.27. This has nothing to do with the Krull dimension, which
is 0 for any field k.

Proposition 1.5.28. If k is C1, then Br k = 0.

Proof. Let D be a finite-dimensional central division algebra over k, so
[D : k] = r2 for some r ≥ 1. An associated reduced norm form is of degree r
in r2 variables and has no nontrivial zero. This contradicts the C1 property
unless r = 1. This holds for all D, so Br k = 0. �

Corollary 1.5.29. If k is C1, then k is of dimension ≤ 1.

Proof. We check condition (ii) in Proposition 1.5.25. Let k be C1. Any
algebraic extension K of k is C1 by Theorem 1.2.7(i), and hence it satisfies
BrK = 0 by Proposition 1.5.28. �

�

Warning 1.5.30. The converse to Corollary 1.5.29 is false. See [Ser02, p. 80]
for a counterexample, due to Ax [Ax65]. In fact, Ax finds a field of dimension
≤ 1 that is not Cr for any r.

Remark 1.5.31. Serre wrote in [Ser02, p. 88] that it is probable that for
all r ≥ 0, all Cr fields satisfy cd k ≤ r. This is true for r ≤ 2 (the r = 2 case
is a theorem of Merkurjev and Suslin). Moreover, [OVV07] shows that Cr
fields of characteristic 0 satisfy cd2 k ≤ r.

1.5.9. Examples.

Theorem 1.5.32 (Wedderburn). If k is a finite field, then Br k = 0.

Proof. The Chevalley–Warning theorem says that k is C1. Apply Proposi-
tion 1.5.28. �

Theorem 1.5.33 (original form of Tsen’s theorem). If k is a field of tran-
scendence degree 1 over an algebraically closed field, then Br k = 0.

Proof. Again k is C1, so apply Proposition 1.5.28. �
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1.5. Brauer groups of fields 25

Theorem 1.5.34 (Brauer group of a local field). Suppose that k is a local
field.

(i) There is an injection inv : Br k → Q/Z, whose image is
1
2Z/Z if k = R,
0 if k = C,
Q/Z if k is nonarchimedean.

(ii) If L is a finite extension of k, then the diagram

(1.5.35)

Br k
inv−−−−→ Q/Zy y[L:k]

BrL
inv−−−−→ Q/Z

commutes.

(iii) Every Azumaya algebra over k is cyclic.

(iv) Every element of Br k has period equal to index.

Proof. The cases where k is R or C are easy, so assume that k is non-
archimedean.

(i) If F is the residue field of k, one shows that Br k ' H1(F,Q/Z) ' Q/Z;
see [Ser67, bottom of p. 130].

(ii) See [Ser67, Theorem 3].

(iii) Let m/n ∈ Q be a rational number in lowest terms, with n ≥ 1. Let
L be the degree n unramified extension of k. Let σ ∈ Gal(L/k) be the
Frobenius automorphism. Choose a ∈ k× of valuation m. By [Ser67,
p. 138], the cyclic algebra A := L[x]σ/(x

n−a) is a division algebra with
invA = m/n ∈ Q/Z. These m/n cover all possible invariants, so every
Azumaya algebra is a matrix algebra over one of these and is cyclic by
Exercise 1.24.

(iv) Each A in (iii) has period equal to index. �

If L ⊇ k is a finite extension of global fields, we write w|v to mean that
the place w of L lies over the place v of k; in this case, the inclusion kv ↪→ Lw
gives rise to a homomorphism Br kv → BrLw.

Theorem 1.5.36 (Brauer group of a global field). Suppose that k is a global
field. For each place v of k, let kv be the completion of k at v, and let
invv : Br kv ↪→ Q/Z be the injection associated to the local field kv.
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26 1. Fields

(i) Then the sequence

0 −→ Br k −→
⊕
v

Br kv

∑
invv−→ Q/Z→ 0

is exact.

(ii) If L is a finite extension of k, then the diagram

0 −−−−→ Br k −−−−→
⊕
v

Br kv

∑
invv−−−−→ Q/Z −−−−→ 0y y y[L:k]

0 −−−−→ BrL −−−−→
⊕
v

⊕
w|v

BrLw

∑
invw−−−−→ Q/Z −−−−→ 0

commutes.

(iii) Every Azumaya algebra over k is cyclic.

(iv) Every element of Br k has period equal to index.

Proof.

(i) This follows from [Tat67, diagram (9) in Section 11.2, together with
Proposition 7.3(b) and Section 11.2(bis)].

(ii) Compare [Tat67, diagram (7) in Section 11.2]. The commutativity of
the left square follows from functoriality of Br. The commutativity of
the right square follows from the identity

∑
w|v[Lw : kv] = [L : k].

(iii) By Exercise 1.24, it suffices to consider a central division algebra A
over k. Let n be the order of [A] ∈ Br k. Let S be the finite set of
places v such that invv A 6= 0. The Grunwald–Wang theorem produces
a degree n cyclic extension L ⊇ k such that each local degree [Lw : kv]
above a place v ∈ S is n if v is nonarchimedean, and is 2 if v is real;
see [AT67, Chapter 10, Theorem 5]. By Theorem 1.5.34(ii), all local
invariants of A⊗kL are 0. By the injectivity of the first homomorphism
in (i), the extension L splits A. Now

(1.5.37) n = (period of A) ≤ (index of A) ≤ [L : k] = n,

so equality holds everywhere. In particular, [A : k] = [L : k]2, so A is
cyclic by Proposition 1.5.22.

(iv) This follows from the equality in (1.5.37). �

Theorems 1.5.34 and 1.5.36 are byproducts of the cohomological proofs
of local and global class field theory; it seems that they cannot be proved
without effectively doing a large part of the work toward class field theory.



Un
offi
cia
l v
ers
ion

for
inc
ide
nta

l o
nli
ne
use

Exercises 27

Theorem 1.5.38 (Faddeev). Suppose that k is any field and K = k(t).
There is an exact sequence

0 −→ Br k −→ BrK
res−→
⊕
f

H1 (k[t]/(f),Q/Z) −→ 0,

where f ranges over all monic irreducible polynomials in k[t], with the caveat
that one must exclude the p-primary parts if k is imperfect of characteristic p.

Proof. See [Ser02, II.Appendix.§5] and [GS06, 6.4.5] for a proof and a
generalization. �

Remark 1.5.39. It is perhaps more natural to let the direct sum range over
all closed points of P1

k. This adds one summand to the direct sum, so one
must also add a new term H1(k,Q/Z) to the end of the sequence; the result
is a four-term exact sequence.

Theorem 1.5.38 is related to Theorems 6.8.3 and 6.9.7.

Exercises

1.1. (a) Prove that an algebraic extension of a separably closed field is
separably closed.

(b) Prove that an algebraic extension of a perfect field is perfect.
(c) Let k be a field. Prove that k = (ks)

perf = (kperf)s = kperf · ks.
(The last expression denotes the subfield of k generated by kperf

and ks.)
1.2. Let k be a global or local field. Prove that k is perfect if and only if

char k = 0.
1.3. For which r ∈ R≥0 is Cr equivalent to being algebraically closed?
1.4. (a) For each finite field Fq and nonnegative integer n, evaluate the

sum
∑

a∈Fq a
n.

(b) Prove the Chevalley–Warning theorem, that every finite field Fq
is C1. (Hint : Given a homogeneous polynomial f ∈ Fq[x1, . . . , xn]
of degree d < n, evaluate∑

(a1,...,an)∈(Fq)n

(
1− f(a1, . . . , an)q−1

)
∈ Fq

in two different ways.)
(c) Using a similar method, prove directly that Fq is C ′1, without using

the paragraph following Question 1.2.11.
1.5. Let L ⊇ k be a finite extension of fields, and let r ∈ R≥0. If L is Cr,

must k be Cr?
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28 1. Fields

1.6. Let k be a C1 field, and let L be a finite extension. Prove that the
norm homomorphism NL/k : L× → k× is surjective.

1.7. Let k be a field.
(a) Prove that { r ∈ R≥0 : k is Cr } has a minimum, if it is nonempty.
(b) Let r(k) denote the real number in Exercise 1.7a, if it exists. Let

k(t) be the rational function field over k. Prove that r(k(t)) =
r(k) + 1, in the sense that if one side is defined, then so is the
other, and then they are equal.

1.8. Let kv be a nonarchimedean completion of a number field k, and let
r ∈ R≥0. Assuming (as is true) that kv is not Cr, prove that k is not
Cr.

1.9. Let L ⊇ k be a finite Galois extension with Galois group G. Let
r ∈ Z≥0. Given a 1-cochain (i.e., function) ξ : G→ GLr(L), let Wξ be
Lr equipped with the function G×Lr → Lr sending (σ,w) to ξσ(σw).
(a) Prove that this describes a semilinear G-action (i.e., the group

action axiom (στ) ∗w = σ ∗ (τ ∗w) is satisfied) if and only if ξ is
a 1-cocycle.

(b) Prove that given two 1-cocycles ξ and ξ′, we have Wξ ' Wξ′ as
L-vector spaces with semilinear G-action if and only if ξ and ξ′

are cohomologous.

1.10. Let L ⊇ k be a finite Galois extension of fields. Suppose that Gal(L/k)
is cyclic, generated by σ. The original Hilbert theorem 90 proved by
Hilbert stated that if a ∈ L× satisfies NL/k(a) = 1, then there exists
b ∈ L× such that a = σb

b . Explain why Proposition 1.3.15(ii) is a
generalization of this.

1.11. Use the original Hilbert theorem 90 to prove that if x, y ∈ Q satisfy
x2 + y2 = 1, then there exist u, v ∈ Q not both 0 such that

(x, y) =

(
u2 − v2

u2 + v2
,

2uv

u2 + v2

)
.

(This can be proved also in more elementary ways.)

1.12. Let A be a torsion abelian group. Prove that A '⊕pA[p∞], where
the direct sum is over all prime numbers p.

1.13. Let G be a profinite group, let p be a prime, and let n ∈ N. Prove that
cdp(G) ≤ n if and only if Hn+1(G,A) = 0 for every simple G-module
A killed by p. (A G-module A is simple if A 6= 0 and the only
G-submodules of A are 0 and A.)

1.14. (Equivalence of definitions of Azumaya algebra) Prove the implications
(i) ⇔ (ii) ⇒ (iii) ⇒ (iv) and the implication (v) ⇒ (iv) of Proposi-
tion 1.5.2.
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Exercises 29

1.15. (Properties of Azumaya algebras) Prove Proposition 1.5.3.

1.16. For a finite-dimensional k-algebra A, the usual norm NA/k : A→ k
maps a to the determinant of the k-linear endomorphism of A given
by x 7→ ax. For A ∈ Azk, what is the relationship between NA/k and
the reduced norm nrA/k?

1.17. Let {Kα} be a directed system of fields, and let K = lim−→Kα be the
direct limit. Prove that BrK = lim−→BrKα.

1.18. Prove that if L is an extension of k, the diagram

Br k −−−−→ H2(k,Gm)y y
BrL −−−−→ H2(L,Gm)

commutes.

1.19. Let L ⊇ k be a field extension of degree n. Prove that the kernel
of Br k → BrL is killed by n. (Hint : If L ⊇ k is separable, use the
identity Cor ◦Res = [L : k] of [AW67, §6, Proposition 8].)

1.20. Let (a, χ) be a cyclic algebra over a field k. Prove that (a, χ) ∈ Azk.

1.21. Let k be a field. Suppose that char k - n and that k contains a primitive
nth root of unity ζ. Show that

k×

k×n
× k×

k×n
−→ (Br k)[n]

a, b 7−→ (a, b)ζ

is an antisymmetric pairing; that is, (b, a)ζ = −(a, b)ζ in Br k.

1.22. Let D be a quaternion algebra over a field k. Let tr and nr denote the
reduced trace and reduced norm for D/k. Prove that for α ∈ D one
can define ᾱ ∈ D such that the following hold:
(a) The map

D → Dopp

α 7→ ᾱ

is a k-algebra isomorphism.
(b) ¯̄α = α.
(c) tr(α) = tr(ᾱ) = α+ ᾱ.
(d) nr(α) = nr(ᾱ) = αᾱ.
(e) If L is an étale k-subalgebra of D and [L : k] = 2, then the

involution α 7→ ᾱ restricts to the nontrivial automorphism of L
over k.

1.23. Prove that every quaternion algebra over a field is a cyclic algebra.
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30 1. Fields

1.24. Show that if A is a cyclic algebra over a field k, then so is Mr(A) for
any r ≥ 1.

1.25. Describe all Azumaya algebras over R, and show that they are all
cyclic algebras.

1.26. Let k be a separably closed field that is not algebraically closed. Let
p = char k.
(a) Prove that Br k(t) 6= 0. Better yet, find an element of Br k(t)

whose image in Br k((t)) is nonzero.
(b) Prove that every element of Br k(t) is killed by some power of p.

1.27. (a) Let k be a global field, and let a ∈ Br k. Prove that there is a root
of unity ζ ∈ k such that the image of a in Br k(ζ) is 0.

(b) Let k be a global field, and let kab denote its maximal abelian
extension. Prove that kab is of dimension ≤ 1. (So in particular,
Br kab = 0.)

1.28. Let k be a perfect field.
(a) Prove that if char k = p > 0, then (Br k)[p] = 0.
(b) Prove that dim k ≤ 1 if and only if cd k ≤ 1.

1.29. Let k be a field.
(a) Show that if t is an indeterminate, the field k(t) has a nontrivial

cyclic extension of degree not divisible by char k.
(b) Let k be a field, and let K be the purely transcendental extension

k(t1, . . . , tm) for some m ≥ 2. Use Theorem 1.5.38 to show that
BrK is huge in the following sense: the cardinality of BrK equals
the cardinality of K.
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Chapter 2

Varieties over arbitrary
fields

We refer to [Har77] for definitions of standard terms regarding schemes:
noetherian, connected, irreducible, reduced, integral,1 regular, finite type,
separated, proper, projective, dimension, rational map, dominant.

Definition 2.0.1. If S is a scheme, an S-scheme (X, f) is a scheme X
equipped with a morphism of schemes f : X → S. The morphism f is called
the structure morphism.

To simplify notation, we usually write X instead of (X, f). Sometimes
it helps to think of X → S as a family of schemes, one above each point of
S.

Definition 2.0.2. An S-morphism between S-schemes (X, f) and (Y, g) is
a morphism of schemes φ : X → Y such that

X
φ //

f ��

Y

g��
S

commutes.

For a scheme S, let SchemesS denote the category whose objects are
S-schemes and whose arrows are S-morphisms. If X and Y are S-schemes,
let HomS(X,Y ) denote the set of S-morphisms from X to Y .

31

1This definition should read as follows: A scheme X is integral if it is nonempty and for every
nonempty open set U ⊆ X, the ring OX(U) is an integral domain.



Un
offi
cia
l v
ers
ion

for
inc
ide
nta

l o
nli
ne
use

32 2. Varieties over arbitrary fields

When R is a commutative ring, R may be used as an abbreviation for
SpecR; the meaning is usually clear from context. For instance, if X is a
scheme (over SpecZ), then X ×Z Q means X ×SpecZ SpecQ.

2.1. Varieties

Our definition of variety will be rather inclusive. If we want to consider
a more restricted class of varieties, we can apply adjectives (such as “irre-
ducible”) as needed.

Definition 2.1.1. A variety over a field k is a separated scheme X of finite
type over Spec k.

�

Warning 2.1.2. In [Har77, II.§4], varieties must also be integral; we are
not including this condition in the definition of variety.

Varieties over a field k may also be called k-varieties.

Definition 2.1.3. A curve is a variety of pure dimension 1. (Pure means
that all the irreducible components have the same dimension.) A surface is
a variety of pure dimension 2. A 3-fold is a variety of pure dimension 3, and
so on.

2.2. Base extension

Definition 2.2.1. If X is an S-scheme and S′ → S is a morphism, then
the base extension XS′ is the S′-scheme X ×S S′. The base extension of a
morphism of S-schemes X → Y is the S′-morphism XS′ → YS′ induced by
the universal property of the fiber product X ×S S′.

Recall some important applications of base extension:

• If X is a k-variety or k-scheme, and L is a field extension of k, then
XL is the scheme defined by the same equations but considered over L
instead of k.
• Let X be a k-scheme, and let σ ∈ Aut k. Then the base extension
of X by the morphism σ∗ : Spec k → Spec k induced by σ is a new
k-scheme σX. Since σ∗ is an isomorphism of schemes, σX and X are
isomorphic as abstract schemes, but generally they are not isomorphic
as k-schemes. For instance, if X is an affine variety, then σX can be
obtained by applying σ to each coefficient in the equations defining X.

σX

��

// X

��
Spec k

σ∗ // Spec k
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2.2. Base extension 33

• Let X be an S-scheme with structure morphism f : X → S. If U is an
open subscheme of S, then XU is also written f−1U since its underlying
topological space is f−1U . The same applies to closed subschemes of S.
• Let s ∈ S. Let k(s) be the residue field of the local ring OS,s. The
scheme S′ := Speck(s) has a natural morphism to S. The result-
ing scheme XS′ may also be written Xs or f−1(s) since its underlying
topological space is f−1(s). It is called the fiber of X → S above s
[Har77, p. 89]. If p is a prime ideal of a ring A and X is an A-scheme,
then the fiber Xp is also called the reduction of X modulo p.

Example 2.2.2 (Varieties that become isomorphic only after base field ex-
tension). Let X be the affine plane curve over Q defined by the equation
x2 + y2 = 1; that is, X := SpecQ[x, y]/(x2 + y2 − 1). Let Y be the plane
curve over Q defined by x2 + y2 = −1. If L = Q(i), then XL ' YL as
L-varieties. But X 6' Y , because Q[x, y]/(x2 + y2 − 1) admits a Q-algebra
homomorphism to Q while Q[x, y]/(x2 + y2 + 1) does not.

Most properties of morphisms are preserved by base extension. Often
they are defined expressly so as to make this so.

Theorem 2.2.3. Let blah denote a property for which a positive answer is
listed in the “base extension” column of Table 1 on pp. 302–303. If X → S
is blah, then XS′ → S′ is blah for any morphism S′ → S.

XS′
//

blah?
��

X

blah
��

S′ // S

The following properties of a variety can be lost by base extension of
the ground field: integral, connected, irreducible, reduced, and regular. This
motivates some more definitions.

Definition 2.2.4. Let X be a scheme over a field k. Then X is said to be
geometrically integral if and only if Xk is integral. Define geometrically
connected, geometrically irreducible, geometrically reduced, and geomet-
rically regular similarly.

Remark 2.2.5. When one speaks of the geometry of X, as opposed to the
arithmetic of X, one is usually referring to properties of Xk.

Example 2.2.6. Let X be the affine plane curve x2−2y2 = 0 over Q. Then
X is irreducible. (In fact, X is integral, since x2 − 2y2 is an irreducible
element of the unique factorization domain Q[x, y].) But X is not geometri-
cally irreducible, since XQ is the union of the closed subvarieties defined by
x+
√

2y = 0 and x−
√

2y = 0.
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34 2. Varieties over arbitrary fields

Example 2.2.7. Let X be the curve y2 = 2 over Q in the (x, y)-plane. Then
X is connected but not geometrically connected.

Example 2.2.8. Let k be the imperfect field Fp(t), where t is an indetermi-
nate. Let X be the affine plane curve yp = txp over k. Then X is reduced
but not geometrically reduced.

Example 2.2.9. Let L be a finite extension of a field k. View X = SpecL
as a k-variety. Then X is integral. But if the separable degree of L over
k is greater than 1 (that is, L is not purely inseparable over k), then X is
neither geometrically connected nor geometrically irreducible. And if the
inseparable degree of L over k is greater than 1 (that is, L is not separable
over k), then X is not geometrically reduced and hence not geometrically
regular.

Example 2.2.10. Regular local rings are reduced, so regular implies re-
duced, and geometrically regular implies geometrically reduced. So if L is
a finite inseparable extension of a field k, then SpecL is a regular k-variety
that is not geometrically regular.

For another example of a k-variety that is regular but not geometrically
regular, see Example 3.5.23. That example is also geometrically integral.

2.2.1. Function fields.

Definition 2.2.11. If X is an integral finite-type k-scheme, its function
field k(X) is the residue field at the generic point of X. Alternatively,
k(X) := FracA for any affine open subset U = SpecA of X.

Remark 2.2.12. Suppose that X is irreducible but not necessarily reduced.
Then the first part of Definition 2.2.11 still makes sense. The alternative
definition must be modified slightly, however: A might not be a domain, so
one should take Frac(A/nil(A)), where nil(A) is the nilradical of the ring A.

We can construct varieties with given function field:

Proposition 2.2.13. Let K be a finitely generated field extension of k. Then
there exists a normal projective integral k-variety X with k(X) ' K.

Proof. Let S be a finite set of generators of K as a field extension of k.
Let A0 be the k-subalgebra of K generated by S. Thus A0 is a domain
with FracA0 = K. Then X0 := SpecA0 is an affine integral k-variety
with k(X0) = K. If we choose a closed immersion X0 ↪→ An and choose
a standard open immersion An ↪→ Pn, then the Zariski closure of X0 in
Pn is a projective integral k-variety X1 with k(X1) = K. Let X be the
normalization of X1. By [Har77, Exercise II.3.8], X is finite over X1, so X
is projective. The other properties are immediate. �
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2.2. Base extension 35

Remark 2.2.14. A weak form of the resolution of singularities conjec-
ture states that Proposition 2.2.13 holds with “normal” replaced by the
stronger condition “regular”. Resolution of singularities was proved by Hi-
ronaka [Hir64] in the case that k has characteristic 0; see [Kol07b] for an
exposition of a proof. In arbitrary characteristic it is known in dimension
≤ 2 (i.e., tr deg(K/k) ≤ 2); see [Art86b] for an exposition of a proof by
Lipman [Lip78]. Finally, if one can tolerate replacing K by a finite exten-
sion, then one can solve the problem in general [dJ96]; this suffices for many
applications.

2.2.2. Separable and primary field extensions. Section 2.2.3 will show
that for an integral k-variety X, the properties of being geometrically irre-
ducible, geometrically reduced, and geometrically integral are equivalent to
field-theoretic properties of the extension k(X)/k.

First we define the field-theoretic properties. The following definition of
separable agrees with the usual notion for algebraic field extensions.

Definition 2.2.15. A field extension L of k is separable if the ring L⊗k k′
is reduced for all field extensions k′ of k.

Proposition 2.2.16. Let L be a finitely generated field extension of a field
k.

(i) The field L is separable over k if and only if L is a finite separable
extension of a purely transcendental extension k(t1, . . . , tn).

(ii) Let n = tr deg(L/k). Elements t1, . . . , tn of L generate a purely tran-
scendental extension of k over which L is a finite separable extension
if and only if dt1, . . . , dtn form a basis for the L-vector space ΩL/k of
Kähler differentials.

Proof.

(i) See [Mat80, (27.F)].
(ii) See the proof of [Mat80, (27.B)]. �

�

Warning 2.2.17. If L is separable over k, then every subextension is sep-
arable over k, so in particular every finite subextension is separable over k.
But there exist also inseparable field extensions L over k such that all finite
subextensions are separable over k. See Exercise 2.2.

Definition 2.2.18. A field extension L of k is primary if the largest sepa-
rable algebraic extension of k contained in L is k itself.

Purely inseparable algebraic field extensions are primary. Purely tran-
scendental field extensions are primary and separable. For equivalent defini-
tions of “primary” and “separable”, see [FJ08, §2.6].
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36 2. Varieties over arbitrary fields

2.2.3. Geometric properties determined by the function field.

Proposition 2.2.19. Let X be a finite-type k-scheme. Then the following
are equivalent:

(i) X is geometrically irreducible.
(ii) There is a separably closed field L containing k such that the L-scheme

XL is irreducible.
(iii) For all fields L containing k, the L-scheme XL is irreducible.
(iv) X is irreducible, and the field extension k(X) of k is primary.

Sketch of proof. See [EGA IV2, 4.5.9]. One shows first that for a field L
containing k, the L-scheme X ×k L is irreducible if and only if the scheme
Spec(k(X)⊗k L) is irreducible. The rest is field theory. �

Proposition 2.2.20. Let X be a finite-type k-scheme. Then the following
are equivalent:

(i) X is geometrically reduced.
(ii) There is a perfect field L containing k such that the L-scheme XL is

reduced.
(iii) For all fields L containing k, the L-scheme XL is reduced.
(iv) X is reduced, and for each irreducible component Z of X, the field

extension k(Z) of k is separable.

Proof. See [EGA IV2, 4.6.1]. �

Combining Propositions 2.2.19 and 2.2.20 leads to equivalent conditions
for X to be geometrically integral.

Remark 2.2.21. The property of X being geometrically regular depends
on more than the function field, even when X is assumed to be a projective
integral variety over an algebraically closed field k. For instance, the cuspidal
cubic curve y2z = x3 in P2

k is not regular at (0 : 0 : 1), but it has the same
function field as P1

k, which is regular.

2.2.4. The constant field of a function field. Let K be a finitely gener-
ated field extension of k, so K = k(X) for some integral finite-type k-scheme
X. The constant field of K or of X is the maximal algebraic extension k′

of k contained in K. It is a finite extension of k: in fact, if t1, . . . , tn is a
transcendence basis of K/k, then

[k′ : k] = [k′(t1, . . . , tn) : k(t1, . . . , tn)] ≤ [K : k(t1, . . . , tn)] <∞.
Proposition 2.2.22. Let X be an integral finite-type k-scheme. Let k′ ⊇ k
be its constant field.
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(i) If X is geometrically integral, then k′ = k.
(ii) If X is proper, then OX(X) is a subfield of k′.
(iii) If X is normal, then k′ ⊆ OX(X).

Proof.

(i) Proposition 2.2.19 implies that k′/k is primary. Proposition 2.2.20
implies that k′/k is separable. A primary separable finite extension of
a field is trivial.

(ii) Let L be the k-algebra OX(X). Since X is proper, dimk L <∞. Since
X is integral, L is an integral domain. Thus L is a finite field extension
of k contained in k(X), so L ⊆ k′.

(iii) We have k ⊆ k′ ⊆ k(X), with k′ integral over k. For each x ∈ X, the
ring OX,x is integrally closed in its fraction field k(X) and contains k,
so it contains k′. Thus k′ ⊆ ⋂x∈X OX,x = OX(X). �

Remark 2.2.23. The following counterexamples explain why the hypothesis
in each part of Proposition 2.2.22 is needed, respectively:

(i) P1
F as k-scheme, for any nontrivial finite extension F/k,

(ii) A1
k, and

(iii) x2 − 2y2 = 0 over Q.

2.3. Scheme-valued points

2.3.1. Motivation: Rational points on affine varieties over fields.
Let X be the subvariety of Ank defined by a system of polynomial equations

f1(x1, . . . , xn) = 0

f2(x1, . . . , xn) = 0

...
fm(x1, . . . , xn) = 0.

In other words, if we define A := k[x1, . . . , xn]/(f1, . . . , fm), then X is the
affine k-variety SpecA. Then a k-rational point (or simply k-point) on X is
an n-tuple (a1, . . . , an) ∈ kn such that f1(a1, . . . , an) = fm(a1, . . . , an) = 0.
The set of k-points on X is in bijection with the set Homk-algebras(A, k),
which is in bijection with Homk-schemes(Spec k,X). This motivates the gen-
eral definition in the next section.

2.3.2. The set of scheme-valued points.

Definition 2.3.1. Let X be an S-scheme. If T is a S-scheme, then the set
of T -points on X is X(T ) := HomS(T,X).
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�

Warning 2.3.2. The definition of X(T ) depends on the structure morphism
X → S, even though the notation does not show it explicitly. This is in
keeping with our notational convention of using X as abbreviation for the
S-scheme (X, f) where f : X → S is the structure morphism.

In the case where S = Spec k and T = SpecL for a field extension L of
k, an element of X(L) is called an L-rational point or simply an L-point.

2.3.3. Functor of points, Yoneda’s lemma, and representable func-
tors.

(Reference: [Vis05, §2.1])

If T ′ → T is an S-morphism, then sending each S-morphism T → X to
the composition T ′ → T → X defines a map of sets X(T )→ X(T ′). In fact,
we obtain a functor:

Definition 2.3.3. The functor of points of an S-scheme X is the functor

hX : Schemesopp
S −→ Sets

T 7−→ X(T ) := HomS(T,X).

A morphism of S-schemes f : X → Y induces a map of sets X(T ) →
Y (T ) for each S-scheme T , and whenever T ′ → T is an S-morphism, we
obtain a commutative square

X(T ) //

��

Y (T )

��
X(T ′) // Y (T ′).

In other words, f induces a morphism of functors (i.e., natural transforma-
tion) hf : hX → hY .

The following is purely formal, true in any category, not just SchemesS ,
but is also very useful:

Lemma 2.3.4 (Yoneda’s lemma). Let X and Y be S-schemes. The function

HomS(X,Y ) −→ Hom(hX , hY )

f 7−→ hf

is a bijection.

Sketch of proof. The inverse map takes a morphism of functors F : hX →
hY to the image of the identity 1X ∈ HomS(X,X) = X(X) under the map
F (X) : X(X)→ Y (X). �

For a stronger version of Yoneda’s lemma, see [Vis05, p. 14].
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Remark 2.3.5. Yoneda’s lemma implies that X is determined by its functor
of points hX . In fact, X is already determined by the restriction of hX to
affine schemes, because hX(T ) = X(T ) can be recovered as lim←−X(Ti), where
(Ti) is the directed system of all affine open subschemes of T ordered by
inclusion.

Because no information is lost in passing from X to hX , it is sometimes
convenient to identify X with its functor of points hX ! Then more gen-
eral functors Schemesopp

S → Sets can be thought of as generalizations of
schemes; some of these functors are of the form hX , and some are not.

Definition 2.3.6. A functor F : Schemesopp
S → Sets is representable if it

is isomorphic to hM for some S-scheme M . In this case, one says also that
M represents F , or that M is a fine moduli space for F .

Sometimes when one wants to construct a scheme, at first one can con-
struct only what should be its functor of points F . Then one must ask
whether F is actually represented by a scheme. If so, then all the tools of
algebraic geometry can be applied to that scheme in order to understand
F better. If not, one can hope that F might still be represented by some
algebraic object more general than a scheme but close enough to a scheme
that some tools of geometry can still be applied. For example, F might be
represented by an algebraic space or an algebraic stack ; for an introduction,
see [LMB00] or [Ols16]. Alternatively, if F is not represented by a scheme,
so F is not isomorphic to any hM , then it might be at least approximated by
a functor hM in the following sense:

Definition 2.3.7. Let F : Schemesopp
S → Sets be a functor. An S-scheme

M equipped with a morphism of functors F ι→ hM is a coarse moduli space
for F if the following hold:

(i) For every other S-scheme M ′ with a morphism F → hM ′ , there is a
unique morphism hM → hM ′ (or, equivalently, a unique S-morphism
M →M ′) such that F → hM ′ factors as F

ι→ hM → hM ′ .
(ii) For every algebraically closed field k and morphism Spec k → S, the

map F (Spec k)→M(k) given by ι is a bijection.

Intuitively, one can understand Definition 2.3.7 as follows. The set
F (Spec k) is a certain collection of objects. If T is a k-scheme, an element
of F (T ) may be thought of as a family of such objects parameterized by T .
Thus giving F specifies both the objects and also what constitutes a family
of objects. If M is a coarse moduli space, then each object in F (Spec k) has
a class inM(k), and condition (ii) says that the objects are in bijection with
their classes. The morphism F → hM gives in particular that for each T
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there is a map F (T )→ HomS(T,M); it may be thought of as taking a family
π : X → T to the morphism T →M sending each point t ∈ T (k) to the point
ofM corresponding to class of the fiber π−1(t). Finally, condition (i) requires
that M is such that hM is as close as possible to F ; it prevents, for example,
replacing the morphism F → hM by a composition F → hM → hN such
that M(k) → N(k) is a bijection. In fact, since condition (i) is a universal
property, it guarantees that M is unique if it exists.

Example 2.3.8 (Moduli space of curves). Fix g ∈ Z≥0. For an algebraically
closed field k, let Mg(k) be the set of isomorphism classes of smooth pro-
jective geometrically integral curves of genus g over k (see Section 3.5 for
the definition of smooth). More generally, for any scheme T , let Mg(T )
be the set of isomorphism classes of smooth proper T -schemes whose fibers
are geometrically integral curves of genus g. Then the functor F := Mg

is not represented by a scheme, but it has a coarse moduli space Mg that
is a quasi-projective scheme over Z; alternatively, Mg is represented by an
algebraic stack [DM69]. Also, the subfunctor M0

g parameterizing genus g
curves whose automorphism group is trivial is represented by a quasi-pro-
jective scheme M0

g , and it is nonempty for g ≥ 3.

Example 2.3.9 (Moduli space of curves with marked points). More gener-
ally, for any g, n ∈ Z≥0, there is a quasi-projective coarse moduli space Mg,n

whose points over an algebraically closed field parameterize genus g curves
with n distinct marked points. The subfunctor parameterizing (C, p1, . . . , pn)
such that the group of automorphisms of C fixing p1, . . . , pn is trivial is repre-
sented by a quasi-projective scheme M0

g,n. For fixed g, we have Mg,n = M0
g,n

for sufficiently large n; that is, Mg,n is a fine moduli space for n large enough
relative to g. The symmetric group Sn acts on Mg,n.

Example 2.3.10 (Moduli space of genus 0 curves with marked points). The
group AutP1 ' PGL2 acts simply transitively on triples of distinct points
of P1. Therefore, for n ≥ 3, the space M0,n parameterizing (AutP1)-orbits
of n-tuples of points on P1 is a fine moduli space. Let us work over a field
k. Then M0,3 is a point Spec k. Next, M0,4 ' P1 − {0, 1,∞}, since any
4-tuple of distinct geometric points can be moved by an automorphism of
P1 to a unique 4-tuple of the form (0, 1,∞, x) with x /∈ {0, 1,∞}. And M0,5

is (P1 − {0, 1,∞})2 − ∆, where ∆ is the diagonal; see Section 9.4.7 for an
application. For each n ≥ 3, the space M0,n is an open subscheme of An.

Example 2.3.11 (Twists of Mg,n). Over non-algebraically closed fields, we
may consider twists of Mg,n in the sense of Section 4.5. Start by thinking of
Mg,n as parameterizing isomorphism classes of genus g curves C equipped
with a closed immersion Spec kn → C. If L is a degree n étale k-algebra, then
there is a coarse moduli space M (L)

g,n over k parameterizing genus g curves
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C equipped with a closed immersion SpecL → C. The varieties M (L)
g,n and

Mg,n become isomorphic after base change to ks.

Example 2.3.12 (Compactifications of the moduli space of curves). There
is a functor Mg that parameterizes isomorphism classes of stable genus g
curves; see [HM98, Theorem 2.15] for an introduction and for the definition
of stable. Knudsen and Mumford proved thatMg has a coarse moduli space
Mg that is a projective variety containingMg as an open subvariety: the first
proof, published long after its discovery, was that in [Knu83, Theorem 6.1],
but a simpler proof was given in [Mum77, Corollary 5.2]. Similarly one can
construct projective varieties Mg,n and M (L)

g,n .

2.3.4. Functorial properties. If X is an S-scheme and U ⊆ X is an open
subscheme, then U(T ) ⊆ X(T ) for any S-scheme T ; see Exercise 2.4.

Remark 2.3.13. Let k be a field, and let X be a k-scheme. If {Xi} is an
open covering of X, then

⋃
Xi(k) = X(k).

�

Warning 2.3.14. Remark 2.3.13 holds more generally for a local ring k,
but not for an arbitrary ring. It can fail for a polynomial ring, for instance:
a morphism A1 → X need not have image contained in any one Xi.

Despite Warning 2.3.2, we do get independence of S if we base change
X appropriately:

Proposition 2.3.15. If X is an S-scheme, S′ → S is a morphism of
schemes, and T is an S′-scheme, then XS′(T ) = X(T ), where on the right
we view T as S-scheme via the composition T → S′ → S.

Proof. The universal property of the fiber product gives HomS′(T,XS′) =
HomS(T,X). �

2.3.5. Example: Scheme-valued points on projective space. Let X
be an S-scheme. By Proposition 2.3.15, PnS(X) = PnZ(X) := HomZ(X,PnZ),
and the set on the right is described by [Har77, Theorem II.7.1]. The
outcome is that there is a bijection

PnS(X)←→
{

(L , s0, . . . , sn) :
L is a line bundle on X, and

s0, . . . , sn ∈ Γ(X,L ) generate L

}
/ ' .

By definition, global sections s0, . . . , sn generate L if and only if for every
P ∈ X, they do not simultaneously vanish when evaluated at P (that is,
for every P ∈ X, their images in the 1-dimensional k(P )-vector space stalk
LP /mPLP do not all vanish). On the right, tuples are considered up to
isomorphism: (L , s0, . . . , sn) and (L ′, s′0, . . . , s

′
n) are called isomorphic if

and only if there is an isomorphism of line bundles L → L ′ mapping si to
s′i for each i.
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Remark 2.3.16. Intuitively, one can think of (L , s0, . . . , sn) as describing
the morphism

X −→ PnS
P 7−→ (s0(P ), . . . , sn(P )).

Strictly speaking, this does not make sense, since the si(P ) are not well-
defined elements of the field k(P ) (si not being a function on X). But at
each P , we can fix j such that sj is nonvanishing at P (that is, sj /∈ mPLP ),
and then for every i the ratio si/sj may be viewed as a function defined in
a neighborhood of P in X.

Example 2.3.17. Let us compute Pn(A) when A is a principal ideal domain.
By [Har77, Proposition II.6.2 and Corollary II.6.16], PicA = 0. That is,
the only line bundle on X := SpecA, up to isomorphism, is OX . Global
sections of OX are simply elements of A, and a sequence of global sections
a0, . . . , an ∈ A generate OX if and only if a0, . . . , an generate the unit ideal.
An isomorphism of line bundles OX → OX is the same as an A-module
isomorphism A → A, which is the same as multiplication by some unit
λ ∈ A×. Hence

Pn(A) = { (a0, . . . , an) ∈ An+1 : a0, . . . , an generate (1) }/ ∼,
where the equivalence relation ∼ is as follows: (a0, . . . , an) ∼ (a′0, . . . , a

′
n) if

and only if there exists λ ∈ A× such that a′i = λai for all i. The equivalence
class of (a0, . . . , an) is denoted (a0 : · · · : an).

In the special case where A is a field, this gives the expected description
of Pn(k).

Remark 2.3.18. If A is a principal ideal domain and K = FracA, it follows
from Example 2.3.17 that the natural map Pn(A) → Pn(K) is a bijection.
Namely, given (a0 : · · · : an) ∈ Pn(K), the fractional ideal generated by
a0, . . . , an is principal, and if we choose a generator λ, then scaling all the
ai by λ−1 results in an equivalent point that comes from Pn(A). For a
generalization of this remark, see Theorem 3.2.13.

2.3.6. Scheme-valued points on separated schemes.

(Reference: [EGA IV3, §11.10])

Definition 2.3.19. A morphism of schemes f : X → Y is called dominant if
the set f(X) is dense in the topological space Y ; i.e., the only closed subset
of Y containing f(X) is Y itself. Call f scheme-theoretically dominant
(cf. [EGA IV3, 11.10.2]) if either of the following equivalent conditions
holds:

• Whenever U is an open subscheme of Y , and f |f−1U : f−1U → U factors
as f−1U → Z ↪→ U for some closed subscheme Z of U , we have Z = U .
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• The sheaf homomorphism OY → f∗OX is injective.
�

Warning 2.3.20. It would be insufficient to require the first condition only
for U = Y , i.e., to require only that the only closed subscheme of Y through
which f factors is Y itself; one really needs to impose the condition for every
open subscheme U ⊆ Y . See Exercise 2.10.

Scheme-theoretically dominant implies dominant. If Y is reduced, then
the notions are equivalent, since then every open subscheme U is reduced
too, and the only closed subscheme of U having the same topological space
as U is U itself.

Proposition 2.3.21. Let X be a separated S-scheme. If T ′ → T is a
scheme-theoretically dominant S-morphism, then X(T ) → X(T ′) is injec-
tive.

Proof. Let f, g ∈ X(T ), and let e be the morphism T ′ → T , so we have

T ′
e−→ T

(f,g)−→ X ×S X.
Since X is separated over S, the diagonal ∆ ⊆ X×SX is a closed subscheme.
Let Z = (f, g)−1∆, which is “the closed subscheme of T on which f and g
agree”. Let f ′, g′ be the images of f, g in X(T ′), and let Z ′ = (f ′, g′)−1∆.
Then Z ′ = e−1(Z). If f ′ = g′, then Z ′ = T ′, but e is scheme-theoretically
dominant, so then Z = T , which means that f = g. This proves injectivity.

�

Corollary 2.3.22. If R ⊆ R′ is an inclusion of rings and X is a separated
R-scheme, then X(R)→ X(R′) is injective.

Proposition 2.3.21 implies also that, under suitable hypotheses, mor-
phisms agreeing on a dense open subscheme agree everywhere:

Corollary 2.3.23. Let X be a reduced S-scheme, and let Y be a separated
S-scheme. Let U be a dense open subscheme of X. If f and g are morphisms
X → Y such that f |U = g|U , then f = g.

Proof. Proposition 2.3.21 says that Y (X)→ Y (U) is injective. �

2.3.7. Varieties that are not geometrically integral.

Proposition 2.3.24. Let k be a field. A connected k-scheme with a k-point
is geometrically connected.

Proof. More generally, if X and Y are connected k-schemes and X has a
k-point, then X ×k Y is connected; see [EGA IV2, Corollaire 4.5.14] or
[SGA 3I, Exposé VIA, Lemma 2.1.2]. �



Un
offi
cia
l v
ers
ion

for
inc
ide
nta

l o
nli
ne
use

44 2. Varieties over arbitrary fields

�

Warning 2.3.25. In contrast with Proposition 2.3.24, an irreducible k-
variety with a k-point need not be geometrically irreducible: the Q-variety
x2 − 2y2 = 0 in Example 2.2.6 has the rational point (0, 0).

But if we have not just one k-point, but a Zariski dense set of k-points,
we can say more:

Proposition 2.3.26. Let X be a finite-type scheme over a field k such that
X(k) is Zariski dense in X.

(i) If X is irreducible, then X is geometrically irreducible.
(ii) If X is reduced, then X is geometrically reduced.
(iii) If X is integral, then X is geometrically integral.

Proof.

(i) Replacing X by its associated reduced subscheme Xred affects neither
the hypotheses nor the conclusion. Suppose that X is not geometrically
irreducible. By Proposition 2.2.19(i)⇔(iv), k(X)/k is not primary, so
there exists α ∈ k(X) \ k separable and algebraic over k. By definition
of k(X), we have α ∈ O(U) for some nonempty affine open subscheme
U ⊆ X. Since X(k) is Zariski dense in X, there exists a k-point in
U . This point induces a k-algebra homomorphism O(U) → k, which
restricts to a k-algebra homomorphism k(α) → k, contradicting the
fact that field homomorphisms are injective.

(ii) It suffices to prove the statement for each subscheme in an open cover
of X. So assume that X = SpecA. Each x ∈ X(k) corresponds
to a k-algebra homomorphism A → k. Putting these together gives a
homomorphism A→∏

x∈X(k) k, which is injective since X(k) is Zariski
dense and A is reduced. Tensoring with k yields an injection

A⊗k k ↪→

 ∏
x∈X(k)

k

⊗k k ⊆ ∏
x∈X(k)

k,

which shows that A⊗k k is reduced. Thus X is geometrically reduced.
(iii) Combine (i) and (ii). �

Remark 2.3.27. Proposition 2.3.26 is often applied in its contrapositive
form: if X is an integral k-variety that is not geometrically integral, then
X(k) is not Zariski dense. In this case, the study of X(k) reduces to the
study of Y (k) for a lower-dimensional variety Y . For this reason, when
studying rational points, we can reduce to the case of geometrically integral
varieties.
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2.4. Closed points

Definition 2.4.1. A closed point of a scheme X is a point x ∈ X such that
{x} is Zariski closed in X.

If X is a variety over an algebraically closed field k, the map

X(k) −→ {closed points of X}
(f : Spec k → X) 7−→ f(Spec k)

is a bijection. The nonclosed points of X are the generic points of the
positive-dimensional integral subvarieties of X.

To develop intuition for our generalizations to arbitrary fields k, namely
Propositions 2.4.3 and 2.4.6, we begin with an example:

Example 2.4.2. Let X = A1
R = SpecR[t]. The following are in bijection:

(i) The set of closed points of X.
(ii) The set of maximal ideals of R[t].
(iii) The set of monic irreducible polynomials of R[t].
(iv) The set of Gal(C/R)-orbits in X(C) = C.

If x ∈ X is a closed point corresponding to a monic irreducible polynomial
f ∈ R[t], then k(x) = R[t]/(f), so [k(x) : R] = deg f , which may be 1 or
2. Those x with [k(x) : k] = 1 correspond to size 1 orbits in (iv), which
correspond to elements of X(R).

Proposition 2.4.3. Let X be a k-variety, and let x ∈ X. The following are
equivalent:

(i) The point x is closed.
(ii) The dimension of the closure of {x} is 0.
(iii) The residue field k(x) is a finite extension of k.

Proof. The closure {x} with its reduced structure is irreducible and reduced,
so it is an integral k-variety.

(i)⇒(ii): The dimension of a one-point space is 0.
(ii)⇒(i): Suppose that y ∈ {x}; we must prove that y = x. We have

irreducible closed subsets {y} ⊆ {x}, but we are assuming dim {x} = 0, so
{y} = {x}. In a scheme, an irreducible closed subset has a unique generic
point, so y = x.

(ii)⇔(iii): The function field of {x} is k(x), so dim {x} = tr deg(k(x)/k).
In particular, dim {x} = 0 if and only if k(x) is algebraic over k, which is the
same as saying that k(x) is a finite extension of k since we know in advance
that k(x) is a finitely generated field extension of k. �
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Definition 2.4.4. The degree of a closed point x on a k-variety X is
[k(x) : k].

Remark 2.4.5. Schemes of finite type over Z share many properties with
schemes of finite type over a field. In particular, there is an analogue of
Proposition 2.4.3 that states that if X is a scheme of finite type over Z and
x ∈ X, the following are equivalent:

(i) The point x is closed.

(ii) The (Krull) dimension of the closure of {x} is 0.

(iii) The residue field k(x) is finite.

The proof of (i)⇔(ii) is as before, and (i)⇔(iii), which may be called the
arithmetic weak Nullstellensatz, is [EGA IV3, 10.4.11.1(i)].

Proposition 2.4.6. Let X be a k-variety. Then the map

{Gk-orbits in X(k) } −→ { closed points of X }
orbit of

(
f : Spec k → X

)
7−→ f(Spec k)

is a bijection.

Proof. For any field extension L of k, [Har77, Lemma II.4.4] gives a bijec-
tion

X(L)←→ { (x, ι) | x ∈ X, and ι : k(x) ↪→ L is a k-embedding },
in which the x coming from P ∈ X(L) is the unique point in the image of
SpecL → X. Take L = k. Suppose that P ∈ X(k) corresponds to (x, ι).
Since k(x) is finitely generated over k, it is a finite extension of k, so x is a
closed point. Thus we get a bijection

X(k)←→ { (x, ι) | x ∈ X is closed, and ι : k(x) ↪→ k is a k-embedding }.
This bijection is Gk-equivariant, where σ acts on X(k) coordinatewise (or,
equivalently, by forming the composition Spec k

σ→ Spec k
P→ X) and acts

on the right set by (x, ι) 7→ (x, ι◦σ). For each closed point x ∈ X, the set of
k-embeddings ι : k(x) ↪→ k is a nonempty and transitive Gk-set, so the set
of Gk-orbits on the right-hand side equals the set of closed points x. �

In particular, if X is a k-variety, then k-points of X are in bijection with
closed points with residue field k.

�

Warning 2.4.7. On schemes that are not varieties, closed points can behave
strangely. For instance, there exists a nonempty scheme with no closed points
at all! See [Liu02, Exercise 3.27].
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2.5. Curves

(Reference: [Liu02, Chapter 7])

2.5.1. Genus.

(Reference: [Liu02, Chapter 7, Definition 3.19])

Let X be a regular, projective, geometrically integral curve over a field
k. Its genus g = g(X) admits several equivalent definitions:

• The arithmetic genus of X is pa(X) := dimk H1(X,OX).
• Let ω◦X be the dualizing sheaf [Har77, III.§7], a line bundle on X. If
X is smooth (see Section 3.5), then ω◦X is simply the canonical sheaf
ωX = Ω1

X/k [Har77, II.§8]. The geometric genus of X is pg(X) :=

dimk H0(X,ω◦X).
• The genus is the integer g that makes the Riemann–Roch theorem (The-
orem 2.5.3) hold.
• If k = C, then the compact Riemann surface X(C) can be viewed as a
compact orientable 2-dimensional R-manifold, which is a g-holed torus
for a unique g ≥ 0.

The proof of the Serre duality theorem [Har77, Corollary III.7.7] works
over an arbitrary field k, and shows that the k-vector spaces H1(X,OX) and
H0(X,ω◦X) are dual, so pa(X) = pg(X).

If Y is a curve birational to a regular, projective, geometrically integral
curve X, define g(Y ) := g(X).

2.5.2. Genus change under field extension.

(Reference: [Tat52])

Theorem 2.5.1. Let X be a regular, projective, geometrically integral k-
curve. Let L ⊇ k be a field extension. Then

(a) We have g(XL) ≤ g(X), with equality if and only if XL is regular.
(b) The difference g(X)− g(XL) is divisible by (p− 1)/2.
(c) If L is separable over k, then g(XL) = g(X).

Sketch of proof.

(a) Let X̃L be the desingularization of XL. We can define pa(XL) as before
even if XL is not regular; in fact, pa(XL) = pa(X) since cohomology
commutes with flat base extension [Har77, Proposition III.9.3]. But
g(XL) is defined as pa(X̃L), which is less than or equal to pa(XL), with
equality if and only if XL is already regular.
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48 2. Varieties over arbitrary fields

(b) See [Tat52].
(c) If L is separable over k, then XL is regular (this follows from Proposi-

tion 3.5.51(iii)), so this is a special case of (a). �

Example 2.5.2. Let p be an odd prime. Let k be the imperfect field Fp(t).
Let X be the affine curve y2 = xp − t over k. One can show that g(X) =
(p− 1)/2. On the other hand, Xk is isomorphic to the curve y2 = xp, which
is birational to P1

k
, so g(Xk) = 0.

2.5.3. The Riemann–Roch theorem.

(Reference: [Liu02, §7.3])

Let X be a regular, projective, geometrically integral k-curve of genus
g. The group DivX of Weil divisors on X is the free abelian group on the
set of closed points P of X. Each D ∈ DivX gives rise to a line bundle
O(D). By [Har77, Corollary II.6.16], this induces an isomorphism from
the group of Weil divisors modulo linear equivalence to the Picard group
PicX of isomorphism classes of line bundles. If D =

∑
nPP ∈ DivX,

define degD :=
∑
nP degP , where degP is as in Definition 2.4.4, and define

`(D) := dimk H0(X,O(D)). A canonical divisor is a divisor K such that
ω◦X = O(K).

Theorem 2.5.3 (Riemann–Roch). Let X and K be as above. Then

`(D)− `(K −D) = degD + 1− g.

Proof. Once one has the Serre duality theorem, this is very similar to the
proof of [Har77, Theorem IV.1.3], so we leave it as Exercise 2.15. See
also [Liu02, Chapter 7, Theorem 3.26]. �

2.6. Rational points over special fields

2.6.1. Rational points over finite fields. Let k be a finite field, and let
X be a k-variety. Then X(k) is finite. (This is obvious if X is affine, and the
general case follows by applying Remark 2.3.13 to an affine open covering.)
More will be said in Chapter 7.

2.6.2. Rational points over topological fields.

(Reference: [Ser55])

Let k be a topological field (for example, a local field), and let X be a
k-variety. We can use the topology of k to define a topology on X(k), called
the analytic topology, as follows. Give the set An(k) = k × · · · × k the
product topology. If X is a closed subvariety of An, give X(k) ⊆ An(k) the
subspace topology. Finally, if X is obtained by gluing affine open subsets
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2.6. Rational points over special fields 49

X1, . . . , Xm, then use the same gluing data to glue the topological spaces
X1(k), . . . , Xm(k). Two different affine open coverings give the same topol-
ogy on X(k), as one can check by comparison with a common refinement.
Any morphism of k-varietiesX → Y induces a continuous mapX(k)→ Y (k)
of topological spaces.

Proposition 2.6.1. Let k be a local field. Let X be a k-variety.

(i) If X is proper over k, then X(k) is compact.
(ii) More generally, if X → Y is a proper morphism of k-varieties, then

X(k)→ Y (k) is a proper map of topological spaces. (The latter means
that the inverse image of any compact subset of Y (k) is compact.)

The converses hold when k = C.

Proof. See Serre’s “GAGA” paper [Ser55]. �

�

Warning 2.6.2. The converses can fail for k = R; see Exercise 2.16.

Remark 2.6.3. In the case k = C, one can go further by equipping the
topological space X(C) with a sheaf of germs of holomorphic functions to
get a locally ringed space Xan. (If dimX > 0, then Xan is not a scheme.)
Such locally ringed spaces are special cases of complex analytic spaces; see
[Har77, Appendix B] for a survey with more details, and [SGA 1, XII]
for a definition of Xan as the complex analytic space representing a certain
functor. There are also various nonarchimedean analogues [Con08].

Remark 2.6.4 (Hilbert’s tenth problem over a local field). There is an
algorithm that, given a local field k of characteristic 0 and a k-variety X,
decides whether X(k) is nonempty. (Strictly speaking, to make sense of
this, one should assume that X is given over an explicitly presented finitely
generated subfield of k, so that X admits a finite description suitable for
input into a Turing machine.) The analogue for Fq((t)) is an open question.

2.6.3. Adelic points.

(Reference: [Con12a])

Let k be a global field, and let Ωk, Ok,S , kv, Ov, and A be as in Sec-
tion 1.1.3. Let X be a k-variety. Since A is a k-algebra, the set X(A) of
adelic points is already defined, as the set of k-morphisms SpecA→ X.

There is a more down-to-earth description of X(A), however, as we
now sketch. There exists a finite set S of places and a separated finite-
type Ok,S-scheme X such that Xk ' X. Then X(A) is in bijection with∏′
v∈Ωk

(X(kv),X (Ov)); see Exercise 3.4.
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50 2. Varieties over arbitrary fields

This bijection lets us equip X(A) with a topology. First, equip each
X(kv) with the analytic topology. Next, for nonarchimedean v /∈ S, equip the
open and closed subset X (Ov) ⊆ X (kv) = X(kv) with the subspace topology.
Finally, define the adelic topology on X(A) '∏′v∈Ωk

(X(kv),X (Ov)) as the
restricted product topology, in which the basic open sets are those of the form∏
v∈T Uv ×

∏
v/∈T X (Ov) for a finite set T ⊇ S and open subsets Uv ⊆ X(kv)

for each v ∈ T .

Remark 2.6.5. If X is a closed subscheme of An, the adelic topology on
X(A) agrees with the subspace topology obtained by viewing X(A) as a
subset of the topological space An.

2.6.4. Rational points over global fields. Let k be a global field. Let
X be a k-variety. One would like to know the answers to many questions,
such as the following.
2.6.4.1. Existence of rational points.

Question 2.6.6. Does X have a k-point?

The problem of answering this question given an arbitrary X is equiv-
alent to Hilbert’s tenth problem over k, which is the problem of finding
a general algorithm that takes a multivariable polynomial f(x1, . . . , xn) ∈
k[x1, . . . , xn] as input and outputs YES or NO according to whether there
exists ~a ∈ kn such that f(~a) = 0.

• For each global function field k, no such algorithm exists [Phe91,Shl92,
Vid94,Eis03].
• On the other hand, for each number field k, it is unknown whether such
an algorithm exists. It is not even proved yet that one can decide, given
a ∈ Q, whether x3 + y3 = a has a solution in rational numbers.

See [Poo08] for more about extensions of Hilbert’s tenth problem.
2.6.4.2. Finiteness of rational points.

Question 2.6.7. Is X(k) finite or infinite? When X(k) is finite, can one
list its elements?

For curves X over number fields, the following theorem of Faltings gives
a partial answer. Because of Remark 2.3.27 and the fact that X and its
normalization differ in only finitely many points, we may assume that X is
nice in the sense of Definition 3.5.68.

Theorem 2.6.8 ([Fal83]). Let X be a nice curve of genus > 1 over a number
field k. Then X(k) is finite.
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2.6. Rational points over special fields 51

For more details and generalizations, see Section 9.5. Question 2.6.7 can
be difficult to answer even for specific, simple-looking equations:

Example 2.6.9. Let X be the projective surface in P3
Q defined by the ho-

mogeneous equation x4 + 2y4 = z4 + 4w4. There are two obvious rational
points, given in homogeneous coordinates as (1 : 0 : ±1 : 0). The next
smallest solutions are

(±1484801 : ±1203120 : ±1169407 : ±1157520),

according to [EJ06]. Are there infinitely many others? (This surface is an
example of a K3 surface; see Section 9.3.2.2. It is not known whether there
is a K3 surface X over a number field k such that X(k) is nonempty and
finite.)

2.6.4.3. Growth of rational points. Let us now return to the case of an ar-
bitrary variety X over a global field k. If X(k) is infinite, one can try to
“measure its size” in some way. For example, given P ∈ Pn(Q), one can
write P = (a0 : · · · : an) with ai ∈ Z and gcd(a0, . . . , an) = 1, and define the
height of P as H(P ) := max |ai|. Then, for X ⊆ PnQ, one defines

NX(B) := #{x ∈ X(Q) : H(x) ≤ B}.
Question 2.6.10. ForX ⊆ PnQ, can one predict the rate of growth of NX(B)
as B →∞?

For a survey on this question, see [Pey02].
2.6.4.4. Zariski density of rational points.

Question 2.6.11. Is X(k) Zariski dense in X?

Question 2.6.12. Is there a finite extension L of k such that X(L) is Zariski
dense (in XL)? If so, one says that “rational points are potentially dense on
X”.

Campana [Cam04, Conjecture 9.20] has conjectured that for a variety
X over a number field, potential density is equivalent to a certain geometric
condition.
2.6.4.5. Local approximation of rational points.

Question 2.6.13. Given a place v of k, is X(k) dense in X(kv) with respect
to the v-adic (analytic) topology?

Related to this is the following conjecture of Mazur:

Conjecture 2.6.14 ([Maz92]). If X is a Q-variety, then the closure of
X(Q) in X(R) with respect to the analytic topology has at most finitely many
connected components.
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52 2. Varieties over arbitrary fields

One strategy for determining whether a variety over global field k has a
k-point is to check first whether it has a kv-point for each completion kv of
k. This motivates the following question:

Question 2.6.15. Does the implication

X(kv) 6= ∅ for all places v of k =⇒ X(k) 6= ∅
hold? If so, one says that X satisfies the local-global principle (or Hasse
principle).

If X satisfies the local-global principle, one can ask whether a stronger
condition holds:

Question 2.6.16. Is the image of X(k)→∏
vX(kv) dense with respect to

the product of the v-adic topologies? If so, one says that X satisfies weak
approximation.

Exercise 2.17 explains how weak approximation is about simultaneous
approximation of kv-points for finitely many v by a k-point. Some varieties
satisfy the local-global principle and/or weak approximation, and others do
not. See [Har04] for a survey on weak approximation.

One can ask for even more:

Question 2.6.17. Is the image of X(k)→ X(A) dense with respect to the
adelic topology?

This is stronger than weak approximation since the adelic topology on
X(A) generally has more open sets than the topology induced on X(A) as
a subset of

∏
X(kv) equipped with the product topology. In fact, adelic

density is too strong to have a chance of holding for many varieties: for
instance, if X is affine, then X(k) is discrete in X(A) since k is discrete in
A. Therefore we now weaken the condition slightly.

Let S be a finite set of places of k. Define the prime-to-S adèle ring
AS :=

∏′
v/∈S(kv,Ov), so A =

(∏
v∈S kv

)
× AS . For any k-variety, define

an adelic topology on X(AS) as in Section 2.6.3, by viewing X(AS) as a
restricted product. The weakened question is then:

Question 2.6.18. Is the image of X(k) → X(AS) dense with respect to
the adelic topology? If so, one says that X satisfies strong approximation
with respect to S.

See Section 5.10 for approximation theorems in the case that X is an
algebraic group, and see Section 8.4.6 for a way to prove that strong approx-
imation fails for certain varieties.
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Exercises

2.1. Find a field k and a regular integral k-variety X that is neither affine,
projective, geometrically connected, geometrically reduced, nor geo-
metrically regular.

2.2. Let k = Fp(s, t), where s and t are indeterminates. Let X be the
k-variety sxp + typ = 1 in A2

k. Let L be the function field of X.
(a) Show that the only finite extension of k contained in L is k itself.
(b) Show that L is not separable over k.

2.3. For any scheme X over a field, if Xred is the associated reduced
scheme, then the natural map Xred(k) → X(k) is a bijection. For
which schemes S is it true that for every S-scheme X, the map
Xred(S)→ X(S) is a bijection?

2.4. Let X be an S-scheme, and let U be an open subscheme. Prove that
for any S-scheme T , the set U(T ) is the subset of X(T ) consisting of
S-morphisms f : T → X such that f(T ) is contained in U as a set.

2.5. Let F be the functor Schemesopp → Sets that maps each scheme X
to OX(X)× and that maps a morphism f : X → Y to the natural map
OY (Y )× → OX(X)× induced from the ring homomorphism OY (Y )→
OX(X). Prove that F is representable.

2.6. Let S be a scheme with a morphism Spec k → S for some algebraically
closed field k. Let F : Schemesopp

S → Sets be a functor. Prove that
any fine moduli space for F is also a coarse moduli space for F .

2.7. Fix p, q, r ∈ Z>0. A primitive integer solution to the generalized
Fermat equation xp + yq = zr is one in which x, y, z ∈ Z and
gcd(x, y, z) = 1. Let S = SpecZ[x, y, z]/(xp + yq − zr), and let T be
the closed subscheme SpecZ[x, y, z]/(x, y, z). Let S′ = S − T , which
is an open subscheme of S. Prove that S′(Z) is in bijection with the
set of primitive integer solutions to xp + yq = zr.

2.8. Find a scheme X over Z such that

X(A) ' { (a, b) ∈ A2 : a, b generate the unit ideal in A }
functorially in the ring A.

2.9. Give an example of an S-scheme X with open subschemes U and V
such that U ∪ V = X but U(S) ∪ V (S) 6= X(S).

2.10. Let k be a field. Let Y = Spec k[t]. For n ≥ 1, let Xn be the closed
subscheme Spec k[t]/(tn). Let X be the disjoint union

∐
n≥1Xn. Let

f : X → Y be the morphism that on each Xn is the inclusion.
(a) Is f dominant?
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54 2. Varieties over arbitrary fields

(b) Is f scheme-theoretically dominant?
(c) Does f factor through a closed subscheme of Y other than Y itself?

2.11. (Failure of descent) Let k = Q(
√

2). Prove that there does not exist a
variety X over Q such that Xk is isomorphic to the affine plane curve
x2 + y2 =

√
2 over k.

2.12. Let X be the curve x2 + y2 + z2 = 0 in P2
R. Prove that the homomor-

phism PicX → (PicXC)Gal(C/R) is not an isomorphism.
2.13. Let X be a scheme of finite type over Fq. Let Nd be the number of

degree d closed points on X. Prove that
∑

d|n dNd = #X(Fqn) for
each n ≥ 1.

2.14. Use Möbius inversion to give a formula for the number of degree n
monic irreducible polynomials in Fq[t].

2.15. Assuming that the Serre duality theorem [Har77, Corollary III.7.7]
holds over an arbitrary field k (it does), prove the Riemann–Roch
theorem (Theorem 2.5.3) for regular, projective, geometrically integral
curves over k.

2.16. Give two examples of nonproper R-varieties X such that X(R) is com-
pact in the analytic topology, one with X(R) empty and one with
X(R) nonempty.

2.17. Let k be a global field. Let X be a k-variety with a kv-point for every
v. Prove that X satisfies weak approximation if and only if for every
finite set S of places and any nonempty open sets Uv ⊆ X(kv) for
v ∈ S, there exists x ∈ X(k) such that x ∈ Uv for all v ∈ S.
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Chapter 3

Properties of morphisms

3.1. Finiteness conditions

3.1.1. Quasi-compact and quasi-separated morphisms.

Definition 3.1.1 ([Har77, Exercise II.2.13]). A schemeX is quasi-compact
if one of the following equivalent conditions is satisfied:

(i) The topological space of X is quasi-compact; i.e., every open cover of
X has a finite subcover. (One says “quasi-compact” instead of just
“compact” for clarity since some authors include “Hausdorff” as part of
the latter.)

(ii) The scheme X is a finite union of affine open subsets.

Definition 3.1.2 ([EGA I, 6.6.1], [EGA IV1, §1.1]). A morphism of
schemes f : X → S is quasi-compact if one of the following equivalent con-
ditions is satisfied:

(i) There is an affine open covering {Si} of S such that for each i, the
scheme f−1Si is quasi-compact.

(ii) For every affine open subset U ⊆ S, the scheme f−1U is quasi-compact.

Definition 3.1.3 ([EGA IV1, §1.2]). A morphism of schemes f : X → S is
quasi-separated if one of the following equivalent conditions is satisfied:

(i) There is an affine open covering {Si} of S such that whenever X1, X2

are affine open subsets of f−1Si, the intersection X1 ∩X2 is a union of
finitely many affine open subsets.

(ii) For every affine open U ⊆ S and every affine open subsets X1, X2 ⊆
f−1U , the intersection X1 ∩X2 is a union of finitely many affine open
subsets.

55
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56 3. Properties of morphisms

(iii) The diagonal morphism X → X ×S X is quasi-compact.

If X is noetherian, then every open subscheme of X is quasi-compact, so
every morphism X → S is both quasi-compact and quasi-separated. Most
theorems about noetherian schemes use only that the schemes are quasi-
compact and quasi-separated.

Example 3.1.4. Let A be a polynomial ring k[x1, x2, . . .] in countably many
indeterminates over some field k. Let P ∈ SpecA be the closed point cor-
responding to the maximal ideal (x1, x2, . . .). Let U be the open subscheme
of SpecA obtained by removing P . Then the open subsets D(xi) of SpecA
form an open cover of U with no finite subcover, so U is not quasi-compact.

Example 3.1.5. With notation as in Exercise 3.1.4, let X be “infinite-
dimensional affine space with a doubled origin”, i.e., the scheme obtained
by gluing two copies X1, X2 of SpecA along the copy of U in each. The
identity morphisms Xi → SpecA glue to give a morphism X → SpecA
that is not quasi-separated, since X1 and X2 are affine open subsets whose
intersection is not quasi-compact.

3.1.2. Finitely presented algebras.

Definition 3.1.6 ([EGA IV1, 1.4.1]). Let A be a commutative ring, and let
B be an A-algebra. Then B is said to be a finitely presented A-algebra (or of
finite presentation over A) if B is isomorphic as A-algebra to A[t1, . . . , tn]/I
for some n ∈ N and some finitely generated ideal I of the polynomial ring
A[t1, . . . , tn].

Remark 3.1.7. The only difference between “finitely generated” and “finitely
presented” is the requirement in the latter that I be finitely generated as an
ideal.

Proposition 3.1.8. Let A be a commutative ring. If an A-algebra B is
finitely presented, then it is finitely generated. The converse holds for noe-
therian A.

Proof. Remark 3.1.7 explains why “finitely presented” implies “finitely gen-
erated”. If A is noetherian, the Hilbert basis theorem says that A[t1, . . . , tn]
is noetherian, so any ideal I in it is automatically finitely generated. �

Over non-noetherian rings, the more restrictive notion “finitely presented”
has better properties than “finitely generated” (which is synonymous with “of
finite type”). Non-noetherian rings do come up in arithmetic geometry; for
instance, the adèle ring of a global field is not noetherian.
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3.1. Finiteness conditions 57

Example 3.1.9. Let k be a field, and let A = k[x1, x2, . . . ]. Then the
A-ideal I := (x1, x2, . . . ) is not finitely generated. One can show that the
finitely generated A-algebra A/I is not finitely presented; see Exercise 3.1.

3.1.3. Morphisms locally of finite presentation.

Definition 3.1.10 ([EGA IV1, 1.4.2]). Let f : X → S be a morphism of
schemes, let x ∈ X, and let s = f(x). Then one says that f is locally of finite
presentation at x if there exist affine open neighborhoods V = SpecA of s
and U = SpecB of x such that B is of finite presentation over A. One says
that f is locally of finite presentation (or that the S-scheme X is locally
of finite presentation) if f is locally of finite presentation at every x ∈ X.

Remark 3.1.11. An S-scheme is locally of finite presentation if and only
if “its functor of points commutes with taking direct limits of rings”. More
precisely, an S-scheme X is locally of finite presentation if and only if for
every filtered inverse system of affine S-schemes (SpecAi), the natural map
lim−→X(Ai) → X(lim−→Ai) is a bijection [EGA IV3, 8.14.2.1]. (See Defini-
tion 4.3.2 for the meaning of “affine S-scheme”.) This is a version of “spread-
ing out”, to be discussed further in Section 3.2.

3.1.4. Morphisms of finite presentation.

Definition 3.1.12 ([EGA IV1, 1.6.1]). A morphism f : X → S is of finite
presentation if it is locally of finite presentation, quasi-compact, and quasi-
separated.

The three conditions in the definition of “finite presentation” are there so
that for each affine open subset U = SpecA of S, the scheme f−1U admits
a finite description, as we now explain. First, the fact that f is locally of
finite presentation implies that f−1U is covered by affine open subsets Vi,
each of the form SpecB, where B is isomorphic to an A-algebra of the form
A[t1, . . . , tn]/(f1, . . . , fm) for some polynomials f1, . . . , fm. Second, the fact
that f is quasi-compact implies that only finitely many Vi are needed. Third,
the fact that f is quasi-separated implies that the intersections Vi ∩ Vj are
covered by finitely many affine subsets (each of finite presentation over A),
so the data needed to glue the Vi to form f−1U are describable by a finite
collection of polynomial maps with coefficients in A.

Remark 3.1.13. Suppose that S is locally noetherian. Then by Proposi-
tion 3.1.8, a morphism f : X → S is locally of finite presentation if and only
if it is locally of finite type, and it is of finite presentation if and only if it is
of finite type.
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58 3. Properties of morphisms

3.2. Spreading out

If X is an affine Q-variety, then for some N ≥ 1 there exists an affine finite-
type scheme X over Z[1/N ] whose generic fiber XQ is isomorphic to X:
simply let N be the product of the denominators appearing in the finitely
many coefficients appearing in the finitely many polynomials defining X.

We can generalize this by replacing Z and Q by any integral scheme S
and its generic point, respectively. In general, the principle of “spreading out”
is that for schemes of finite presentation, whatever happens over the generic
point also happens over some open neighborhood of the generic point.

Theorem 3.2.1 (Spreading out). Let S be an integral scheme, and let K be
its function field. Let blah denote a property for which a positive answer is
listed in the “Spreading out” column of Table 1 on pp. 302–303.

(i) (Spreading out schemes) Suppose that X is a scheme of finite presen-
tation over K. Then there exist a dense open subscheme U ⊆ S and a
scheme X of finite presentation over U such that XK ' X; see Figure 1.

(ii) (Spreading out properties of schemes) Suppose that X → S is of finite
presentation. If XK → SpecK is blah, then there exists a dense open
subscheme U ⊆ S such that XU → U is blah.

(iii) (Spreading out morphisms) Suppose that X and X ′ are schemes of finite
presentation over S, and f : XK → X ′K is a K-morphism. Then there
exists a dense open subscheme U ⊆ S such that f extends to a U -mor-
phism XU → X ′U .

(iv) (Spreading out properties of morphisms) Let f : X → X ′ be an S-mor-
phism between schemes of finite presentation over S. If f : XK → X ′K
is blah, then there exists a dense open subscheme U ⊆ S such that
f |U : XU → X ′U is blah.

Sketch of proof. In all parts, we may replace S by an affine open neigh-
borhood of the generic point to assume that S = SpecR.

First we prove (i). Let X be a K-scheme of finite presentation. As in
Section 3.1.4, X has a finite description involving only finitely many poly-
nomials over K. Write each coefficient as a fraction of elements of R, and
let R′ be the localization of R obtained by adjoining the inverses of all the
denominators that appear. Then the description of X over K as the scheme
obtained by gluing certain affine pieces also makes sense as the description
of a scheme X over U := SpecR′, which is what we needed.

The proof of (iii) is similar to that of (i).
Part (iv), on the other hand, requires a separate proof for each possibility

for blah. See Table 1 on pp. 302–303 for references.
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S
SpecK

X

X

U

Figure 1. Spreading out X to X

Part (ii) is the special case of (iv) with X ′ = S. �

Remark 3.2.2 (Spreading out to an open neighborhood of a point). The-
orem 3.2.1(i) can be generalized as follows. Let S be any scheme, and let
s ∈ S. Then a scheme X of finite presentation over Spec OS,s can be spread
out to a scheme X of finite presentation over some open neighborhood of s
in S. The other parts of Theorem 3.2.1 generalize similarly.

Remark 3.2.3. The ring OS,s is the injective limit of the coordinate rings
of the affine open neighborhoods of s in S, so Spec OS,s is a projective limit
of schemes. This suggests an even more general version of Theorem 3.2.1, for
projective limits of schemes. This is the setting considered in [EGA IV3,
§8.10].

In the following sections, we give some standard applications of spreading
out.

3.2.1. Reducing statements to the noetherian case.

Proposition 3.2.4. Suppose that X is of finite presentation over a commu-
tative ring A. Then there exists a noetherian ring A0 contained in A and
a scheme X0 of finite presentation over A0 whose base extension (X0)A is
isomorphic to X.

Proof. Any A is the direct limit (union) of its finitely generated subrings
A0. By Remark 3.2.3, X ' (X0)A for some scheme X0 of finite presentation
over a finitely generated ring A0. (Concretely, one can take A0 to be the
Z-subalgebra of A generated by the finitely many coefficients in a description
of X.) Now Z is noetherian, so A0 is noetherian too. �
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60 3. Properties of morphisms

3.2.2. Specialization arguments. If X and Y are Q-varieties whose base
extensions XQ(t) and YQ(t) are isomorphic, where t is an indeterminate, then
one can specialize t to some rational number q, chosen carefully to avoid the
poles of the finitely many rational functions appearing in the description of
the isomorphism, to obtain an isomorphism X → Y . This idea extends to
the following.

Proposition 3.2.5 (Specializing an isomorphism). Let k ⊆ L be an arbitrary
extension of fields. Let X and Y be k-varieties such that XL ' YL. Then
XF ' YF for some finite extension F ⊇ k.

Proof. Let f : XL → YL be an isomorphism. The field L is the direct limit
of its finitely generated k-subalgebras A. By Remark 3.2.3, f is the base
extension of an isomorphism fA : XA → YA. Let m be a maximal ideal of A,
and let F := A/m. By the weak Nullstellensatz, F is a finite extension of k.
Reducing fA modulo m (i.e., taking the base change by SpecA/m→ SpecA)
yields an isomorphism XF → YF . �

The same technique reduces many questions about varieties over an ar-
bitrary field to the case in which the field is a number field or a finite field,
depending on the characteristic. In fact, by using the arithmetic weak Null-
stellensatz (Remark 2.4.5, that the quotient of a finitely generated Z-algebra
by a maximal ideal is a finite field), even the characteristic 0 case can often
be reduced to the finite field case.

Alternatively, after using spreading out to pass from a general field of
characteristic 0 to a finitely generated Q-algebra B, one can embed B into
Qp for a suitable prime p to reduce to a question over Qp; see Corollary 7.7.6.

3.2.3. Models over discrete valuation rings. Let R be a discrete val-
uation ring, with fraction field K, residue field k, and uniformizer π. (For
instance, we could have R = Zp, K = Qp, k = Fp, π = p.) Let X be a
proper K-variety. We want to make sense of the reduction of X modulo π,
which should be a k-variety.

For a projectiveK-varietyX, the lowbrow approach is to scale each defin-
ing equation of X by a power of π so that its coefficients lie in R but not all
in the maximal ideal (this procedure is sometimes called “chasing denomina-
tors”), and then reduce all the coefficients modulo π. The isomorphism class
of the k-variety defined by the resulting equations depends not only on the
isomorphism class of X, but also on the choice of defining equations.

We want to reinterpret this construction in terms of R-schemes. The
scheme SpecR consists of two points: the generic point η = SpecK cor-
responding to the prime (0) of R, and the special point or closed point
s = Spec k corresponding to the maximal ideal (π) of R.
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SpecZ7

SpecQ7

generic fiber

SpecF7

special fiber

XR

Figure 2. The model XR := ProjZ7[x, y, z]/(xy − 7z2) of Example 3.2.9

Definition 3.2.6. Let XR be an R-scheme. The generic fiber of XR is
the K-scheme XK = XR ×SpecR SpecK, and the special fiber of XR is the
k-scheme Xk = XR ×SpecR Spec k.

Remark 3.2.7. Schemes of finite type over discrete valuation rings or rings
of S-integers of number fields are often called arithmetic schemes (if they
satisfy other technical conditions depending on the author). In the special
case where the relative dimension is 1, they are called arithmetic surfaces,
because the base is a ring of dimension 1.

Definition 3.2.8. Let X be a K-scheme. An R-model of X is an R-scheme
XR equipped with an isomorphism XR ×R K ∼→ X of K-schemes.

Example 3.2.9. LetX be theQ7-curve ProjQ7[x, y, z]/(xy−7z2). Then the
schemes ProjZ7[x, y, z]/(xy − 7z2) and ProjZ7[x, y, z]/(xy − z2), equipped
with suitable isomorphisms, are Z7-models of X. They are not isomorphic,
however, as one can see from their special fibers. See Figure 2.

According to Definition 3.2.8, X itself is yet another Z7-model of X.

Now, a “reduction modulo π of a K-variety X” can be understood as the
special fiber of an R-model of X. Example 3.2.9 shows, however, that to get
a reasonable result, one should impose additional restrictions on the model.
We will do so in Section 3.5.14.

3.2.4. Models over Dedekind domains and schemes. Definition 3.2.8
makes sense for any integral domain R. A common situation, generalizing
the discrete valuation ring case, is where R is a Dedekind domain, that is, an
integrally closed noetherian domain of dimension ≤ 1. The main examples
of such R are
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62 3. Properties of morphisms

(1) the integer ring Z, or, more generally, the ring of integers OK of a
number field,

(2) the coordinate ring of an affine regular integral curve over a field, and

(3) localizations of the above.

A scheme over a Dedekind domain has one generic fiber, and many closed
fibers, one for each nonzero prime of R.

Remark 3.2.10. One can generalize even further, to integral Dedekind
schemes. A Dedekind scheme is a noetherian normal scheme of dimen-
sion ≤ 1. Examples include

(i) SpecR for any Dedekind domain R;

(ii) regular curves over a field; and

(iii) schemes of the form X − {x}, where X is a normal noetherian local
scheme of dimension 2 and x is its closed point. (A scheme X is local
if it has exactly one closed point x, and x is in the closure of {y} for all
y ∈ X.) For example, X could be Spec k[s, t]m, where k is a field and
m is the ideal (s, t).

By Lemma 3.2.11(i)⇒(iii) below, any Dedekind scheme X is a disjoint union
of integral Dedekind schemes, and their number is finite since X is noether-
ian. Also, any Dedekind scheme is covered by finitely many open sets of the
form SpecR for Dedekind domains R.

Lemma 3.2.11. For a locally noetherian scheme X, the following are equiv-
alent:

(i) For every x ∈ X, the local ring OX,x is an integral domain.

(ii) The scheme X is locally integral: every point has an open neighborhood
that is an integral scheme.

(iii) The scheme X is a disjoint union of integral schemes.

Proof. The implications (iii)⇒(ii) and (ii)⇒(i) are trivial. It remains to
prove (i)⇒(iii).

Suppose that each local ring OX,x is an integral domain; then each Ox,x

is reduced, so X is reduced. Since irreducible and reduced together imply
integral, it remains to show that the irreducible components of X are dis-
joint. The irreducible components passing through a given point x are in
bijection with the the minimal primes of OX,x, of which there is just one (the
zero ideal). Thus each x lies in exactly one irreducible component; i.e., the
irreducible components are disjoint. �
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3.2. Spreading out 63

3.2.5. Valuative criterion for properness. Return to the setting of Sec-
tion 3.2.3, where R is a discrete valuation ring. Suppose that we have ex-
tended a K-scheme to an R-model. We now wish to speak of reducing
K-points on the generic fiber to k-points of the special fiber. There is no
homomorphism K → k, so to make sense of this, we must first extend the
K-point to an R-point of the model. For a proper scheme over a discrete val-
uation ring, this extension is always possible (and unique), by the S = SpecR
case of one direction of the following:

Theorem 3.2.12 (Valuative criterion for properness [Har77, Theorem II.4.7
and Exercise II.4.11]). Let f : X → S be a morphism of finite type with S
noetherian. Then f is proper if and only if whenever SpecR is an S-scheme
with R a discrete valuation ring and K its fraction field, the natural map
X(R)→ X(K) is bijective.

We generalize the S = SpecR case to Dedekind domains as part (ii) of
the following:

Theorem 3.2.13. Let R be an integral domain, and let K = FracR. Let X
be an R-scheme.

(i) If X is separated over R, then X(R)→ X(K) is injective.
(ii) If X is proper over R and R is a Dedekind domain, then X(R)→ X(K)

is bijective.

Proof.

(i) This is a special case of Corollary 2.3.22.
(ii) Proper schemes over R or K are of finite type, hence of finite presen-

tation, since R and K are noetherian rings. Let f ∈ X(K). We need
to extend f : SpecK → X to an R-morphism SpecR → X. Apply
Theorem 3.2.1(iii) to find a dense open subscheme U ⊆ SpecR such
that f extends to a U -morphism fU : U → XU , or equivalently, an R-
morphism fU : U → X. Since R is noetherian of dimension ≤ 1, the
complement (SpecR)−U is a finite union of closed points p. It suffices
to extend fU to U ∪ {p} → X for one p, since then we can repeat the
extension argument for each missing point.

By Theorem 3.2.12, we can extend f to a morphism SpecRp → X.
Next, apply Remark 3.2.2 to spread this morphism out to an R-mor-
phism fV : V → XV ⊆ X for some dense open V ⊆ SpecR. The
restrictions of fU and fV to U ∩ V must agree, by part (i) applied to
each ring used in an affine cover of U ∩ V . Thus we can glue to obtain
an extension of f to U ∩ V , which contains both U and p. �

Remark 3.2.14. The same argument proves Theorem 3.2.13 more gener-
ally when R is replaced by an integral Dedekind scheme with function field
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64 3. Properties of morphisms

K. Even more generally, if X is a separated (resp. proper) S-scheme, T is
an integral Dedekind scheme with a morphism to S, and K = k(T ), then
X(T ) → X(K) is an injection (resp. bijection); this statement can be re-
duced to the previous sentence by Proposition 2.3.15. For an important
application, see Proposition 3.6.5(b).

�

Warning 3.2.15. Theorem 3.2.13(ii) does not hold for arbitrary integral
domains R; see Exercise 3.3.

3.3. Flat morphisms

3.3.1. Flat modules.

(References: [Har77, III.§9] and [BLR90, §2.4])

Definition 3.3.1. Let A be a commutative ring, and let B be an A-module.
Then B is flat if the functor ⊗AB is exact; that is, whenever

0 −→M ′ −→M −→M ′′ −→ 0

is an exact sequence of A-modules, the induced sequence

0 −→M ′ ⊗A B −→M ⊗A B −→M ′′ ⊗A B −→ 0

is exact.

Examples 3.3.2.

(i) Free modules are flat. In particular, any module over a field k (that is,
a vector space) is flat.

(ii) A module over a discrete valuation ring or Dedekind domain is flat if
and only if it is torsion-free.

(iii) Any localization S−1A of A is flat.

3.3.2. Flat and faithfully flat morphisms.

Definition 3.3.3. A morphism of schemes f : X → Y is flat at a point
x ∈ X if OX,x is flat as an OY,f(x)-module. Also, f is called flat if f is flat
at every x ∈ X.

Definition 3.3.4. A morphism of schemes f : X → Y is faithfully flat if f
is flat and surjective.

Remark 3.3.5. Let A → B be a homomorphism of commutative rings.
Then SpecB → SpecA is flat if and only if B is flat over A. Also, SpecB →
SpecA is faithfully flat if and only if B is flat over A and for any nonzero
A-module M one has M ⊗A B 6= 0. This explains the use of the word
“faithfully”.



Un
offi
cia
l v
ers
ion

for
inc
ide
nta

l o
nli
ne
use
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P

Figure 3. Dimension of a variety at a point; see Example 3.3.9

3.3.3. Dimension and relative dimension.

Definition 3.3.6 ([EGA IV1, Chapter 0, 14.1.2]). Let X be a topological
space. Its dimension dimX ∈ {−∞, 0, 1, 2, . . . ,∞} is the supremum of
the set of nonnegative integers n for which there exists an n-step chain
X0 ( X1 ( · · · ( Xn of irreducible closed subsets of X. If x ∈ X, define the
dimension of X at x as

dimxX := inf{ dimU : U is an open neighborhood of x in X }.

Remark 3.3.7. The empty space is not irreducible. We have dimX = −∞
if and only if X = ∅.

�

Warning 3.3.8. The definition of dimxX differs from the definition in
[Har77, Proposition III.9.5] for schemes, where it is defined as dim OX,x.
For example, if x is the generic point of an integral k-variety X, then
dimxX = dimX according to the definition above from [EGA IV1, Chap-
ter 0, 14.1.2], but dim OX,x = 0 since OX,x is a field. See Theorem 3.3.10 for
the relationship more generally.

Example 3.3.9. Let X ⊆ A3
k = Spec k[x, y, z] be the union of the plane

z = 0 and the line x = y = 0 over a field k. Let P be the point (0, 0, 1) of
X. Then dimX = 2, but dimP X = 1. See Figure 3.

Theorem 3.3.10. Let X be a scheme that is locally of finite type over a
field k. Let x ∈ X. Then

dimxX = dim OX,x + tr deg(k(x)/k).

Proof. See [EGA IV2, 5.2.3]. �

Definition 3.3.11. If f : X → S is a continuous map of topological spaces,
and x ∈ X, define the relative dimension of X over S at x as

dimx f := dimx f
−1(f(x)).
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66 3. Properties of morphisms

Proposition 3.3.12. Let f : X → S be a flat k-morphism between irre-
ducible k-varieties. Then dimx f = dimX − dimS. In particular, dimx f is
independent of x.

Proof. This is a special case of [Har77, Corollary III.9.6]. �

3.4. Fppf and fpqc morphisms

(Reference: [Vis05, §2.3])

The notions in this section will play an important role in the definition of
“topologies” finer than the Zariski topology, for use in faithfully flat descent
(Chapter 4) and in the construction of cohomology theories (Chapter 6).

Definition 3.4.1. A morphism of schemes X → Y is fppf if it is faithfully
flat and locally of finite presentation.

Proposition 3.4.2. A morphism f : X → Y that is flat and locally of finite
presentation is open; i.e., for every open subset U ⊆ X, the set f(U) is open
in Y .

Proof. Here is a very brief sketch:

(1) Reduce to proving that f(X) is open in Y when X and Y are affine and
X → Y is of finite presentation.

(2) Use Proposition 3.2.4 to assume moreover that Y is noetherian.
(3) Chevalley’s theorem states for a finite-type morphism between noether-

ian schemes, f(X) is constructible, i.e., a finite boolean combination of
open subsets.

(4) Flatness implies that f(X) is stable under generization (one says that
y1 is a generization of y2 if y2 belongs to the closure of {y1} in Y , and
the conclusion here means that any generization of a point of f(X) is
again in f(X)).

(5) In a noetherian scheme, a subset is open if and only if it is constructible
and stable under generization [Har77, Exercise II.3.18(c)].

See [EGA IV2, 2.4.6] for details. �

Definition 3.4.3 (Kleiman [Vis05, 2.34]). A morphism of schemes X → Y
is fpqc if it is faithfully flat and every quasi-compact open subset of Y is the
image of a quasi-compact open subset of X.

Example 3.4.4. Let Y be a positive-dimensional k-variety. For each point
y ∈ Y , there is a morphism Spec OY,y → Y . Let X be the disjoint union∐
y∈Y Spec OY,y. Then the natural morphism X → Y is faithfully flat but

not fpqc.
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Remark 3.4.5. Both fppf and fpqc are French acronyms: fppf stands for
“fidèlement plat de présentation finie” and fpqc stands for “fidèlement plat
quasi-compact”. Our (slightly nonstandard) definitions of fppf and fpqc are
less restrictive than a direct translation would suggest; this is so that fppf
and fpqc morphisms include Zariski open covering morphisms. See Proposi-
tion 3.8.2.

3.5. Smooth and étale morphisms

(Reference: [MO15, 5.3–5.4], [Ray70a], [BLR90, §2.2])

Section I.5 of [Har77] gives two equivalent definitions of “nonsingular”
for varieties over an algebraically closed field. These definitions disagree
over imperfect fields, so we will avoid the term “nonsingular” and instead use
“regular” and “smooth” for the two distinct notions.

3.5.1. Regular schemes. Recall the following definition:

Definition 3.5.1. A scheme X is regular if X is locally noetherian and
OX,x is a regular local ring for every x ∈ X.

Remark 3.5.2. The localization of a regular local ring at a prime ideal is
a regular local ring [Eis95, 19.14]. Thus, for X locally of finite type over a
field or over Z, one gets an equivalent definition if one checks the local rings
at only the closed points x.

Remark 3.5.3. Definition 3.5.1 agrees with the definitions of nonsingular
given in [Har77, p. 32] for quasi-projective integral varieties over an alge-
braically closed field and [Har77, p. 177] for arbitrary integral varieties over
an algebraically closed field.

Remark 3.5.4. “Regular” is an absolute notion: if X is an S-scheme, the
question of whether X is regular ignores the structure morphism X → S. In
contrast, “smooth” is relative: we will speak of an S-scheme X being smooth
over S, and this does depend on more than the structure of X as a scheme.

Proposition 3.5.5. A regular scheme is a disjoint union of integral schemes.

Proof. Regular local rings are integral domains [Eis95, Corollary 10.14].
Apply Lemma 3.2.11. �

Corollary 3.5.6. A connected regular scheme is integral.
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68 3. Properties of morphisms

3.5.2. Inspiration from differential geometry. (This section is purely
motivational.) The notion of smooth variety is an algebraic version of the
notion of (smooth) manifold. In particular, we want the definition to have
the following property: for a C-variety X,

(3.5.7) X is smooth over C ⇐⇒ Xan is a manifold,

where the condition on the right means that Xan can be covered by open
subsets isomorphic as complex analytic spaces to open subsets of Cn.

�

Warning 3.5.8. It is not enough to require that X(C) be locally isomor-
phic as topological space to open subsets of Cn: one problem with this is
that this would not distinguish X from its associated reduced variety Xred.
Nonreduced varieties should never be considered smooth.

Stupid Idea 3.5.9. We might try adapting the definition of manifold to
the algebraic setting and come up with the following “definition”:

“A C-variety is smooth of dimension r if and only if it is covered by
Zariski open subschemes each isomorphic to an open subscheme of
ArC.”

But this would be wrong, in the sense that it would violate (3.5.7): If X
is defined by x3 + y3 = 1 in A2

C, then Xan is a manifold, so X should be
smooth, but it turns out that X is not birational to affine space, so it does
not satisfy the “definition”. The Zariski topology is simply too coarse: It
does not have enough open sets.

Remark 3.5.10. Stupid Idea 3.5.9 actually works if one uses the étale topol-
ogy instead of the Zariski topology. But the definition of the étale topology
requires the notion of étale morphism, which we have not yet defined. And
in fact, one definition of étale morphism depends on the definition of smooth.

There is a different characterization of manifolds that does adapt well to
the algebraic setting. A subset X ⊆ Cn is a complex manifold of dimension
r if and only if in a neighborhood of each x ∈ X it is locally the intersection
of n − r analytic hypersurfaces Hr+1, . . . ,Hn meeting transversely. Here
each Hi is defined as the zero set of a holomorphic function gi defined on
a neighborhood of x in Cn. The condition that the hypersurfaces meet
transversely at x means that the n − r tangent spaces TxHi at x (each
a subspace of codimension ≤ 1 of the tangent space TxCn) intersect in a
subspace of codimension n − r, that is, dimension r. Dually, this means
that the differentials dgi(x) evaluated at x are linearly independent in the
cotangent space of Cn at x. In terms of coordinates t1, . . . , tn on Cn, this
means that the rows of the (n − r) × n Jacobian matrix J with entries
Jij := ∂gi/∂tj evaluated at x are independent. In other words, J has rank
n− r when evaluated at x.
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Remark 3.5.11. It is the implicit function theorem which shows that the
linear independence of differentials makes X a manifold. More explicitly, if
one extends the list gr+1, . . . , gn to a list of holomorphic functions g1, . . . , gn
in a neighborhood of x in Cn such that dg1(x), . . . , dgn(x) form a basis for
the cotangent space of Cn at x, then (g1, . . . , gr) defines a biholomorphic map
between an open neighborhood of x in X and an open subset of Cr. The
functions g1, . . . , gr restricted to X (or rather, to the open neighborhood of
x in X on which they are defined) are called local coordinates at x, because
they correspond under the biholomorphic map to the standard coordinates
on (an open subset of) Cn.

3.5.3. Summary of the definitions of smooth. A definition of “smooth”
for morphisms X → S between schemes of finite type over a field is given
in [Har77, III.§10], but in arithmetic geometry it is sometimes necessary to
work in greater generality: for instance, S might be SpecZp.

So we want to define what it means for a morphism of schemes f : X → S
to be smooth, or in other words, what it means for an S-scheme X to be
smooth (over S). There are several approaches, yielding equivalent defini-
tions, each with its own virtues. We summarize three of them here:

(1) Generalize the differential criterion given at the beginning of [Har77,
I.§5] to make everything relative to a base scheme S instead of Spec k.
This definition yields a practical criterion for testing smoothness. A
variant of it is used as a starting point in [BLR90, §2.2]. See Sec-
tion 3.5.4.

(2) Work fiber by fiber. Roughly, first define a k-variety X to be smooth if
and only if it is geometrically regular; then define a morphism f : X → S
to be smooth if and only if the fiber f−1(s) is smooth over the residue
field k(s) for each s ∈ S. Actually, in the first step one should work
more generally with X locally of finite type over a field, and then for
morphisms to an arbitrary S one needs technical conditions (locally of
finite presentation, and flat) to make sure that the fibers are locally of
finite type and that the fibers form a decent family, respectively. This
definition provides perhaps the clearest visualization of what a smooth
S-scheme looks like, but it is not as useful as a starting point for proving
things. See Section 3.5.6.

(3) Characterize smooth morphisms by the “infinitesimal lifting property”.
This definition, due to Grothendieck, is elegant, though less intuitive.
Also, variants give definitions of the related adjectives G-unramified and
étale. See Section 3.5.12.

3.5.4. Definition 1 of smooth: The differential criterion.
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70 3. Properties of morphisms

Definition 3.5.12. Let r ∈ N. Let f : X → S be a morphism of schemes,
and let x ∈ X.

(i) (Special case) Suppose that f is

Spec
A[t1, . . . , tn]

(gr+1, . . . , gn)
−→ SpecA.

Then f is obviously smooth of relative dimension r at x if and only
if the matrix (

∂gi
∂tj

(x)

)
∈ M(n−r)×n(k(x))

has rank n− r.
(ii) (General case) An arbitrary f is smooth of relative dimension r at x

if and only if there exist open neighborhoods U ⊆ X of x and V ⊆ S of
f(x) such that f(U) ⊆ V and f |U : U → V is isomorphic to a morphism
that is obviously smooth of relative dimension r at x.

Remark 3.5.13. For an A-morphism

X := Spec
A[t1, . . . , tn]

(gr+1, . . . , gn)

f−→ SpecA,

f is smooth of relative dimension r at x if and only if f is obviously smooth
of relative dimension r at x. (One way to prove this is to give an intrinsic
characterization of “obviously smooth”: e.g., f as above is obviously smooth
of relative dimension r at x if and only if OXk(x),x is a regular local ring.)
Thus we can dispense with the made-up terminology “obviously smooth” and
just say “smooth” from now on.

Definition 3.5.14. Let f : X → S be a morphism of schemes. We say that
X is smooth over S, or that X is a smooth S-scheme, or that f is smooth,
if at each x ∈ X the morphism is smooth of some relative dimension.

Remark 3.5.15. If f : X → S is smooth of relative dimension r at x, then
f is of relative dimension r at x. (In proving this, one can reduce first to the
special case, and then to the case where S = Spec k for a field k.)

Definition 3.5.16. The smooth locus of f : X → S is the subset

Xsmooth := {x ∈ X : f is smooth at x } ⊆ X.
Its complement Xsing := X − Xsmooth is called the singular locus or non-
smooth locus.

Proposition 3.5.17. The subset Xsmooth is open in X.

Proof. We may assume we are in the special case of Definition 3.5.12. If
the matrix of derivatives has maximal rank n − r at a point x, then some
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(n− r)× (n− r) minor is nonvanishing at x, and will be nonvanishing in
some open neighborhood U of x. Then U ⊆ Xsmooth. �

�

Warning 3.5.18. The smooth locus can be empty, even for nonempty
varieties over a field. See Example 3.5.65.

Proposition 3.5.19. If X → S is smooth of relative dimension r, then the
OX-module ΩX/S is locally free of rank r.

Proof. The construction of ΩX/S is local on X and S, so we may reduce to
the special case of Definition 3.5.12, and we may assume that a particular
(n− r)× (n− r) minor of

(
∂gi
∂tj

(x)
)
is a unit in the ring

B := A[t1, . . . , tn]/(gr+1, . . . , gn).

By [Eis95, §16.1], ΩB/A is the quotient of the free B-module with basis
dt1, . . . , dtn by the relations

∑n
j=1

∂gi
∂tj
dtj for i = r + 1, . . . , n. This quotient

is a free B-module of rank r, with basis consisting of the dtj for which the
index j is not involved in the (n− r)× (n− r) minor above. �

Remark 3.5.20. There is a partial converse to Proposition 3.5.19. Suppose
that f : X → S is a flat morphism between irreducible k-varieties. Let
r := dimX − dimS. Then f is smooth of relative dimension r if and only if
ΩX/S is locally free of rank r.

�

Warning 3.5.21. If ΩX/S is locally free of the wrong rank, then the mor-
phism X → S is not smooth. For example, if k is a field of characteristic p,
then the 0-dimensional irreducible k-scheme X := Spec k[ε]/(εp) is such that
ΩX/k is locally free of rank 1. This X is not smooth of any relative dimension
over k.

3.5.5. Smooth vs. regular. The relationship between “smooth” and “reg-
ular” over arbitrary fields is given by the following generalization of [Har77,
Theorem I.5.1]:

Proposition 3.5.22. Let X be locally of finite type over a field k.

(i) X is smooth if and only if X is geometrically regular.
(ii) If X is smooth, then X is regular; the converse holds if k is perfect.
(iii) For a closed point x ∈ X with k(x)/k separable, the variety X is smooth

at x if and only if X is regular at x (i.e., OX,x is a regular local ring).

Proof. See [BLR90, §2.2, Proposition 15] and its proof. �

Example 3.5.23 (Regular variety that is not smooth). Let k be the imper-
fect field Fp(t), where p is odd and t is an indeterminate. Let X be the curve
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y2 = xp − t in A2
k, so X = Spec k[x, y]/(f) with f := y2 − (xp − t). Since

f is irreducible even in k[x, y], the curve X is geometrically integral. We
will show that X is regular but not smooth. Let P be the closed point of X
corresponding to the maximal ideal (xp − t, y) of k[x, y]. The subscheme of
X defined by f = ∂f/∂x = ∂f/∂y = 0 is {P}, so X is smooth everywhere
except at P (where it is definitely not smooth). This implies that X is reg-
ular except possibly at P , but we will find that X is regular even at P . Let
mP be the maximal ideal of OX,P , so k(P ) := OX,P /mP ' k[x, y]/(xp− t, y).
We must compute the k(P )-dimension of

mP

m2
P

' (xp − t, y)

(xp − t, y)2 + (f)
.

Now (xp−t,y)
(xp−t,y)2

is a 2-dimensional k(P )-vector space spanned by xp − t and y
(not surprising, given that A2

k is regular of dimension 2), and the image of f
in this vector space is nonzero, so

dim
mP

m2
P

= dim
(xp − t, y)

(xp − t, y)2 + (f)
= 1 = dimX = dim OX,P .

Thus OX,P is a regular local ring. So X is regular at P .
To summarize, X is regular, and smooth everywhere except at P . By

Proposition 3.5.22, X is not geometrically regular; this can also be checked
directly, by examining the point on Xk corresponding to the maximal ideal
(x− t1/p, y) of k[x, y].

Example 3.5.24. Let k be a field, let S = A1
k = Spec k[t], and let X be the

S-scheme Spec k[t][x, y]/(xy−t). In other words, X is a family of hyperbolas
depending on a parameter t, which degenerates to a union of two lines when
t = 0. The Jacobian matrix for X → S is

(
y x

)
. Thus the nonsmooth locus

of X → S is the subscheme y = x = xy − t = 0 of Spec k[t][x, y] = A3
k. This

consists of the single point (0, 0, 0) ∈ A3(k). In other words, all the fibers
of X → S are smooth except for the fiber above t = 0, which has a single
singularity.

Although X is not smooth over S, we have k[t][x, y]/(xy−t) ' k[x, y], so
X ' A2

k (the projection A3
k → A2

k to the (x, y)-plane maps X isomorphically
to its image); thus X is smooth over k. In particular X is regular, even
geometrically regular.

Example 3.5.25. Let X = SpecZ[x, y]/(xy − 7), and let π be the unique
morphism from X to SpecZ. The same computation as in the previous
example shows that the nonsmooth locus of π consists of the single point
given by the maximal ideal (x, y, 7) of Z[x, y]; in geometric terms, it is the
point (0, 0) on the fiber above the prime (7) of SpecZ. If U is the open
subset SpecZ[1/7] of SpecZ, then π−1U → U is smooth.
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Again, one can check that X is regular.

3.5.6. Definition 2 of smooth: Geometrically regular fibers. For a
morphism that is flat and locally of finite presentation, smoothness can be
tested fiberwise:

Proposition 3.5.26. Let f : X → S be a morphism that is locally of finite
presentation. Let x ∈ X, and let s = f(x). Let Xs be the fiber f−1(s). Then
f is smooth of relative dimension r at x if and only if f is flat at x and Xs

is smooth of relative dimension r over the residue field k(s) at x.

Proof. See [BLR90, §2.4, Proposition 8]. �

Combining Propositions 3.5.26 and 3.5.22 shows that Definition 3.5.12 is
equivalent to the following:

Definition 3.5.27 (cf. [EGA IV2, §6.8.1]). A morphism of schemes
f : X → S is smooth if all of the following hold:

• f is flat;
• f is locally of finite presentation; and
• for all s ∈ S, the fiber Xs over k(s) is geometrically regular.

For x ∈ X, the morphism f is called smooth at x if there is an open
neighborhood U of x such that f |U : U → S is smooth.

3.5.7. Unramified morphisms. Let A ↪→ B be an inclusion of discrete
valuation rings, with uniformizers πA and πB, respectively. In algebraic
number theory, the extension B over A is called unramified if and only if the
maximal ideal (πB) of B is generated by πA and the residue field extension
B/(πB) over A/(πA) is a finite separable extension (or separable algebraic if
one is considering infinite extensions).

This definition can be generalized to local rings. Recall that a homo-
morphism f : A→ B between local rings with maximal ideals mA and mB is
called local if f−1(mB) = mA [Har77, p. 73].

Definition 3.5.28. A local homomorphism of local rings f : A → B with
maximal ideals mA and mB is unramified if f(mA)B = mB and B/mB is a
finite separable extension of A/mA.

Example 3.5.29. Let A = C[[z]], and let B = A[
√
z] = C[[

√
z]]. Let

f : A→ B be the inclusion. Then mA = (z), but f(mA)B = (
√
z)2B 6=

(
√
z)B = mB, so B is not unramified over A.

Remark 3.5.30. Definition 3.5.28 relates to the ordinary English meaning of
“ramified” as “branched”, as we now explain. Example 3.5.29 is related to the
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fact that there is no single-valued branch of
√
z defined in a neighborhood

of the origin; the map from the associated Riemann surface down to the
complex plane is generically 2-to-1, with “the branches coming together”
above z = 0.

Definition 3.5.31 ([SP, Tag 02G4]). Let f : X → S be a morphism of
schemes, and let x ∈ X. Then f is unramified at x if f is locally of finite
type at x and OS,f(x) → OX,x is an unramified homomorphism of local rings.
Also, f is called unramified if f is unramified at every x ∈ X.

�

Warning 3.5.32. There is a variant in which “locally of finite type” is
replaced by “locally of finite presentation”. Following [SP, Tag 02G4], we
reserve the adjective G-unramified for this more restrictive variant. In fact,
the original definition of unramified in [EGA IV4, 17.3.1] is what we are
calling G-unramified. The decision to require only “locally of finite type” was
made in [Ray70a, Chapitre I, Définition 4].

Example 3.5.33. Open and closed immersions are unramified. But not
all closed immersions are G-unramified; this is one of the advantages of
unramified over G-unramified.

See [BLR90, §2.2, Definition 1 and Proposition 2] for some equivalent
definitions.

3.5.8. Étale morphisms.

Definition 3.5.34. A morphism f : X → S is étale at a point x ∈ X if
it is flat at x and G-unramified at x. Also, f is étale if f is étale at every
x ∈ X.

Étale morphisms can be thought of as the algebraic analogue of locally
biholomorphic maps in differential geometry. In fact, a morphism of C-
varieties X → Y is étale if and only if the induced morphism Xan → Y an

between complex analytic spaces is locally biholomorphic (that is, each point
x ∈ Xan has an open neighborhood that is mapped isomorphically to its
image).

Alternatively, étale morphisms can be thought of as generalizations of
finite separable extensions of fields, as the following proposition suggests.

Proposition 3.5.35. Let k be a field, and let X be a k-scheme. The follow-
ing are equivalent:

(i) X is unramified over k.
(ii) X is étale over k.
(iii) X is a disjoint union of k-schemes of the form SpecL where each L is

a finite separable extension of k.

http://stacks.math.columbia.edu/tag/02G4
http://stacks.math.columbia.edu/tag/02G4
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Proof.
(i)⇔(ii): Over a field, flatness is automatic, and “locally of finite type”

coincides with “locally of finite presentation”.
(iii)⇒(i): Immediate from the definition of unramified.
(i)⇒(iii): By definition, X is locally of finite type. The question is local

on X, so we may assume that X = SpecA for some finitely generated k-
algebra A. The definition of unramified implies that each local ring OX,x

is a finite separable extension of k, so dimA = 0. Hence A is artinian
[AM69, Theorem 8.5] and is a finite product of local artinian rings [AM69,
Theorem 8.7], each of which is a finite separable extension of k. �

Corollary 3.5.36. If f : X → S is an unramified morphism of schemes,
then the relative dimension dimx f is 0 for all x ∈ X.

Proof. Let s = f(x). Unramified morphisms are stable under base change,
so the fiber Xs is unramified over Speck(s). Then dimXs = 0 by Proposi-
tion 3.5.35. �

The following characterization of étale morphisms is sometimes taken as
a definition.

Proposition 3.5.37. A morphism f : X → S is étale at a point x ∈ X if
and only if it is smooth of relative dimension 0 at x.

Proof. This follows from [BLR90, §2.4, Proposition 8]. �

The primitive element theorem states that a finite separable extension of
a field k is generated by one element. Proposition 3.5.39 is a generalization.

Definition 3.5.38. Let A be a commutative ring. Let p ∈ A[t] be a monic
polynomial. Let B = A[t]/(p). Let C = B[q−1] for some q ∈ B. If the
image of p′(t) in C is in C×, then SpecC → SpecA is called a standard
étale morphism.

Geometrically, the condition p′(t) ∈ C× says that the fiber above each
point of SpecA looks like the set of zeros of a separable polynomial; see
Figure 4, in which we view q as an element of A[t] instead of its image in
A[t]/(p).

Proposition 3.5.39 (Local structure of an étale morphism). Let f : X → S
be a morphism of schemes, let x ∈ X, and let s = f(x) ∈ S. Then f is étale
at x if and only if there exist affine open neighborhoods X ′ ⊆ X of x and
S′ ⊆ S of s with f(X ′) ⊆ S′ such that f |X′ : X ′ → S′ is a standard étale
morphism.
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SpecA

SpecA[t]

q = 0

p = 0

Figure 4. A standard étale morphism

Proof. The proof relies on Zariski’s main theorem; see [Ray70a, V.§1,
Théorème 1] and [BLR90, §2.3, Proposition 3]. �

3.5.9. Fundamental groups.

(Reference: [Sza09])

3.5.9.1. Fundamental groups in topology. Let X be a topological space that
is reasonably nice (e.g., path connected, locally path connected, and locally
simply connected). A cover of X is a map of topological spaces Y p→ X such
that X can be covered by open subsets U such that p−1U → U is isomorphic
to a disjoint union of copies of U each mapping by the identity to U . A
morphism of covers is a map of topological spaces over X. The covers of X
form a category CoversX . For x ∈ X, the fiber functor

Fx : CoversX → Sets

is the functor sending a cover Y p→ X to the fiber p−1(x).

Theorem 3.5.40. The following groups are naturally isomorphic:

(i) the group of homotopy classes of loops in X based at x;

(ii) the group of deck transformations of the universal cover X̃ → X;
(iii) the automorphism group of the fiber functor Fx.

The fundamental group π1(X,x) of the pointed topological space (X,x)
is any of the three groups in Theorem 3.5.40. Then Fx can be upgraded
to a functor F ′x : CoversX → {π1(X,x)-sets}, which turns out to be an
equivalence of categories.
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The space X is called simply connected if the only connected cover of
X is given by the identity map X → X. For any x ∈ X, this condition is
equivalent to π1(X,x) = {1}.

There is a variant of π1(X,x) in which CoversX is replaced by the
category FCoversX of covers with finite fibers. The universal cover may
not exist in FCoversX (consider X = C×; for each n ≥ 1 the nth power
map C× n→ C× defines a cover, and no finite cover can dominate them all). So
the variant of the fundamental group should be defined either as the inverse
limit of the deck transformation groups of the finite Galois covers of X or
as the automorphism group of the restriction Fx|FCoversX . Both approaches
lead to the same group π̂1(X,x). This group π̂1(X,x) is isomorphic to the
profinite completion of π1(X,x), i.e., the inverse limit of all finite quotients
of π1(X,x).
3.5.9.2. The étale fundamental group. Which of the three definitions in The-
orem 3.5.40 works best in the algebraic setting? Not (i): loops are not a good
notion in a space with the Zariski topology. For (ii) or (iii), we need an alge-
braic analogue of covers. Ideally, the analogue should be such that algebraic
covers of a C-variety X roughly correspond to covers of the topological space
X(C).

A first attempt might be to apply the topological definition of cover
directly to X with the Zariski topology. But there are often not enough
Zariski locally trivial covers. For example, the complex manifold C× has
universal cover C exp−→ C× and fundamental group Z, but the corresponding
algebraic variety A1

C \ {0} has no connected Zariski locally trivial cover.
Étale morphisms come to the rescue. Actually, étale morphisms are not

quite restrictive enough, since they include open immersions like A1
C \{0} ↪→

A1
C that do not induce a cover of topological spaces. Instead we use finite

étale morphisms. (The morphism A1
C \ {0} ↪→ A1

C has finite fibers, but it is
not finite, since k[x, x−1] is not a finite k[x]-module.)

To explain why a finite étale morphism is the algebraic analogue of a
topological cover with finite fibers, we state the generalized Riemann exis-
tence theorem. Let X be a C-variety. Let Xan be the associated complex
analytic space; its underlying topological space is X(C). Let FEtX be the
category of finite étale covers of X. There is a corresponding notion of finite
étale cover of Xan, and we let FEtXan be the corresponding category.

Theorem 3.5.41 (Generalized Riemann existence theorem). For each C-
variety X, the natural functors

FEtX → FEtXan → FCoversX(C)

are equivalences of categories.
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Proof. See [SGA 1, Théorème XII.5.1]. �

Remark 3.5.42. In Theorem 3.5.41 it is necessary to restrict to finite covers.
Infinite topological covers such as C exp−→ C× have no algebraic analogue.
They can at best be approximated by their finite subcovers.

Now we are prepared to define the algebraic analogue of the fundamental
group. Let X be any scheme. Let x be a geometric point of X, i.e., a
morphism x : Spec Ω → X for some separably closed field Ω. Pulling back
a finite étale morphism Y

p→ X by x : Spec Ω → X yields a finite disjoint
union of copies of Spec Ω (Proposition 3.5.35), and forgetting the scheme
structure yields a set p−1(x). The fiber functor Fx : FEtX → Sets sends
an object Y p→ X to p−1(x).

Definition 3.5.43. The étale fundamental group πet
1 (X,x) is the group

AutFx. (Alternative terminology/notation: algebraic fundamental group,
πalg

1 (X,x), π̂1(X,x).)

For a connected scheme X with a geometric point x, as (Y, y) varies
over pointed connected (finite) Galois étale covers of (X,x), the Galois
groups Gal(Y/X) form an inverse system whose inverse limit is πet

1 (X,x), so
πet

1 (X,x) is a profinite group.

Example 3.5.44. If X is a C-variety and x ∈ X(C), then the generalized
Riemann existence theorem (Theorem 3.5.41) shows that πet

1 (X,x) is the
profinite completion of π1(X(C), x).

Definition 3.5.45. Let X be a connected variety over a separably closed
field. Then X is algebraically simply connected if it has no nontrivial
connected finite étale cover. For any geometric point x : Spec Ω → X, this
is equivalent to the condition that πet

1 (X,x) = {1}.
�

Warning 3.5.46. There exists an algebraically simply connected C-variety
X such that the topological space X(C) is not simply connected. That is,
there exists a connected C-variety such that π1(X,x) is nontrivial but has
trivial profinite completion. To see this, combine Example 3.5.44 with the
following two facts:

1. There exists an infinite finitely presented group G with no nontrivial finite
quotients [Hig51].

2. For any finitely presented group G, there exist an integral C-variety X
and x ∈ X(C) such that π1(X(C), x) ' G [Sim11, Theorem 12.1].

Remark 3.5.47. Toledo [Tol93] found a smooth projective integral variety
X over C and x ∈ X(C) such that π1(X,x)→ πet

1 (X,x) fails to be injective.
It is not known if there exists such an (X,x) with π1(X,x) 6= {1} and
πet

1 (X,x) = {1}.
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3.5.10. Local coordinates. The following proposition should be compared
with the discussion in Remark 3.5.11.

Proposition 3.5.48. Let f : X → S be smooth of relative dimension r at
a point x ∈ X, and let s = f(x). Then the following are equivalent for
elements g1, . . . , gr ∈ OX,x:

(i) The differentials dg1(x), . . . , dgr(x) form a basis for the (r-dimensional)
cotangent space ΩX/S,x ⊗ k(x).

(ii) There is an open neighborhood U of x in X to which the gi extend, such
that the S-morphism (g1, . . . , gr) : U → ArS is étale.

Moreover, such g1, . . . , gr exist.

Proof. See [BLR90, §2.2, Proposition 11 and Remark 12]. �

Definition 3.5.49. An r-tuple (g1, . . . , gr) satisfying the equivalent condi-
tions of Proposition 3.5.48 is called a system of local coordinates at x.

Remark 3.5.50. Suppose that in the setting of Proposition 3.5.48, we have
S = Spec k and x ∈ X(k). Then we have an isomorphism of r-dimensional
k-vector spaces

mx/m
2
x → ΩX/k,x ⊗ k(x)

g 7→ dg(x).

Thus for g1, . . . , gr vanishing at x, we have that g1, . . . , gr are local coordi-
nates at x if and only if their images in mx/m

2
x form a basis.

Local coordinates can be used to reduce questions about smooth schemes
to the case of étale schemes. For example:

Proposition 3.5.51. Let X → S be a smooth morphism of schemes.

(i) If S is reduced, then X is reduced.
(ii) If S is normal, then X is normal.
(iii) If S is regular, then X is regular.

Sketch of proof. Each statement is local on X. Proposition 3.5.48 says
that locally X → S factors into an étale morphism and a morphism of the
type AnS → S. Thus we reduce to proving the statements for étale morphisms
of the type described in Proposition 3.5.39 and for morphisms of the type
SpecA[t] → SpecA. For these, it is a calculation; see [Ray70a, VII.§2] for
some more details. �

3.5.11. Example: Étale schemes over a normal scheme.

(Reference: [SGA 1, I.10])
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We now classify étale schemes Y over a normal locally noetherian scheme
X. By Proposition 3.5.51(ii), any such Y is normal and locally noetherian
too. We may assume that X and Y are connected, and hence integral by
Lemma 3.2.11(i)⇒(iii). For simplicity, we also restrict to the case where
Y → X is separated; otherwise, we could get more étale X-schemes by
doubling some closed points of Y , for example.

Theorem 3.5.52. Let X be a normal connected locally noetherian scheme.
Let K = k(X).

(a) Let K ′ be a finite separable extension of K. Let X ′ be the normalization
of X in K ′. Then X ′ → X is finite.

(b) Let X ′ → X be as in (a). Let U ′ ⊆ X ′ be a nonempty open subscheme. If
U ′ is unramified over X, then U ′ is a separated connected étale X-scheme
(“separated” here means “separated over X”).

U ′ �
� open //

étale? !!

X ′

normalization
��

K ′

finite separable extension

X K

(c) Every separated connected étale X-scheme Y arises as in (b).
(d) An étale X-scheme U ′ as in (b) is finite over X if and only if U ′ = X ′.

Proof.

(a) The question is local on X, so assume that X is affine. Now this is
[Ser79, I.§4, Proposition 8].

(b) For the proof that U ′ → X is étale, see [SGA 1, I.9.11]. The composition
U ′ → X ′ → X of an open immersion and finite morphism is separated.
Since U ′ is a nonempty open subscheme of the integral scheme X ′, it is
connected.

(c) An étale morphism is locally quasi-finite, so this follows from Zariski’s
main theorem; see [EGA IV3, 8.12.11].

(d) If U ′ = X ′, then U ′ is finite over X by (a). Conversely, if U ′ is finite
over X, then U ′ is finite over X ′, and hence proper over X ′, so the open
subscheme U ′ is closed in X ′. Since X ′ is connected, U ′ = X ′. �

Definition 3.5.53. In the context of Theorem 3.5.52(a), call K ′ ⊇ K un-
ramified above X if the normalization X ′ → X is unramified.

Corollary 3.5.54 (Fundamental group of a normal scheme). Let X be a
normal connected locally noetherian scheme. Let K = k(X). Let Ω be a
separably closed field containing K. Let η : Spec Ω → X be the associated
geometric point. Let L be the compositum of all finite separable extensions
of K in Ω that are unramified above X. Then πet

1 (X, η) ' Gal(L/K).
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Proof. By Theorem 3.5.52(c,d), the finite étale X-schemes are the normal-
izations of X in finite separable extensions K ′ of K, so πet

1 (X, η) is the
inverse limit of the groups Gal(K ′/K) for the finite Galois extensions of this
type. �

Example 3.5.55. Let k be a field. A choice of separable closure gives a
geometric point η : Spec ks → Spec k, and π1(Spec k, η) ' Gal(ks/k).

Example 3.5.56. Let OK,S be a ring of S-integers in a global field K (Def-
inition 1.1.1). Fix a geometric point η : SpecKs → SpecOK,S . In this case,
the field L ⊆ Ks of Corollary 3.5.54 is classically called the maximal Galois
extension of K unramified outside S. Then πet

1 (SpecOK,S , η) ' Gal(L/K).

The following will be used in Section 8.4.6:

Lemma 3.5.57 (cf. [Har00, proof of Lemma 5.2(1)]). For a normal geo-
metrically integral k-variety X with a k-point x, the following are equivalent:

(i) Xks is not algebraically simply connected; i.e., πet
1 (Xks , x) 6= {1}.

(ii) Xks has a nontrivial connected finite étale cover.
(iii) Xks has a nontrivial geometrically integral finite étale cover.
(iv) X has a nontrivial geometrically integral finite étale cover.

Proof. For each finite separable extension L ⊇ k, the variety XL is normal
by Proposition 3.5.51(ii). so Xks is normal too.

(iv)⇒(iii): If Y → X is a nontrivial geometrically integral finite étale
cover, then so is Yks → Xks .

(iii)⇒(ii): Geometrically integral implies connected.
(i)⇔(ii): This is the definition of algebraically simply connected.
(ii)⇒(iii): We show that every connected finite étale cover Y → Xks is

geometrically integral. First, Y is integral by the arguments preceding The-
orem 3.5.52, so Y is geometrically irreducible by Proposition 2.2.19(ii)⇒(i).
On the other hand, Yk is étale over the reduced variety Xk, so Yk is reduced
by Proposition 3.5.51(i). Thus Y is geometrically integral.

(iii)⇒(iv): By Theorem 3.5.52(c,d), nontrivial connected finite étale cov-
ers of X are the normalizations of X in the finite separable extensions of
k(X) unramified above X, and likewise for Xks . Let Y → Xks be a nontriv-
ial geometrically integral finite étale cover. By replacing k(Y) by its Galois
closure over k(X), and Y by the corresponding normalization of X, we may
assume that k(Y) is Galois over k(X); by the proof of (ii)⇒(iii), Y is still
geometrically integral.

We claim that Y → Xks is the base change of a geometrically integral
finite étale cover Y → X. To construct Y → X, we will construct k(Y )
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82 3. Properties of morphisms

and then take the normalization of X in k(Y ). First, the tower of fields
k(Y) ⊇ k(Xks) ⊆ k(X) yields an exact sequence
(3.5.58)

1→ Gal(k(Y)/k(Xks))→ Gal(k(Y)/k(X))→ Gal(k(Xks)/k(X))→ 1.

Define the fiber Yx as the set of points in Y(ks) above x. The group
Gal(k(Y)/k(X)) acts on Yx, and its subgroup Gal(k(Y)/k(Xks)) acts sim-
ply transitively since Y → Xks is Galois étale. Therefore a choice of y ∈ Yx
splits (3.5.58): the stabilizer S := StabGal(k(Y)/k(X))(y) maps isomorphi-
cally to Gal(k(Xks)/k(X)). Thus the extension k(Y) ⊇ k(Xks) arises from
k(Y)S ⊇ k(Xks)

S = k(X) by base change, i.e., by applying ⊗k(X)k(Xks) or,
equivalently, ⊗kks. Taking normalizations of X in these fields shows that
Y → Xks is the base change of some Y → X. Since Y → Xks is finite étale
and nontrivial, so is Y → X. Since Y is geometrically integral, so is Y . �

3.5.12. Definition 3 of smooth: The infinitesimal lifting property.
Here is yet another equivalent definition of smooth:
Definition 3.5.59. [EGA IV4, §17.1.1, 17.3.1]. A morphism f : X → S is
smooth if and only if both of the following hold:

(i) f is locally of finite presentation; and
(ii) for every affine scheme SpecA equipped with a morphism to S and

for every nilpotent ideal I ⊂ A, the natural map X(A) → X(A/I) is
surjective.

(Here we think of X, SpecA, and SpecA/I as S-schemes, so for instance,
X(A/I) should be interpreted as HomS(SpecA/I,X). To say that I is
nilpotent means that In = 0 for some n.)

For a proof that Definition 3.5.59 is equivalent to Definition 3.5.12, see
[BLR90, §2.2, Proposition 6] or [EGA IV4, §17.5.2].

Remark 3.5.60. Property (ii) is called the infinitesimal lifting property,
and a morphism satisfying it alone is called formally smooth. One gets an
equivalent condition if one allows only ideals I for which I2 = 0.

Example 3.5.61. Let k be a field, and let X be the k-variety xy = 0 in A2
k.

We will show that X does not satisfy property (ii), and hence is not smooth.
Take A = k[ε]/(ε3) and I = (ε2) ⊆ A, so A/I = k[ε]/(ε2). Then the point
(ε, ε) ∈ A2(A/I) lies on X(A/I), but there is no way to lift this to a point
in X(A): such a lift would have to be of the form (ε+ aε2, ε+ bε2) for some
a, b ∈ k, but (ε+ aε2)(ε+ bε2) = ε2 6= 0 in A.

This example can be interpreted geometrically. Let An := k[ε]/(εn).
Giving an element of X(A2), i.e., a morphism SpecA2 → X, is the same
as giving a point P ∈ X(k) with a tangent vector at P . More generally,
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(ε, ε)

Figure 5. Failure of the infinitesimal lifting property: a tangent vector
to xy = 0 that does not extend to a higher order jet; see Example 3.5.61

for any n, morphisms SpecAn → X are called jets. Let P be the origin
(0, 0) ∈ X(k); then the tangent space TX,P = TA2,P is 2-dimensional. The
element (ε, ε) ∈ X(A2) corresponds to a tangent vector at P pointing along
the line y = x; see Figure 5. Such a tangent vector, lying along neither of
the two branches of X at P , will not extend to a higher order jet in X.

Remark 3.5.62. If one replaces “surjective” in Theorem 3.5.59 by “injective”
or “bijective”, one gets equivalent definitions for the concepts of G-unramified
or étale morphisms, respectively [EGA IV4, §17.1.1, 17.3.1].

Theorem 3.5.63 (Hensel’s lemma). Let A be a complete noetherian local
ring with maximal ideal m.

(a) If X is smooth over SpecA, then the reduction map X(A) → X(A/m)
is surjective.

(b) If X is étale over SpecA, then the reduction map X(A) → X(A/m) is
bijective.

To see what Theorem 3.5.63 has to do with the Hensel’s lemma in alge-
braic number theory, see what it says when A = Zp and X = SpecZp[t]/(f)
where f ∈ Zp[t] is a monic polynomial such that f modulo p is a separable
polynomial in Fp[t].

Proof of Theorem 3.5.63. If X is smooth (resp. étale) over SpecA, then
by the infinitesimal lifting property, X(A/mn+1) → X(A/mn) is surjective
(resp. bijective) for each n ≥ 1. The theorem will follow if we can verify the
technical point X(A) = lim←−X(A/mn). (The reader is invited to skip the rest
of this proof.)

For any local ring A and scheme X, there is a bijection{
morphisms

SpecA→ X

}
=

{
(x, φ)

∣∣∣∣ x ∈ X, and
φ : OX,x → A is a local homomorphism

}
;
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given a morphism SpecA → X, the image of the closed point of SpecA in
X is the point x in the associated pair (x, φ) [EGA I, 2.4.4]. Thus, for our
A-scheme X,

X(A) =

{
(x, φ)

∣∣∣∣ x ∈ X, and
φ : OX,x → A is a local A-algebra homomorphism

}
,

and

X(A/mn) =

{
(x, φ)

∣∣∣∣ x ∈ X, and
φ : OX,x → A/mn is a local A-alg. homomorphism

}
for any n ≥ 1. This, together with the fact that A is the projective limit of
A/mn in the category of rings, implies that the natural map

X(A) −→ lim←−X(A/mn)

is bijective. �

3.5.13. Smooth varieties over a field.

Proposition 3.5.64. The smooth locus of a geometrically reduced k-variety
X is open and dense in X.

Proof. Openness was proved in Proposition 3.5.17. For the denseness, see
[BLR90, §2.2, Proposition 16]. �

Example 3.5.65. Here we show that the “geometrically reduced” hypothesis
in Proposition 3.5.64 cannot be dropped. Let k be the imperfect field Fp(t).
Let X be the curve xp − typ = 0 in A2

k. The Jacobian matrix is identically
zero, so Xsmooth = ∅.
Proposition 3.5.66. Let k be a field, and let X be a k-variety. Suppose
that X is smooth at the point x ∈ X(k), and let t1, . . . , tr be local coordinates
at x. Replace ti by ti − ti(x) to make each new ti vanish at x. Then the
natural map k[[t1, . . . , tr]] → ÔX,x from the formal power series ring to the
completion of the local ring of X at x is an isomorphism.

Proof. The local ring OX,x is a regular local ring of dimension r containing
its residue field k. Therefore its completion ÔX,x is too, and the Cohen
structure theorem implies ÔX,x ' k[[t1, . . . , tr]] (see [Mat80, Corollary 2 to
28.J].) �

Proposition 3.5.67. If a k-variety is smooth and geometrically connected,
then it is geometrically integral.

Proof. Let X be the variety. By Proposition 3.5.22(i), smooth is equivalent
to geometrically regular, so Corollary 3.5.6 applies to Xk. �
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For convenience, we make the following definition:

Definition 3.5.68. A k-variety is nice if it is smooth, projective, and geo-
metrically integral.

Remark 3.5.69. The literature contains many theorems about varieties
that are “smooth, projective, and geometrically connected”. These hypothe-
ses look weaker than “nice”, but in fact they are equivalent, by Proposi-
tion 3.5.67.

3.5.13.1. Separably closed fields.

Proposition 3.5.70. If X is a smooth k-variety over a separably closed field
k, then X(k) is Zariski dense in X.

Proof. The question is local on X, so by Proposition 3.5.48, we may assume
that there is an étale morphism g : X → Ark. We may also assume that X is
nonempty. It suffices to prove X(k) 6= ∅, since then we can apply the same
argument to each dense open subscheme of X.

By Proposition 3.4.2, g(X) is open in Ark. Since separably closed fields
are infinite, Ar(k) is dense in Ark. In particular, there is a k-point v in
g(X). The nonempty étale k-scheme g−1(v) is a disjoint union of k-points
by Proposition 3.5.35. Thus X has a k-point. �

The hypothesis of Proposition 3.5.70 can be weakened slightly:

Corollary 3.5.71. If X is a geometrically reduced k-variety over a separably
closed field k, then X(k) is Zariski dense in X.

Proof. Combine Propositions 3.5.64 and 3.5.70. �

Example 3.5.72. Here we show that the “geometrically reduced” hypothesis
in Corollary 3.5.71 cannot be dropped. Let k be an imperfect separably
closed field. Choose t ∈ k−kp. Let X be the curve xp− typ = 0 in A2

k. Then
X(k) consists of the single point (0, 0), and hence X(k) is not Zariski dense
in X.

3.5.13.2. Local fields.

Proposition 3.5.73. Let k be a local field. Let f : Y → X be a morphism
between k-varieties.

(i) If f is étale, then the induced map of topological spaces Y (k) → X(k)
is a local homeomorphism (for the analytic topology).

(ii) If f is smooth, then the map Y (k)→ X(k) is open.

Proof.
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(i) By Proposition 3.5.39 we may assume that f : Y → X is a standard
étale morphism Spec(A[t]/(p))[q−1] → SpecA as in Definition 3.5.38,
where A is a quotient of a polynomial ring R := k[x1, . . . , xn]. Lift
p ∈ A[t] to some p̃ ∈ R[t]. Then there is an affine open subset of
SpecR[t]/(p̃) whose projection to SpecR = An is a standard étale
morphism whose restriction above SpecA is f . So we reduce to the
case of a standard étale morphism Y → X = An. The result now is a
special case of the implicit function theorem over k.

(ii) Proposition 3.5.48 lets us reduce to proving openness for étale mor-
phisms and projections X × An → X. The étale case follows from (i),
and the projection case follows from the definition of the product topol-
ogy. �

The classical Krasner’s lemma [Lan94, II, §2, Proposition 3] is a state-
ment about local fields k that implies that if the coefficients of a monic
separable polynomial are perturbed, then the multiset of zeros varies contin-
uously, irreducibility is locally preserved, and the field extension generated
by the zeros is locally constant [Lan94, II, §2, Proposition 4]. Since any
monic separable polynomial in Qp[x] can be approximated by monic poly-
nomials in Q[x], this implies that any degree d extension of Qp is Qp(α) for
some α that is algebraic of degree d over Q. In particular, the copy of Q in
Qp is dense, and the homomorphism Gal(Qp/Qp)→ Gal(Q/Q) sending σ to
σ|Q is injective (its image is a decomposition group).

The following is a generalization of the statement above that the field
extension generated by the zeros is locally constant.

Proposition 3.5.74 (Krasner’s lemma). Let k be a local field. Let f : Y →X
be a finite étale morphism of k-varieties. Then the isomorphism type of
the étale k-scheme f−1(x) is locally constant as x varies over X(k) in the
analytic topology.

Proof. We may assume that X is connected, so that f has constant degree,
say d. Let x0 ∈ X(k). Let L ⊇ k be a finite Galois extension over which
f−1(x0) splits, say into points y1, . . . , yd ∈ Y (L). Let fL : Y (L) → X(L)
be the map on L-points. By Proposition 3.5.73(i), there exist open neigh-
borhoods Yi ⊆ Y (L) of yi and Ui ⊆ X(L) of x0 such that fL restricts
to a homeomorphism Yi → Ui. We may assume that σYi = Yj whenever
σ ∈ Gal(L/k) and σyi = yj . By shrinking the Ui (and correspondingly the
Yi), we may assume that the Yi are disjoint and that the Ui are all equal, say
to U . The disjoint union of the homeomorphisms fL|Yi : Yi → U ' U × {yi}
is a Gal(L/k)-equivariant homeomorphism h :

⋃
Yi → U × f−1

L (x0) of de-
gree d covers of U . Thus if u ∈ U ∩X(k), then restricting the domain and
codomain of h to the fibers above u yields an isomorphism of Gal(L/k)-sets,
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so the corresponding étale k-schemes are isomorphic too; these are f−1(u)
and f−1(x0) since both have degree d. �

Proposition 3.5.75. Let k be a local field. Let X be an irreducible k-variety.
If X has a smooth k-point x, then X(k) is Zariski dense in X.

Proof. By Proposition 3.5.48, we may replace X by an open subscheme
to assume that there is an étale morphism π : X → Ark. By Proposi-
tion 3.5.73(ii), the image π(X(k)) is a nonempty open subset of Ar(k). No
nonzero polynomial can vanish on such an open subset, so π(X(k)) is Zariski
dense in Ark. So if Y is the Zariski closure of X(k) in X, then dimπ(Y ) = r.
This implies dimY ≥ r, so Y = X. �

Remark 3.5.76. One can strengthen the conclusion of Proposition 3.5.75 to
assert that any open neighborhood U of x in X(k) contains k-points outside
any given countable union of closed subvarieties Yi ( X. To prove this,
after reducing to the case X = Ar as before, one can proceed in any of the
following ways:

• apply the Baire category theorem to the nowhere dense subsets Yi(k) of
X(k);
• equip Ar(k) with Haar measure and observe that U has positive measure
while each set Yi(k) has measure 0; or
• use induction on r, by fibering Ar(k) into lines and using the uncount-
ability of any nonempty open subset of each line A1(k).

This strengthening will be used in the proof of Theorem 7.7.4.

3.5.14. Good reduction.
3.5.14.1. Discrete valuation rings.

Definition 3.5.77. Let R be a discrete valuation ring, and let K = FracR.
Let X be a smooth proper K-variety. We say that X has good reduction if
there exists a smooth proper R-model of X.

In this case, the special fiber is a smooth proper variety over the residue
field.

Example 3.5.78. The K-variety in Example 3.2.9 has good reduction, be-
cause the scheme ProjZ7[x, y, z]/(xy − z2) is a smooth proper R-model.

�

Warning 3.5.79. Let X be a smooth proper K-variety. Let R̂ and K̂
denote the completions of R and K, respectively. If XR is a smooth proper
R-model of K, then XR ×R R̂ is a smooth proper R̂-model for X

K̂
. So if

X has good reduction, then so does X
K̂
. But the converse can fail, as we

now explain by modifying [Mat15, Example 5.3]. Let p, a, b, c, F be as in
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[Mat15, Example 5.3], except with c a nonsquare integer that becomes a
square in Zp. Let R = Z(p). Let X = ProjZ(p)[x, y, z, w]/(F ). Then

(i) the generic fiber is a smooth quartic surface X ⊆ P3
Q (a K3 surface)

with PicX ' Z;
(ii) the special fiber is a singular quartic surface over Fp whose singularities

are ordinary double points; and
(iii) there are non-Cartier Weil divisors C+ and C− on XZp (defined, in fact,

on XZ(p)[
√
c]) such that blowing up either results in a smooth proper

scheme over Zp.

Facts (i) and (ii) imply that X does not extend to a smooth proper scheme
over Z(p), by the argument in [Art74, p. 330]. Fact (iii) says that XQp does
extend to a smooth proper scheme over Zp.

Remark 3.5.80. In the context of Definition 3.5.77, it can happen that X
does not extend to a smooth proper R-scheme but does extend to a smooth
proper R-algebraic space [Art74]. In fact, the notion of good reduction
would have better properties if it were defined in terms of algebraic spaces;
see [Mat15] for more examples of this.

3.5.14.2. Dedekind domains.

Definition 3.5.81. Let R be a Dedekind domain, and letK = FracR. Let p
be a nonzero prime of R. A smooth proper K-variety X has good reduction
at p if X has a smooth proper Rp-model. And X has good reduction if it
has good reduction at every p.

3.5.15. Regular proper models. When a smooth proper model does not
exist, one can seek models with weaker properties.

For example, if R is a complete discrete valuation ring and X is a nice
K-curve, then X always has a regular proper R-model. Let us sketch a
construction. Choose an embedding of X in PnK for some n. We have
PnK ↪→ PnR, and the Zariski closure of X in PnR is a proper R-model X ′R
of X. But X ′R need not be smooth. The normalization of X ′R is finite over
XR, so it is another proper R-model X ′′R, but now it is regular except at
isolated closed points. By resolution of singularities for arithmetic surfaces,
alternately blowing up singularities and normalizing eventually produces a
regular proper model. (In fact, it is even projective.) See [Art86b] for an
exposition of Lipman’s proof of an even more general version.

If moreover X has genus ≥ 1, then among all regular proper R-models,
there is a unique one satisfying a certain minimality property; see Sec-
tion 9.3.1.6. It is called the minimal regular proper model. This result



Un
offi
cia
l v
ers
ion

for
inc
ide
nta

l o
nli
ne
use

3.5. Smooth and étale morphisms 89

is analogous to the theory of minimal models for surfaces over fields, which
is discussed in [Har77, pp. 418–419].

It is conjectured that a nice K-variety X of any dimension has a reg-
ular proper R-model. This conjecture is a version of what could be called
resolution of singularities for arithmetic schemes.

3.5.16. Néron models.

(References: [BLR90], [LT16])

Let R be a discrete valuation ring. Let K = FracR. Let X be a nice
K-variety. If X has good reduction, i.e., X has a smooth proper R-model X ,
then X (R) ' X(K) by the valuative criterion for properness. But even if X
has bad reduction, it might have a smooth not-necessarily-proper R-model
N satisfying N (R) ' X(K). To determine N uniquely, we would want
to specify not just N (R), but the whole functor of points. Actually, if we
insist that N be smooth over R, then it suffices to specify its functor of
points restricted to smooth R-schemes, by Yoneda’s lemma (Lemma 2.3.4)
applied in the category of smooth R-schemes. This motivates the following
definition, which we give in the more general context of Dedekind domains
(and which could be generalized further to integral Dedekind schemes):

Definition 3.5.82. Let R be a Dedekind domain. Let K = FracR. Let
X be a smooth K-variety. A Néron model of X is a smooth R-scheme N
with an isomorphism NK ' X such that for every smooth R-scheme T , the
induced map N (T ) → X(TK) is a bijection. (Some authors write “Néron
lft-model” for the above, and write “Néron model” only if N is also of finite
type [LT16]; here lft stands for “locally of finite type”.)

As mentioned above, Yoneda’s lemma implies thatN is unique if it exists.
Moreover, if X is a group scheme (see Section 5.1) and N exists, then the
functor of points of N factors through Groups, so N is a group object in
the category of smooth R-schemes; that is, N is a smooth group scheme over
R.

Néron has his name attached to the concept because in 1964 he proved
that N exists when X is an abelian variety over the fraction field of a discrete
valuation ring; see Section 5.7.5. Here is a more recent result, in a different
direction:

Theorem 3.5.83 (Liu and Tong). Let S be an integral Dedekind scheme.
Let K = k(S). Let X be a nice curve over K of positive genus. Let X → S
be the minimal regular proper model of X (see Section 9.3.1.6). Then the
smooth locus X smooth of X → S is a Néron model of X.

Proof. See [LT16, Theorem 1.1]. �
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3.6. Rational maps

3.6.1. Rational maps and domain of definition.

(Reference: [EGA I, §7])

Definition 3.6.1 ([EGA I, 7.1.2]). Let X and Y be S-schemes. Consider
pairs (U, φ) in which U is a dense open subscheme of X and φ : U → Y is an
S-morphism. Call pairs (U, φ) and (V, ψ) equivalent if φ and ψ agree on a
dense open subscheme of U ∩ V . A rational map X 99K Y is an equivalence
class of such pairs. In other words,

{rational maps X 99K Y } := lim−→
U

HomS(U, Y ),

where U ranges over dense open subschemes of X ordered by reverse inclu-
sion.

Definition 3.6.2 ([EGA I, 7.2.1]). The domain of definition of a rational
map is the union of the U as (U, φ) ranges over the equivalence class. It is
an open subscheme of X.

Definition 3.6.2 is useful mainly when X is reduced and Y is separated:

Proposition 3.6.3. Let W be the domain of definition of a rational map
X 99K Y , where X is reduced and Y is separated. Then there is a unique
ξ : W → Y such that (W, ξ) belongs to the equivalence class.

Proof. If (U, φ) and (V, ψ) are equivalent, so φ and ψ agree on a dense open
subscheme of U ∩ V , then by Corollary 2.3.23 they agree on all of U ∩ V .
Therefore all the (U, φ) can be glued to give (W, ξ). �

Remark 3.6.4. One can drop the hypothesis that X is reduced in Propo-
sition 3.6.3 if one replaces “dense” by the stronger property “scheme-theo-
retically dense” everywhere in Definition 3.6.1. This leads to the notion of
pseudo-morphism, a variant of the notion of rational map; see [EGA IV4,
20.2.1].

3.6.2. Rational points over a function field.

Proposition 3.6.5. Let X be an integral k-variety, and let Y be an arbitrary
k-variety. Let K = k(X).

(a) The natural map

{rational maps from X to Y } −→ Y (K)

[φ : U → Y ] 7−→ (the composition SpecK ↪→ U
φ→ Y )

is a bijection.
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(b) If moreover X is a regular curve and Y is proper, then we get bijections

Homk(X,Y )
∼→ {rational maps from X to Y } ∼→ Y (K).

Proof.

(a) Every dense open subscheme of X contains a dense affine open sub-
scheme; i.e., the inverse system (SpecAi) of dense affine open subschemes
of X is cofinal in the system of all dense open subschemes. Thus we have
bijections

{rational maps from X to Y } = lim−→
U

Y (U) (by definition)

' lim−→Y (Ai) (by cofinality)
' Y (lim−→Ai) (by Remark 3.1.11)
= Y (K) (since lim−→Ai = K).

(b) The first bijection comes from the valuative criterion for properness: The
map Y (X)→ Y (K) is bijective by Remark 3.2.14. The second bijection
was given already in (a). �

3.6.3. Dominant rational maps.

Definition 3.6.6. A rational map X 99K Y is dominant if and only if for
some (or equivalently, for each) representative (U, φ), the image φ(U) is dense
in Y .

Corollary 3.6.7 (cf. [Har77, Theorem I.4.4]). The functor{
integral k-varieties,

dominant rational maps

}
←→

{
finitely generated field extensions of k,

k-algebra homomorphisms

}opp

X 7−→ k(X)

is an equivalence of categories.

Proof. A rational map X 99K Y is dominant if and only if it maps the
generic point of X to the generic point of Y ; thus we have a functor from
left to right. Restricting the bijection in Proposition 3.6.5(a) to the dominant
rational maps X 99K Y shows that the functor is fully faithful. Every finitely
generated field extension of k is isomorphic to the function field of an integral
k-variety (cf. Proposition 2.2.13); i.e., the functor is essentially surjective. �

Definition 3.6.8. If X is an integral k-variety, the set of birational maps
X 99K X forms a group BirX. By Corollary 3.6.7, BirX is isomorphic to
the group Aut(k(X)/k) of automorphisms of the function field over k.

Example 3.6.9. The group BirPn is also called the Cremona group.
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92 3. Properties of morphisms

Definition 3.6.10. If π : X → Y is a dominant rational map between inte-
gral k-varieties of the same dimension, then k(X) may be viewed as a finite
extension of k(Y ), and we define the degree of π as deg π := [k(X) : k(Y )].

3.6.4. Lang–Nishimura theorem. If π : X → Y is a morphism of k-
varieties and X has a k-point x, then Y has a k-point, namely π(x). If π is
only a rational map, this argument fails, since π might be undefined at x,
but surprisingly the same conclusion can be drawn, under mild hypotheses.
The following theorem is due to Lang [Lan54] and Nishimura [Nis55].

Theorem 3.6.11 (Lang–Nishimura theorem). Let X 99K Y be a rational
map between k-varieties, where Y is proper. If X has a smooth k-point, then
Y has a k-point.

Proof. Let x be the given smooth k-point on X. Replacing X by an open
neighborhood of x, we may assume that X is integral. Let n = dimX.
Proposition 3.5.66 gives the isomorphism in the chain of embeddings

OX,x ↪→ ÔX,x ' k[[t1, . . . , tn]] ↪→ F := k((t1))((t2)) · · · ((tn)).

Since F is a field (an iterated formal Laurent series field), the fraction field
Frac OX,x = k(X) embeds in F . By Proposition 3.6.5(a), the rational map
gives an element of Y (k(X)), and hence an element of Y (F ). Applying
Lemma 3.6.12 n times shows that Y has a k-point. �

Lemma 3.6.12. Let Y be a proper k-variety. Let L be a field extension
of k, and let L((t)) be the formal Laurent series field over L. If Y has an
L((t))-point, then Y has an L-point.

Proof. By the valuative criterion for properness (Theorem 3.2.12), the ele-
ment of Y (L((t))) extends to an element of Y (L[[t]]), which reduces modulo
t to an element of Y (L). �

Remark 3.6.13. The Lang–Nishimura theorem can be explained geomet-
rically as follows. If dimxX > 0, then one can show that X contains an
integral curve C such that

• x is a smooth point of C, and
• C meets the domain of definition of the rational map φ.

The valuative criterion for properness shows that φ|C : C 99K Y extends to
be defined at x. It maps x to a k-point of Y . (The reason that we did not
present the proof this way is that the existence of C is not immediate.)

Remark 3.6.14. For another proof of Theorem 3.6.11, see Exercise 3.11.

Remark 3.6.15. In Theorem 3.6.11 one cannot conclude that Y has a
smooth k-point.
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3.7. Frobenius morphisms 93

The Lang–Nishimura theorem implies that the property of having a
k-point is a birational invariant of smooth, proper, integral k-varieties:

Corollary 3.6.16. Let X and Y be smooth, proper, integral k-varieties that
are birational to each other. Then X has a k-point if and only if Y has a
k-point.

3.7. Frobenius morphisms

(Reference: [SGA 5, XV])

Let p be a prime number. Let X be a scheme of characteristic p, i.e.,
a scheme with pOX = 0. Then the absolute Frobenius morphism is the
morphism of schemes FX : X → X that is the identity on topological spaces
and that induces the pth-power homomorphism f 7→ fp on each ring OX(U).

Now let S be a scheme of characteristic p, and let X be an S-scheme.
Let X(p) be the base extension of X by FS . Then the universal property
of the fiber product gives a morphism FX/S : X → X(p) called the relative
Frobenius morphism:

X
FX

$$

��

FX/S
!!
X(p)

��

α // X

��
S

FS // S

(3.7.1)

As the diagram shows, FX/S is an S-morphism, but FX is generally not an
S-morphism because it lies over FS : S → S instead of the identity 1S .

Example 3.7.2. Let k be a field of characteristic p. Let S = Spec k, and
let X be a k-variety. Then X(p) is the k-variety obtained by replacing the
coefficients in the equations defining X by their pth powers. We then write
FX/k = FX/S . On regular functions, the three morphisms along the top of
(3.7.1) act as follows:

FX/k : identity on elements of k, raises variables to the pth power;
α : raises elements of k to the pth power, identity on variables;

FX : raises everything to the pth power.

Of these three morphisms, usually only FX/k is a morphism of k-varieties; it
is a finite morphism.

Remark 3.7.3. If X is an integral variety over a field k of characteristic p,
then the degree of FX/k : X → X(p) is pdimX (see Definition 3.6.10). In
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94 3. Properties of morphisms

particular, if dimX > 0, then FX/k is not an isomorphism, and hence not
an automorphism even if X(p) ' X over k.

Remark 3.7.4. If we specialize (3.7.1) to the case where S = SpecFp, then
FS is the identity, so X(p) ' X as an Fp-scheme via α.

The following will be used later, in the proof of Proposition 7.5.17.

Lemma 3.7.5. If X → S is an étale morphism of schemes of characteris-
tic p, then the diagram

X
FX //

��

X

��
S

FS // S

is cartesian; that is, the upper left X is the fiber product of the rest of the
diagram.

Proof. By [SGA 5, XV, Proposition 2(c)(2)], FX/S is an isomorphism. �

Remark 3.7.6. Let q = pn for some n ≥ 1. Under the same hypotheses as
above, one can define an absolute q-power Frobenius morphism X → X, a
scheme X(q), and a relative q-power Frobenius morphism X → X(q) over S
in the same way, by replacing p by q.

3.8. Comparisons

Given a collection of schemes (Xi)i∈I , we may glue the Xi along their empty
subschemes to obtain the disjoint union scheme

∐
Xi. Given a collection of

morphisms (Xi → Y )i∈I , we may glue them to obtain a a single morphism∐
Xi → Y .

Definition 3.8.1. A Zariski open covering morphism is a morphism of
schemes

∐
Xi → Y obtained as a disjoint union of open immersions Xi → Y

whose images form an open covering of Y . (This terminology is not standard,
but it will be convenient to have.)

Proposition 3.8.2. Let f : X → Y be a morphism of schemes. Each of the
following statements implies the next:

• f is a Zariski open covering morphism.
• f is étale and surjective.
• f is fppf.
• f is fpqc.

Proof. We leave this to the reader, as Exercise 3.13. �
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Proposition 3.8.2 suggests that fpqc morphisms may be considered gen-
eralizations of open coverings. This point of view will prevail in Chapters 4
and 6.

Exercises

3.1. Let A be a commutative ring. Let I be an ideal in the polynomial ring
A[t1, . . . , tn] for some n ≥ 0. Prove that A[t1, . . . , tn]/I is a finitely
presented A-algebra if and only if I is a finitely generated ideal.

3.2. Which of the following morphisms are flat? Faithfully flat?
(a) SpecZ[1/2]→ SpecZ.
(b) Spec

(
Z× Z

6Z
)
→ SpecZ.

(c) SpecC[x, y]/(xy − 1)→ SpecC[x].
(d) SpecC[x, y]/(xy)→ SpecC[x].
(e) SpecC[x, y]/(y2 − x3)→ SpecC[x].
(f) X → A2

C, where X is the blowup of A2
C at the origin.

3.3. Give an example of an integral domain R and fraction field K such
that the natural map P1(R)→ P1(K) is not a bijection.

3.4. Let k be a global field, and let Ωk, Ok,S , kv, Ov, and A be as in
Section 1.1.3. Let X be a k-variety.
(a) Prove that there is a finite subset S ⊂ Ωk, a separated scheme X

of finite type over Ok,S , and an isomorphism Xk ' X; fix these.
(b) Explain why X (Ov) may be identified with a subset of X(kv) for

each v /∈ S.
(c) Prove that there is a bijection

X(A) −→
∏′

v∈Ωk
(X(kv),X (Ov)).

(Hint : Use Remark 3.1.11 and prove the following.
Lemma. If Y is a quasi-compact and quasi-separated
A-scheme for some ring A, and (Ri)i∈I is a collection
of local A-algebras, then the natural map Y (

∏
Ri) →∏

Y (Ri) is a bijection.
Even with this hint, the problem is hard.)

(d) Prove that if moreover X is proper over k, then the natural map

X(A) −→
∏
v∈Ωk

X(kv)

is a bijection.
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96 3. Properties of morphisms

3.5. Give an example of a prime p and a nice Qp-variety X with proper
Zp-models X and X ′ such that their special fibers are isomorphic and
such that X is regular and X ′ is not.

3.6. Let X be a variety over a field k. Show that it is possible to find
finitely many locally closed subvarieties Yi of X (i.e., open subvarieties
of closed subvarieties) such that each Yi is smooth and geometrically
integral and

⋃
Yi(k) = X(k).

3.7. Give an example of a prime p and a geometrically integral curve X
over Qp such that X(Qp) consists of a single point.

3.8. Let R be a Dedekind domain, let K = FracR, and let X be a smooth
proper K-scheme. Suppose that for each nonzero prime p of R, the
scheme X has good reduction at p. Prove that there is a smooth
proper R-model of X.

3.9. Let φ : X 99K Y be a rational map from a regular k-variety to a proper
k-variety. Prove that there is a closed subset Z ⊆ X of codimension
≥ 2 in X such that φ extends to a morphism from X − Z to Y .

3.10. For a proper variety X over a global field k, explain why strong ap-
proximation with respect to ∅ is equivalent to weak approximation.

3.11. Give a proof of the Lang–Nishimura theorem by induction on dimX,
along the following lines: Blow up the smooth k-point on X and apply
the inductive hypothesis to the restriction of the rational map to the
exceptional divisor E. (This proof is due to János Kollár and Endre
Szabó [RY00, Proposition A.6].)

3.12. Show that the Lang–Nishimura theorem can fail if either of the fol-
lowing changes is made:
(a) The assumption that Y is proper is dropped.
(b) The given k-point on X is not assumed to be smooth.

3.13. Prove Proposition 3.8.2 comparing Zariski open covering, étale and
surjective, fppf, and fpqc morphisms.

3.14. The inclusions k[x] ↪→ k[x, x−1] and k[x] ↪→ k[[x]] define a morphism f
from the disjoint union X := Spec k[x, x−1]qSpec k[[x]] to the scheme
Y := Spec k[x]. Show that f is fpqc but not fppf.
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Chapter 4

Faithfully flat descent

(References: [Gro95a] and [BLR90, Chapter 6])

Suppose that one wants to carry out a construction of a variety over a
base field k. Sometimes all one can do directly is to construct its analogue
X ′ over some field extension k′. Then one is faced with deciding whether X ′

is the base extension of some k-variety X, and if so, to construct X. This is
a special case of the problem known as descent.

Weil gave necessary and sufficient conditions for descending a quasi-pro-
jective variety over a Galois extension k′ ⊇ k. Later, Grothendieck noticed
that these conditions were analogous to the conditions for reconstructing an
object from local data by gluing; this led him to a common generalization.

4.1. Motivation: Gluing sheaves

4.1.1. A gluing problem. Let S be a topological space, and let {Si}i∈I
denote an open covering of S. Suppose we are given a sheaf Fi on Si for
each i. Under what conditions is there a sheaf F on S such that F |Si ' Fi?
(Cf. [Har77, Exercise II.1.22].)

4.1.2. Solution: The gluing conditions. If F exists, then the restric-
tions of F |Si and F |Sj to Sij := Si∩Sj must be isomorphic (both isomorphic
to F |Sij ). Thus we should at least insist that

for all i and j, we are given an isomorphism φij : Fi|Sij → Fj |Sij .(4.1.1)

Can we then glue the Fi via the φij? On a triple intersection Sijk :=
Si∩Sj∩Sk, the sheaves Fi|Sijk , Fj |Sijk , Fk|Sijk are identified in pairs by φij ,
φjk, and φik, forming a triangle of identifications. For these identifications

97
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98 4. Faithfully flat descent

to be compatible, we should insist that the composition of two sides of the
triangle gives the third, i.e., that we have the following “cocycle condition”:

for all i, j, k, we have φjk ◦ φij = φik on Sijk.(4.1.2)

In the case where F exists, each φij is the identity, so these are automatically
satisfied. The gluing theorem states that given sheaves Fi on Si, if there
exist isomorphisms as in (4.1.1) satisfying (4.1.2), then up to isomorphism
there exists a unique sheaf F on S with isomorphisms φi : F |Si → Fi such
that φi and φj identify the identity on FSij with φij .

Example 4.1.3. Let k be a field, and let S = P1
k, which is covered by

two affine open subsets S1 = Spec k[t] ' A1
k and S2 = Spec k[t−1] ' A1

k

whose intersection is S12 = Spec k[t, t−1] ' A1
k − {0}. Let M1 = k[t] and

M2 = k[t−1] be free rank 1 modules over k[t] and k[t−1], respectively. Let
F1 = M̃1 and F2 = M̃2 be the corresponding sheaves on S1 and S2. Let
d ∈ Z. The k[t, t−1]-module isomorphism

M1 ⊗k[t] k[t, t−1] = k[t, t−1]
t−d−→ k[t, t−1] = M2 ⊗k[t−1] k[t, t−1]

given by multiplication by t−d induces a sheaf isomorphism

φ12 : F1|S12 −→ F2|S12 .

Let φ11 and φ22 be the identity, and let φ21 be φ−1
12 . Then (4.1.2) is trivially

satisfied, so we can glue to get a sheaf F on P1
k. In fact, F is O(d).

Remark 4.1.4. One can also glue morphisms of sheaves, in the following
sense. Let S be a topological space, and let {Si}i∈I denote an open covering
of S. Let F and G be two sheaves on S. For each i ∈ I, let φi : F |Si → G |Si
be a morphism of sheaves. If for every i, j ∈ I, the restrictions of φi and φj
to Sij are equal, then there exists a unique morphism φ : F → G such that
φ|Si = φi for each i ∈ I. (In fact, this statement holds very generally, for
sheaves on any site [SP, Tag 04TQ].)

4.1.3. Rewriting the gluing conditions. We can restate the gluing con-
ditions by introducing the disjoint union S′ :=

∐
Si. Let π : S′ → S be the

“open covering morphism” that on each Si is the inclusion. To give the Fi

on all the Si is equivalent to giving a single sheaf F ′ on S′. The question
is whether there exists a sheaf F on S such that the sheaf π−1F on S′ is
isomorphic to the given F ′.

The fiber product S′′ := S′×S S′ equals the disjoint union of Si ×S Sj =
Si ∩ Sj =: Sij over all i, j. Let p1 : S′′ → S′ and p2 : S′′ → S′ be the two
projections. The sheaf p−1

1 F ′ restricted to the piece indexed by ij corre-
sponds to the sheaf Fi|Sij . Thus, asking for isomorphisms φij as in (4.1.1)

http://stacks.math.columbia.edu/tag/04TQ
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4.2. Faithfully flat descent for quasi-coherent sheaves 99

is equivalent to asking that

we are given an isomorphism φ : p−1
1 F ′ → p−1

2 F ′ of sheaves on S′′.
(4.1.5)

Let S′′′ := S′×S S′×S S′. Let p13 : S′′′ → S′′ be the projection onto the first
and third coordinates, and so on. Then p−1

13 φ is an isomorphism of sheaves
on S′′′. The cocycle condition (4.1.2) can now be rewritten as

p−1
13 φ = p−1

23 φ ◦ p−1
12 φ.

4.2. Faithfully flat descent for quasi-coherent sheaves

The idea behind faithfully flat descent is that, in the context of schemes, in
place of the Zariski open covering morphisms S′ → S of Section 4.1.3, one
can use the much more general fpqc morphisms defined in Section 3.4. We
develop this first for quasi-coherent sheaves, by analogy with the conditions
in Section 4.1.3. The operation p−1 on sheaves is replaced by p∗, which is
the appropriate operation for quasi-coherent sheaves.

4.2.1. Descent data. Let p : S′ → S be an fpqc morphism of schemes.
Let F ′ denote a quasi-coherent S′-module (that is, a quasi-coherent sheaf
of OS′-modules). Define S′′ and S′′′ as in Section 4.1.3, using fiber prod-
uct of schemes instead of fiber products of topological spaces. Define the
projections p1, p13, and so on as before.

Definition 4.2.1. With notation as in the previous paragraph, a descent
datum on F ′ is an isomorphism φ : p∗1F

′ → p∗2F
′ of S′′-modules satisfying

the cocycle condition
p∗13φ = p∗23φ ◦ p∗12φ.

A morphism of quasi-coherent S′-modules with descent data (F ′, φ) →
(G ′, ψ) is a morphism of S′-modules f : F ′ → G ′ such that

p∗1F
′ p∗1f−−−−→ p∗1G

′

φ

y yψ
p∗2F

′ p∗2f−−−−→ p∗2G
′

commutes.

Remark 4.2.2. There is an elegant reinterpretation of the notion of descent
datum in terms of simplicial schemes. See [SP, Tag 0248] for an introduction.

If F is a quasi-coherent S-module, then p∗F has a natural descent
datum φF , consisting of the canonical isomorphism

p∗1(p∗F ) ' (p ◦ p1)∗F = (p ◦ p2)∗F ' p∗2(p∗F ).

http://stacks.math.columbia.edu/tag/0248
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100 4. Faithfully flat descent

4.2.2. The descent theorem for quasi-coherent sheaves. We now have
the main theorem of descent theory, in the context of quasi-coherent modules.

Theorem 4.2.3 (Grothendieck). If p : S′ → S is an fpqc morphism, then
the functor

{quasi-coherent S-modules} −→ {quasi-coherent S′-modules with descent data},
F 7−→ (p∗F , φF )

is an equivalence of categories.

The proof takes only a few pages. It reduces to a statement about mod-
ules over rings generalizing Theorem 1.3.11. See [Gro95a, Theorem 1] or
[BLR90, §6.1] for details.

4.3. Faithfully flat descent for schemes

We now consider the problem of descending schemes instead of quasi-coherent
sheaves. Let p : S′ → S be fpqc. Let X ′ be an S′-scheme. Under what con-
ditions is X ′ isomorphic to an S′-scheme of the form p∗X for some S-scheme
X? (We use the notation p∗X = X ×S S′.)

4.3.1. Descent data for schemes. The answer is almost the same as
for sheaves. A descent datum on an S′-scheme X ′ is an S′′-isomorphism
φ : p∗1X

′ → p∗2X
′ satisfying the usual cocycle condition. The pairs (X ′, φ)

are the objects of a category as before. If X is an S-scheme, then p∗X
has a canonical descent datum φX . Call φ effective if (X ′, φ) ' (p∗X,φX)
for some S-scheme X. Ideally every descent datum would be effective, as
happened for quasi-coherent sheaves, but this is not quite true for schemes;
see [BLR90, §6.7] for a counterexample.

4.3.2. Open subschemes stable under a descent datum.

Definition 4.3.1. Let X ′ be an S′-scheme, and let φ : p∗1X
′ → p∗2X

′ be a
descent datum. An open subscheme U ′ ⊆ X ′ is called stable under φ if
φ induces a descent datum on U ′, that is, if φ restricts to an isomorphism
p∗1U

′ → p∗2U
′ of S′′-schemes.

The idea behind this definition is that the stable open subschemes of X ′

are the ones that are supposed to be of the form p∗U for an open subscheme
U of X, if X exists.

4.3.3. The descent theorem for schemes.

Definition 4.3.2 ([EGA II, 1.6.1]). A morphism f : X → S is affine if
f−1S0 is affine for each affine open subscheme S0 of S. In this case, we call
X an affine S-scheme.
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4.3. Faithfully flat descent for schemes 101

�

Warning 4.3.3. An affine S-scheme is not necessarily affine as a scheme;
“relatively affine” might be clearer terminology.

Definition 4.3.4 ([EGA II, 5.1.1]). A scheme is quasi-affine if it is an open
subscheme of an affine scheme and is quasi-compact. A morphism f : X → S
is quasi-affine if f−1S0 is quasi-affine for each affine open subscheme S0 of
S.

Theorem 4.3.5. Let p : S′ → S be an fpqc morphism of schemes.

(i) The functor X 7→ p∗X from S-schemes to S′-schemes with descent data
is fully faithful.

(ii) The functor X 7→ p∗X from quasi-affine S-schemes to quasi-affine
S′-schemes with descent data is an equivalence of categories.

(iii) Suppose that S and S′ are affine. Then a descent datum φ on an
S′-scheme X ′ is effective if and only if X ′ can be covered by quasi-
affine open subschemes which are stable under φ.

Remark 4.3.6. Parts (ii) and (iii) hold also if “quasi-affine” is replaced by
“affine” everywhere. Part (iii) will be used primarily to show that certain
descent data are effective (the “if” part), so it is preferable to have the more
widely applicable criterion.

The proof of Theorem 4.3.5 reduces to the proof of Theorem 4.2.3. See
[Gro95a, B.1, Theorem 2], [BLR90, §6.1, Theorem 6], and [SP, Tag 0247]
for details.

4.3.4. Descending properties of morphisms. When an S-scheme X is
base extended to an S′-scheme X ′, we know that X ′ inherits many properties
from X. Conversely, when an S′-scheme X ′ is descended to an S-scheme X,
one hopes that X inherits properties from X ′. Fortunately, this is the case
in fpqc descent, for many properties.

Theorem 4.3.7. Let blah denote a property for which a positive answer is
listed in the “fpqc descent” column of Table 1 on pp. 302–303. Let S′ → S
be an fpqc morphism. For any S-scheme X, let X ′ = XS′.

(i) Let X be an S-scheme. If the base extension X ′ → S′ is blah, then the
original morphism X → S is blah.

(ii) More generally, if X → Y is a morphism of S-schemes and its base
extension X ′ → Y ′ by S′ → S is blah, then the original morphism

http://stacks.math.columbia.edu/tag/0247
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102 4. Faithfully flat descent

X → Y is blah.

X ′ //

blah

  

��

X
blah?

��

��

Y ′ //

~~

Y

��
S′

fpqc // S

Proof.

(i) See the references in Table 1.
(ii) Since the morphism S′ → S is fpqc, Table 1 implies that its base

extension Y ′ → Y is fpqc. Now the result follows from (i). �

Remark 4.3.8. It is easy to understand why the surjectivity implicit in
fpqc is a hypothesis for a statement like Theorem 4.3.7(i). If S′ → S were
not surjective, the morphism X → S could have bad behavior above points
of S not in the image of S′, and this behavior would not be seen in the base
extension X ′ → S′.

4.4. Galois descent

Let k be a field, and let k′ be a finite Galois extension of k. Let S = Spec k
and S′ = Spec k′. Then S′ → S is fpqc, so we can apply Theorem 4.3.5(iii)
to say something about descending k′-schemes to k-schemes.

Remark 4.4.1. This case was developed by Weil. Later Grothendieck gen-
eralized it to the fpqc descent we presented first.

Let G = Gal(k′/k). The left action of G on k′ induces a right action of
G on S′; each σ ∈ G induces an automorphism σ∗ of S′.

Proposition 4.4.2.

(i) Giving a descent datum on a k′-scheme X ′ is equivalent to giving a
right action of G on X ′ compatible with the right action of G on S′,
i.e., to giving a collection of isomorphisms σ̃ : X ′ → X ′ for σ ∈ G such
that

X ′
σ̃ //

��

X ′

��
S′

σ∗ // S′

commutes for each σ ∈ G and σ̃τ = τ̃ σ̃ for all σ, τ ∈ G.
(ii) An isomorphism between k′-schemes with descent data is a k′-isomor-

phism that is equivariant for the G-actions in part (i).
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(iii) An open subscheme U ′ of a k′-scheme X ′ is stable under a descent
datum described as in part (i) if and only if σ̃(U ′) = U ′ for all σ ∈ G.

Proof. Since k′/k is Galois, we have an isomorphism

k′ ⊗
k
k′
∼→
∏
σ∈G

k′

a⊗ b 7→ (a · σb)σ∈G.
This induces isomorphisms

S′′ '
∐
σ∈G

Spec k′ =: S′ ×G,(4.4.3)

S′′′ ' S′ ×
S
S′′ ' S′ ×

S
S′ ×G ' S′ ×G×G.

Plugging these into the definition of descent datum and doing some straight-
forward calculations yields the results. See [BLR90, §6.2B] for the de-
tails. �

The morphisms σ̃ are not morphisms of k′-schemes, since they lie over
the σ∗ instead of the identity. If desired, we can rewrite the conditions in
Proposition 4.4.2 in terms of k′-morphisms. Recall from Section 2.2 that we
can transform a k′-scheme by an element σ ∈ G.

Proposition 4.4.4. Let X ′ be a k′-scheme.

(i) Giving a descent datum on X ′ is equivalent to giving a collection of
k′-isomorphisms fσ : σX ′ → X ′ for σ ∈ G satisfying the “cocycle con-
dition” fστ = fσ · σ(fτ ) for all σ, τ ∈ G.

(ii) An isomorphism between varieties with descent data, say X ′ with
(fσ)σ∈G and Y ′ with (gσ)σ∈G, is a k′-isomorphism b : X ′ → Y ′ such
that fσ = b−1gσ(σb) for all σ ∈ G.

(iii) An open subscheme U ′ ⊆ X ′ is stable under a descent datum described
as in part (i) if and only if fσ (σU ′) = U ′ for all σ ∈ G.

Proof. We will use Proposition 4.4.2.

(i) Because of the isomorphism σX ′ → X ′ lying over σ∗, giving an isomor-
phism σ̃ : X ′ → X ′ over σ∗ is equivalent to giving a k′-isomorphism
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fσ : σX ′ → X ′ fitting into the commutative diagram

X ′

σ̃

!!
σX ′ //

��

fσ

OO

X ′

��
S′

σ∗ // S′.

(4.4.5)

(Squares are cartesian, and we use dotted arrows to denote k′-mor-
phisms.) The diagram

X ′

σ̃

##

σ̃τ

��

σX ′ //

fσ

OO

X ′

τ̃

!!
στX ′ //

��

σfτ

OOfστ

99

τX ′ //

��

fτ

OO

X ′

��
S′

σ∗ //

(στ)∗

66S′
τ∗ // S′

shows that σ̃τ = τ̃ σ̃ is equivalent to fστ = fσ · σ(fτ ).

(ii) A k′-isomorphism b : X ′ → Y ′ is G-equivariant if and only if for every
σ ∈ G, the 3-dimensional diagram formed by two copies of (4.4.5), one
for X ′ and one for Y ′, connected by vertical isomorphisms given by
b : X ′ → Y ′ and σb : σX ′ → σY ′, commutes, or equivalently,

σX ′
fσ //

σb
��

X ′

b
��

σY ′
gσ // Y ′

commutes.

(iii) The diagram (4.4.5) shows that σ̃(U ′) = U ′ if and only if fσ (σU ′) =
U ′. �

Corollary 4.4.6. Let k′/k be a finite Galois extension of fields. Let X ′

be a quasi-projective k′-scheme. Suppose that we are given k′-isomorphisms
fσ : σX ′ → X ′ for σ ∈ G satisfying fστ = fσ · σ(fτ ) for all σ, τ ∈ G. Then
X ′ = Xk′ for some k-scheme X.
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Proof. As in the proof of Proposition 4.4.4, giving the fσ is equivalent to
giving a right action ofG onX ′. By Theorem 4.3.5, it suffices to show thatX ′

can be covered by G-invariant quasi-affine open subsets. Fix an embedding
X ′ ↪→ Pnk′ . Given x′ ∈ X ′, we can choose a hypersurface H ⊂ Pnk′ that
does not meet the G-orbit of x′. (In fact, if k′ is infinite, then a hyperplane
suffices.) Let U ′ = X ′ −H. Then

⋂
σ∈G σ̃(U ′) is a quasi-affine open subset

of X ′ containing x′. �

Remark 4.4.7. More generally, a finite and faithfully flat morphism of
schemes p : S′ → S equipped with a finite group G of automorphisms of S′

as an S-scheme (acting on the right) is called a Galois covering with Galois
group G if the morphism S′×G→ S′′ given by (id, σ) on the piece S′×{σ}
for each σ ∈ G is an isomorphism of schemes (cf. (4.4.3)). Propositions 4.4.2
and 4.4.4 continue to hold in this setting. Corollary 4.4.6 holds too, provided
that we assume that S is affine (so that S′ is affine too); this condition is
used to construct the hypersurface H in the proof.

Remark 4.4.8. Sometimes the scheme X ′ to be descended to k is over ks
instead of a finite Galois extension of k. In that case, assuming that X ′ is
finitely presented, we may use that ks is the direct limit of its finite Galois
subextensions to obtain X ′ as the base extension of a scheme over a finite
Galois extension of k before applying Galois descent.

4.5. Twists

(Reference: [Ser02, III.§1])

Let X be a quasi-projective k-variety. Let k′/k be a Galois extension of
fields, and let G = Gal(k′/k).

Definition 4.5.1. A k′/k-twist (or k′/k-form) of X is a k-variety Y such
that there exists an isomorphism φ : Xk′

∼→ Yk′ . A twist of X is a ks/k-twist
of X.

The set of k-isomorphism classes of k′/k-twists of X is a pointed set,
with neutral element given by the isomorphism class of X. The action of G
on k′ induces an action of G on the automorphism group AutXk′ .

Theorem 4.5.2. There is a natural bijection of pointed sets
{k′/k-twists of X}
k-isomorphism

∼→ H1(G,AutXk′).

�

Warning 4.5.3. It is the automorphism group of Xk′ , not X, that appears.
Also, the group AutXk′ may be nonabelian, so it may be necessary to use
nonabelian group cohomology as in [Ser02, I.§5].
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Proof of Theorem 4.5.2. We may assume that k′/k is finite, since at the
end we can take a direct limit of both sides.

For each σ ∈ G, we identify σXk′ with Xk′ . To give a k′/k-twist of X
is to descend Xk′ to a k-variety. By Theorem 4.3.5 and the fact that Xk′

is quasi-projective, this is the same as giving a descent datum on Xk′ . By
Proposition 4.4.4(i) this is the same as giving a 1-cocycle G→ AutXk′ .

By Theorem 4.3.5(i), two such twists are k-isomorphic if and only if the
descent data are isomorphic, which by Proposition 4.4.4(ii) holds if and only
if the 1-cocycles are cohomologous. �

Remark 4.5.4. Explicitly, given a k′/k-twist Y , an associated 1-cocycle is
constructed as follows: choose a k′-isomorphism φ : Xk′

∼→ Yk′ , and define

fσ := φ−1 (σφ) ∈ AutXk′ .

�

Warning 4.5.5. Given an element of H1(G,AutXk′), one gets an isomor-
phism class of k′/k-twists, but there is no natural way to select a particular
twist in that isomorphism class. Thus, strictly speaking, it is incorrect to
speak of “the twist associated to a cohomology class”. To determine a twist,
one should select a cocycle representing that cohomology class.

Important Remark 4.5.6. Although we used quasi-projective k-varieties
in Theorem 4.5.2, an analogous result holds for twists of many other “k-
objects”, where AutXk′ now denotes the automorphism group of Xk′ as a
k′-object. (To make this precise, one should specify a category of k-objects, a
corresponding category of k′-objects, a notion of base extension, etc., satisfy-
ing certain axioms.) To get injectivity of the natural map in Theorem 4.5.2,
one needs that G-invariant morphisms between base extensions of k-objects
descend. To get surjectivity, one needs that descent data on k′-objects be
effective. These conditions (especially the latter) can sometimes fail.

4.5.1. Severi–Brauer varieties.

Definition 4.5.7. A Severi–Brauer variety over k is a twist of the k-variety
Pn−1
k for some n ≥ 1.

Example 4.5.8. The 1-dimensional Severi–Brauer varieties over k are ex-
actly the nice genus 0 curves over k.

Because Severi–Brauer varieties are twists, it is natural (but not neces-
sary [Kol16]) to use cohomology to study them. First, AutPn−1

ks
equals

PGLn(ks), which is also the automorphism group of the matrix algebra
Mn(ks). Applying Theorem 4.5.2 and recalling material from Section 1.5.5,
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we get

{(n− 1)-dimensional Severi–Brauer varieties/k}
OO

��
H1(Gk,PGLn(ks))

� � // Br k.

{n2-dimensional Azumaya k-algebras}
��

OO

Remark 4.5.9. One can show also that if X is a k-variety such that Xk '
Pn−1
k

, then Xks ' Pn−1
ks

already; i.e., X is a Severi–Brauer variety. This
can be viewed as a consequence of the triviality of the fppf cohomology set
H1(ks,PGLn) (cf. Remark 6.6.3 and Theorem 6.4.6(iii)), or it can be related
to the fact that an Azumaya algebra over a separably closed field is split.

Proposition 4.5.10 (Châtelet). The following are equivalent for an (n−1)-
dimensional Severi–Brauer variety X over a field k:

(i) X ' Pn−1
k .

(ii) X is birational to Pn−1
k .

(iii) X(k) 6= ∅.

Proof.
(i)⇒(ii): Trivial.
(ii)⇒(iii): This follows from the Lang–Nishimura theorem; see Corol-

lary 3.6.16.
(iii)⇒(i): Choose x ∈ X(k). Since X is a Severi–Brauer variety, there

exists an isomorphism Xks
∼→ Pn−1

ks
. Compose it with an automorphism

of Pn−1
ks

so that it maps x to the point P := (1 : 0 : · · · : 0) ∈ Pn−1(k).
Then (X,x) may be viewed as a twist of the pointed variety (Pn−1

k , P ). The
automorphisms of (Pn−1

k , P ) over ks are the automorphisms of Pn−1
ks

that fix
P . They form a subgroup of PGLn(ks):

Aut(Pn−1
ks

, P ) =


∗ ∗ · · · ∗
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

 mod ks
× '


1 ∗ · · · ∗
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

 .

The “forget the first row and column” map is a homomorphism from the
group on the right onto GLn−1(ks), and we obtain a Gk-equivariant exact
sequence

0 −→ (ks)
n−1 −→ Aut(Pn−1

ks
, P ) −→ GLn−1(ks) −→ 0.
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By Proposition 1.3.15(i,iii), the H1 of the group at each end is trivial, so
in the middle H1

(
Gk,Aut(Pn−1

ks
, P )

)
is trivial too. Equivalently, by The-

orem 4.5.2, the pointed variety (Pn−1
k , P ) has no nontrivial twists. Thus

(X,x) ' (Pn−1
k , P ). In particular, X ' Pn−1

k . �

Theorem 4.5.11 (Châtelet). Severi–Brauer varieties over global fields sat-
isfy the local-global principle.

Proof. Let X be the variety, and let x be the corresponding element of Br k.
Let n− 1 = dimX. By Proposition 4.5.10,

X(k) 6= ∅ ⇐⇒ X ' Pn−1
k ⇐⇒ x = 0.

The variety Xkv is a Severi–Brauer variety over kv corresponding to the
image xv of x in Br kv, so we similarly have

X(kv) 6= ∅ ⇐⇒ xv = 0.

Thus the result follows from the injectivity of

Br k −→
⊕
v

Br kv,

which was mentioned in Section 1.5.9. �

4.5.1.1. Rational maps between Severi–Brauer varieties.

Proposition 4.5.12. Let X and Y be positive-dimensional Severi–Brauer
varieties over a field k. Let x, y ∈ Br k be the corresponding Brauer classes.
Let f : X 99K Y be a rational map. Let U ⊆ X be the domain of definition
of f . The composition

Z = PicYks
f∗−→ PicUks

∼← PicXks = Z
(in which the identifications at each end associate 1 to the ample generator
O(1) of the Picard group of each projective space over ks) is multiplication
by some nonnegative integer m. Then y = mx.

Sketch of proof. For any nice k-variety X, the exact sequences

0 −→ k(Xks)
×

ks
× −→ DivXks −→ PicXks −→ 0,

0 −→ ks
× −→ k(Xks)

× −→ k(Xks)
×

ks
× −→ 0

define connecting homomorphisms

H0(Gk,PicXks) −→ H1

(
Gk,

k(Xks)
×

ks
×

)
−→ H2(Gk, ks

×)
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whose composition is a homomorphism (PicXks)
Gk → Br k. Moreover, given

a rational map X 99K Y , we obtain a commutative diagram

(PicYks)
Gk //

��

Br k

(PicXks)
Gk // Br k

(4.5.13)

Finally, in the case where X is a positive-dimensional Severi–Brauer variety
corresponding to an Azumaya algebra A, we have (PicXks)

Gk ' Z, and a
computation proves a theorem of Lichtenbaum stating that the class of O(1)
(corresponding to 1 ∈ Z) maps to the class of A in Br k; see [GS06, 5.4.10].
Chasing elements in diagram (4.5.13) yields

1 � //
_

m

��

y

m � // mx. �
�

Warning 4.5.14. The quantity m appearing in Proposition 4.5.12 acts
strangely:

• It is not directly related to the notion of degree in Definition 3.6.10.
• It is not multiplicative with respect to composition of rational maps.
• For a birational map, m need not be 1.

Example 4.5.15. If f : P2 99K P2 is the quadratic transformation

(x : y : z) 7→
(

1

x
:

1

y
:

1

z

)
= (yz : zx : xy),

then m = 2. But f ◦ f is the identity, which has m = 1.

Corollary 4.5.16. Let X and Y be Severi–Brauer varieties over a field
k. Let x, y ∈ Br k be the corresponding Brauer classes. If X and Y are
birational, then x and y generate the same subgroup of Br k.

Remark 4.5.17. Amitsur [Ami55] conjectured a converse to Corollary
4.5.16, namely, that if X and Y are Severi–Brauer varieties of the same
dimension whose classes generate the same subgroup of Br k, then X and
Y are birational. For some partial results toward Amitsur’s conjecture, see
[Roq64,Tre91].

Remark 4.5.18. Integral varieties X and Y are called stably birational if
X×Pm and Y ×Pn are birational for somem,n ≥ 0. Even over C, stably bira-
tional varieties of the same dimension need not be birational [BCTSSD85].
Exercise 4.6 asks for a proof of the following weak form of Amitsur’s conjec-
ture: if X and Y are Severi–Brauer varieties of the same dimension whose
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classes generate the same subgroup of Br k, then X and Y are stably bira-
tional.

4.6. Restriction of scalars

(Reference: [BLR90, §7.6])

Let L ⊇ k be a finite extension of fields, and let X be an L-variety.
We want to construct a k-variety X whose arithmetic over k mimics the
arithmetic of X over L. In particular, we want a bijection X (k) ' X(L).
But this condition is not enough to determine X uniquely.

Definition 4.6.1. Let L be a finite extension of a field k, and let X be
an L-variety. The restriction of scalars (also called Weil restriction) X =
ResL/k(X), if it exists, is a k-variety characterized by the existence of bijec-
tions X (S)→ X(S×k L) = HomL(S×k L,X), for each k-scheme S, varying
functorially in S.

“Functorially in S” means that for any k-morphism f : S → T , the dia-
gram

X (T ) −−−−→ X(T ×k L)y y
X (S) −−−−→ X(S ×k L)

induced by f and its base extension fL : S ×k L → T ×k L commutes. In
other words, the restriction of scalars, if it exists, is a k-scheme representing
the functor S 7→ X(S ×k L).

If X is an affine L-variety, then X := ResL/kX exists as an affine k-
variety, and can be described explicitly as follows. Write

X = SpecL[x1, . . . , xn]/(f1, . . . , fm).

Choose a basis e1, . . . , es of L over k. Introduce new variables yij with
1 ≤ i ≤ n and 1 ≤ j ≤ s, and substitute

xi =

s∑
j=1

yijej

for all i into fr for each r, so that

fr(x1, . . . , xn) = Fr,1e1 + · · ·+ Fr,ses

for some polynomials Fr,` ∈ k[{yij}]. Then X = Spec k[{yij}]/({Fr,`}).
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Example 4.6.2. Let k = Q, let L = Q(
√

2), and let X be the curve in A2
L

defined by x1x2 + (5 + 7
√

2) = 0. Substituting

x1 = y11 + y12

√
2,

x2 = y21 + y22

√
2,

we get
(y11y21 + 2y12y22 + 5) + (y11y22 + y12y21 + 7)

√
2 = 0,

so X is the surface in A4
Q defined by the system of equations

y11y21 + 2y12y22 + 5 = 0,

y11y22 + y12y21 + 7 = 0.

The fact that X (Q) equals X(L) is almost a tautology. To show more gen-
erally that X (S) equals X(SL) for any k-scheme S, one uses the fact that
OSL(SL) = OS(S) ⊗k L, which follows easily from the construction of the
fiber product.

For non-affine varieties, the restriction of scalars is harder to construct,
and sometimes it even fails to exist!

Proposition 4.6.3. Let L ⊇ k be a finite extension of fields, and let X be
an L-variety. If every finite subset of X is contained in some affine open
subset of X, then ResL/kX exists.

Proof. This is a special case of [BLR90, §7.6, Theorem 4]. The idea of the
proof is to take the restriction of scalars of each affine subvariety of X, and
then to use descent to show that they can be glued. �

Remark 4.6.4. To see why one must use affine open subvarieties containing
finite subsets instead of just affine open subvarieties forming a covering of
X, do Exercise 4.8.

Important Remark 4.6.5. Any quasi-projective variety X over L satisfies
the hypothesis of Proposition 4.6.3.

Restriction of scalars can often be used to reduce questions about vari-
eties over a large field to questions about (higher-dimensional) varieties over
smaller fields. For example, it is known [Mil72, Theorem 1] that if L is
a finite separable extension of a global field k and A is an abelian variety
over L, then the full Birch and Swinnerton-Dyer conjecture holds for A over
L (see Conjecture 5.7.33 and Remark 5.7.34) if and only if it holds for the
abelian variety ResL/k A over k. This lets one reduce the conjecture for
abelian varieties over global fields to the conjecture for abelian varieties over
Q and Fp(t).
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Remark 4.6.6. One can generalize the notion of restriction of scalars to
ResS′/S where S′ is a finite and locally free scheme over a base scheme S.
(Our discussion corresponds to the special case S = Spec k and S′ = SpecL.)

Remark 4.6.7 (Greenberg transform). Let R be a discrete valuation ring,
with uniformizer π and perfect residue field k. Let Rn = R/πnR. For
example, Rn could be the ring Wn(k) of length n Witt vectors (see [Ser79,
II.§6]). The level n Greenberg functor takes a scheme X locally of finite
type over Rn and returns a k-scheme X , called the Greenberg transform;
see [BLR90, p. 276] for more details. The Greenberg transform acts very
much like the restriction of scalars, but cannot be considered as a special
case even of the generalized restriction of scalars in Remark 4.6.6, because
Rn need not be a k-algebra.

Example 4.6.8 (Jet spaces). If X is a finite-type scheme over a field k and
A := k[[t]]/(tn+1), then ResA/kXA exists as a finite-type k-scheme and is
called the nth jet space of X [BLR90, p. 276]. This could also be viewed
as a special case of the Greenberg transform, at least when k is perfect.

Exercises

4.1. (Field of moduli not a field of definition) Let σ ∈ Gal(C/R) denote
complex conjugation. Let a0, . . . , a6 be complex numbers such that
σa6−j = (−1)j+1aj for 0 ≤ j ≤ 6. Let f(x) = a6x

6 + · · ·+a0. Assume
that f(x) is a separable polynomial of degree 6. Let X be the smooth
projective model of the affine curve y2 = f(x) over C. Assume that
the only nontrivial automorphism of X is the hyperelliptic involution
ι, induced by the automorphism (x, y) 7→ (x,−y) of the affine curve.
(a) Prove that X is isomorphic to σX as a C-variety, where σ is the

nontrivial element of Gal(C/R).
(b) Prove that X is not the base extension of a curve defined over R.
(c) Prove that the hypotheses of the problem can actually be satisfied!

(Hint : For a suitable choice of ai, prove AutX = {1X , ι} by
using that any automorphism of X induces an automorphism of
X/ι ' P1 preserving the six branch points.)

4.2. (Twists of a superelliptic curve) Let k be a field, and let n be a positive
integer such that char k - n. Fix f(x) ∈ k[x] such that yn − f(x) = 0
defines a geometrically integral affine curve over k; let X be its smooth
projective model. Assuming that every automorphism of Xk fixes the
rational function x, describe the set of twists of X up to k-isomor-
phism.
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4.3. (Rational points on a quadratic twist of an elliptic curve) Let k be a
field. Let E be an elliptic curve over k with equation y2 = x3 +ax+b;
i.e., E is the projective closure of that affine curve, and E is smooth
(so char k 6= 2). Let d ∈ k× \ k×2, let L = k(

√
d), and let σ be the

nontrivial element of Gal(L/k). Let E′ be the elliptic curve over k
with equation dy2 = x3 + ax + b. Prove that E′(k) is isomorphic to
the group {P ∈ E(L) : σP = −P}.

4.4. Let k be a field. Let k(t) be the rational function field over k. Let E
be an elliptic curve over k with Weierstrass equation y2 = x3 + ax+ b.
Let E′ be the elliptic curve over k(t) with Weierstrass equation

(t3 + at+ b)y2 = x3 + ax+ b.

Prove that E′(k(t)) ' (EndE)⊕ E[2](k) as abelian groups.
4.5. Let X be a nice genus 0 curve over a global field k. Use the description

of Br k to prove the following:
(a) The curve X has a k-point if and only if X has a kv-point for

every place v of k.
(b) The number of places v for which X(kv) = ∅ is finite and even.

4.6. Let X and Y be Severi–Brauer varieties of dimension n − 1 whose
classes in Br k generate the same subgroup. Prove that X × Pn−1,
X × Y , and Y × Pn−1 are all birational to each other. (Hint : Use
Proposition 4.5.10.)

4.7. Let L ⊇ k be a finite Galois extension of fields, with Galois group
G. Let X be an L-variety. Assume that the k-variety X := ResL/kX
exists. Prove that XL '

∏
σ∈G

σX as L-varieties.
4.8. Let X = P1

C. Let U = X − {0} and V = X − {∞} be the standard
copies of A1

C whose union is X. Prove that the union of the open
subschemes ResC/R U and ResC/R V does not equal ResC/RX.

4.9. (Inseparable restriction of scalars) Let L = Fp(t) and k = Fp(tp). Let
X be the L-scheme SpecL[x]/(xp − t). Compute ResL/kX. (The
answer may surprise you!)
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Chapter 5

Algebraic groups

5.1. Group schemes

(References: [Vis05, §2.2], [Wat79])

5.1.1. Category-theoretic definition of groups. Let pt be an empty
product of sets; in other words, pt is a terminal object in the category Sets,
i.e., a one-element set.

A group can be interpreted as a setG equipped with mapsm : G×G→ G
(multiplication), i : G → G (inverse), and e : pt → G (identity) satisfying
the group axioms, namely the commutativity of the following diagrams, in
which 1: G→ G is the identity on G.

• Associativity:

G×G×G m×1 //

1×m
��

G×G
m
��

G×G m // G.

• Identity (left and right):

pt×G e×1 // G×G
m
��
G

and G× pt
1×e // G×G

m
��
G.

115
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116 5. Algebraic groups

• Inverse (left and right):

G
(i,1) //

��

G×G
m

��
pt

e // G

and G
(1,i) //

��

G×G
m

��
pt

e // G.

The definitions of commutativity, group homomorphism, (right or left)
action of a group on a set (i.e., G-set), andG-equivariant map (i.e., morphism
of G-sets) are category-theoretic too.

5.1.2. Group objects. Let C be a category with finite products: i.e., for
any n ≥ 0 and for any objects G1, . . . , Gn of C, there is an object G equipped
with a morphism to each Gi such that any other object H equipped with a
morphism to each Gi admits a unique morphism to G compatible with the
morphisms G → Gi. For n = 0, an empty product is the same thing as a
terminal object of C.

Then a group object in C is an object G equipped with morphismsm, i, e
satisfying the group axioms listed in Section 5.1.1.

Example 5.1.1. A group object in Sets is a group.

Example 5.1.2. A group object in the category of topological spaces with
continuous maps is a topological group. (Actually, many authors require a
topological group to be Hausdorff; if one wants this, one should start with
the full subcategory of Hausdorff topological spaces.)

The definitions of commutative group object, homomorphism of group
objects, action of a group objectG on an object, andG-equivariant morphism
are defined by the same diagrams used for Sets. In particular, the group
objects in C form their own category.

5.1.3. Group schemes.

Definition 5.1.3. A group scheme G over a scheme S is a group object in
the category of S-schemes.

In the category of S-schemes, products are fiber products over S, and
the terminal object is the S-scheme S. So, for example, a homomorphism
of group schemes G→ H over S is an S-morphism respecting the multipli-
cation morphisms mG and mH , that is, an S-morphism φ : G→ H making

G×S G
mG //

(φ,φ)
��

G

φ
��

H ×S H
mH // H
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5.1. Group schemes 117

commute.

Remark 5.1.4. If S = SpecR, and G = SpecA is an affine group scheme
over R, then m, i, e correspond to R-algebra homomorphisms with their own
names,

∆: A→ A⊗R A (comultiplication),
S : A→ A (antipode),
ε : A→ R (counit),

satisfying opposite axioms. Together with the R-algebra structure on A,
given by the structure homomorphism R→ A and multiplication A⊗RA→
A, this makes A into a commutative Hopf algebra over R. In fact, the
axioms defining commutative Hopf algebra are such that one obtains an
equivalence of categories

{affine group schemes over R}opp → {commutative Hopf algebras over R}.
Definition 5.1.5. A subgroup scheme of a group scheme G is a group
scheme H that is also a closed subscheme of G, and for which the inclusion
H → G is a homomorphism.

Definition 5.1.6. If k is a field, a group variety over k is a group object in
the category of k-varieties.

Group varieties form a full subcategory of the category of group schemes.

5.1.4. Functor of points of a group scheme. Intuitively, to make a k-
variety G into a group scheme, one would want a morphism G × G → G
giving the set G(k) the structure of a group; this is a valid description if k
is algebraically closed and G is reduced. More generally, to describe a group
law on an S-scheme G, one should use the whole functor of points instead
of just G(S). This leads to an equivalent definition of group scheme that is
perhaps closer to geometric intuition:

Proposition 5.1.7. Let G be an S-scheme. Equipping G with the structure
of a group scheme over S is equivalent to equipping the set G(T ) with a group
structure for each S-scheme T such that for any S-morphism T ′ → T , the
map of sets G(T )→ G(T ′) is a group homomorphism. Equivalently, making
G a group scheme over S is equivalent to giving a functor G : Schemesopp

S →
Groups completing the commutative diagram

Schemesopp
S

hG //

G ''

Sets .

Groups

forgetful

99
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118 5. Algebraic groups

Proof. This is just Yoneda’s lemma (Lemma 2.3.4): To give compatible
multiplication maps G(T )×G(T )→ G(T ) is to give an S-morphism G×G→
G, and so on. �

Homomorphisms of group schemes, group scheme actions, and equivari-
ant morphisms can be described similarly. For example, giving a right action
of a group scheme G on an S-scheme X is equivalent to giving a collection
of compatible group actions X(T )×G(T )→ X(T ) (in the category of sets),
one for each S-scheme T . Such an action is faithful if for every S-scheme
T and g ∈ G(T ) not equal to 1, there exists T ′ → T and x ∈ X(T ′) such
that gx 6= x (here gx is defined by mapping g to an element of G(T ′) before
acting).

�

Warning 5.1.8. If G acts faithfully on X, it does not follow that G(T )
acts faithfully on X(T ) for each T . A group scheme G acting on a nontrivial
torsor X gives a counterexample (see Definition 5.12.3).

Various properties of a group scheme are also conveniently described in
terms of its functor of points. For instance, a subgroup scheme H of G is
normal if and only if H(T ) is a normal subgroup of G(T ) for every S-scheme
T .

5.1.5. Examples of group schemes.

(1) The additive group scheme Ga over a ring A is A1
A = SpecA[t] with

m : Ga ×Ga → Ga given in coordinates by (t1, t2) 7→ t1 + t2; that is, m
corresponds to the A-algebra homomorphism

A[t]→ A[t1]⊗A A[t2]

t 7→ t1 ⊗ 1 + 1⊗ t2.
Similarly i is given by t 7→ −t, and e corresponds to the ring homomor-
phism A[t]→ A mapping t to 0.

(2) The multiplicative group scheme Gm over A is defined the same way,
but using SpecA[t, t−1] with m given in coordinates by (t1, t2) 7→ t1t2,
and so on.

(3) For each n ≥ 0, the group scheme GLn over a ring A is

SpecA[x11, x12, . . . , xnn, 1/ det],

where det is the determinant of the n × n matrix with indeterminate
entries x11, . . . , xnn. (One defines m, i, and e in the obvious way.) One
has GL1 ' Gm.

(4) Similarly, the group scheme SLn over a ring A is

SpecA[x11, x12, . . . , xnn]/(det−1).
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5.1. Group schemes 119

(5) Let Un be the closed subgroup scheme of GLn such that for every scheme
S, the set Un(S) is the set of upper triangular matrices in GLn(S) with
every diagonal entry equal to 1.

(6) When one has a group scheme over Z, one can base extend to get a
corresponding group scheme over any scheme S. Thus for instance, one
can define Ga,S , SLn,S , and so on.

(7) Let G be a group, and let S be a scheme. For each σ ∈ G, let Sσ be
a copy of S. Then

∐
σ∈G Sσ can be made a group scheme over S, by

letting m map Sσ ×S Sτ isomorphically to Sστ for each σ, τ ∈ G. This
is called a constant group scheme.

(8) An elliptic curve over a field k is an example of a group scheme of finite
type over k.

Definition 5.1.9. If G is a group scheme over S such that OG is locally free
of rank r as an OS-module, then the order of G is #G := r.

Example 5.1.10. If GS is the constant group scheme over S associated to
a finite group G, then #GS = #G.

Example 5.1.11. If G is a finite group scheme over a field k, then G =
SpecA for some finite-dimensional k-algebra A, and #G = dimk A.

5.1.6. Kernels.

Definition 5.1.12. The kernel K of a homomorphism of group schemes
φ : G→ H is φ−1(e), where e : S → H is the identity of H. More explicitly,
kerφ is the S-group schemeG×HS, where the S in the fiber product is viewed
as an H-scheme via e. The m, i, e for kerφ are induced from the m, i, e of G
by base extension. Alternatively, one can describe K as the group scheme
whose functor of points is given by K(T ) := ker (G(T )→ H(T )). Sometimes
one thinks of the kernel as the inclusion morphism from K into G, instead
of as a group scheme in isolation.

Example 5.1.13. Let Gm be the multiplicative group scheme over Z. Let
n ∈ Z>0. Then we have an endomorphism [n] : Gm → Gm given in coordi-
nates by t 7→ tn. Its kernel is called µn. As a scheme, µn = SpecZ[t]/(tn−1).
The multiplication is given by (t, u) 7→ tu, as for Gm. For any commutative
ring R, the group µn(R) is {r ∈ R : rn = 1} under multiplication.

Let G be a group scheme over a field k of characteristic p. Then the
relative Frobenius morphism FG/k : G → G(p) is a homomorphism of group
schemes over k. If G is the base change of a group scheme over Fp, then
G(p) ' G, so FG/k can be viewed as an endomorphism of G, the Frobenius
endomorphism.
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120 5. Algebraic groups

Example 5.1.14. Let k be a field of characteristic p. Let Ga be the additive
group scheme over k. The Frobenius endomorphism Ga → Ga is described
in coordinates by t 7→ tp. Its kernel is called αp. As a scheme, αp =
Spec k[t]/(tp). The “multiplication” is given by (t, u) 7→ t + u. We have
#αp = p. For any k-algebra R, the group αp(R) is {r ∈ R : rp = 0} under
addition.

5.1.7. Quotients and cokernels.
�

Warning 5.1.15. The notions of quotient and cokernel are trickier to define,
because even when A is a normal subgroup scheme of a group scheme B, the
functor T 7→ B(T )/A(T ) might not be representable.

Example 5.1.16. Let Gm be the multiplicative group scheme over Q. The
squaring map Gm

2→ Gm is scheme-theoretically surjective, so it should be
considered a surjective homomorphism, but it is certainly not true that every
q ∈ Gm(Q) = Q× is in the image of Gm(Q)

2→ Gm(Q). What is true is that
each q ∈ Gm(Q) is in the image of Gm(k)

2→ Gm(k) for some finite extension
k ⊇ Q depending on q. Similarly, we want to consider

1→ µ2 → Gm
2→ Gm → 1

to be exact, even though the resulting sequence of rational points is only
left exact. One can show that the functor T 7→ Gm(T )/µ2(T ) is not repre-
sentable, but the quotient group scheme Gm/µ2 should be defined so that it
is isomorphic to Gm.

Important Remark 5.1.17. Over an arbitrary base scheme, fppf base ex-
tensions play the role of the finite extension of fields k ⊇ Q in Example 5.1.16.

Motivated by Example 5.1.16, we make the following definitions; we work
in the context of fppf group schemes over S (i.e., group schemes G over S
such that the structure morphism G→ S is fppf).

Definition 5.1.18. A homomorphism B → C of fppf group schemes over S
is surjective if for every S-scheme T and element c ∈ C(T ), there is an fppf
morphism T ′ → T such that the image of c in C(T ′) is the image of some
b ∈ B(T ′). Call a sequence of homomorphisms of fppf group schemes

A
f−→ B

g−→ C

exact (at B) if g ◦ f is the trivial homomorphism and the induced homo-
morphism A → ker g is surjective. If A is the kernel of a surjective homo-
morphism of fppf group schemes B → C, then define the quotient B/A to
be C, and call B an extension of C by A; in this case,

1→ A→ B → C → 1
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5.2. Fppf group schemes over a field 121

is exact. More generally, the cokernel of a homomorphism A → B of fppf
group schemes is an fppf group scheme C equipped with a homomorphism
B → C such that

A→ B → C → 1

is exact.
�

Warning 5.1.19. For a homomorphism of group schemes to be surjective,
it is not enough that it induce a surjection on the underlying topological
spaces. For example, over a field of characteristic p, the homomorphism
from the trivial group scheme to µp is not surjective.

�

Warning 5.1.20. As in Example 5.1.16, a surjective homomorphism need
not induce a surjective map on rational points, and an exact sequence of
S-group schemes need not induce an exact sequence of their groups of S-
points. We will see in Chapter 6 that the obstruction can be measured by
cohomology.

5.2. Fppf group schemes over a field

(References: [Bor91], [PR94], [Spr98])

Let k be a field. Flatness over k is automatic, and k is noetherian, so a
k-scheme is fppf if and only if it is locally of finite type.

Definition 5.2.1. An algebraic group over a field k is a group scheme of
finite type over k.

�

Warning 5.2.2. Some authors require also that the group scheme be smooth
over k.

5.2.1. Connected component.

Definition 5.2.3. The connected component (or identity component) G0

of an fppf group scheme G over a field k is the connected component of G
containing the identity point 1.

Proposition 5.2.4. If G is an fppf group scheme over k, then G0 is a closed
and open normal subgroup scheme of G. Moreover, G0 is of finite type (an
algebraic group) and is geometrically irreducible.

Proof. If any two irreducible components of Gk intersected, then there
would be some k-points in the intersection of two such components, and some
not, contradicting the fact that the group G(k) acts transitively by transla-
tions on G(k). Thus irreducible components of Gk are the same as connected
components of Gk. Since G

0 has a k-point 1, Proposition 2.3.24 shows that
G0 is geometrically connected, and hence geometrically irreducible by the
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122 5. Algebraic groups

previous sentence. In a scheme locally of finite type over a field, any con-
nected component is open and closed, and any irreducible component is of
finite type, so G0 has these properties.

The proof of Proposition 2.3.24 shows that G0×G0 is connected, so the
multiplication m : G × G → G maps G0 × G0 into the connected compo-
nent containing m(1, 1) = 1, which is G0. Similarly, the inverse morphism
i : G→ G restricts to a morphism G0 → G0, and 1 ∈ G0(k). These make G0

a subgroup scheme of G.
The conjugation action G×G→ G sending (g, h) to ghg−1 maps {g}×G0

into G0 for every g ∈ G(k), and the same holds after arbitrary field extension,
so it maps G×G0 into G0. In other words, G0 is normal in G. �

Because of Proposition 5.2.4, the theory of fppf group schemes over a
field k is almost the same as the theory of algebraic groups over k.

5.2.2. Quotients.

Theorem 5.2.5 (Existence of quotient group schemes). If A is a closed
normal subgroup scheme of an fppf group scheme B over a field k, then the
closed immersion A→ B fits in a uniquely determined exact sequence of fppf
group schemes

1→ A→ B → C → 1.

Proof. This is a special case of [SGA 3I, VIA 3.2]. One constructs C
by first constructing its functor of points hC as the fppf sheafification (see
Definition 6.3.21) of the functor T 7→ B(T )/A(T ) on k-schemes. �

Remark 5.2.6. One can generalize Theorem 5.2.5 to the case where the
subgroup scheme A is not normal in B. Then the quotient C := B/A
is not a group scheme, but only a k-scheme with a left B-action, a left
homogeneous space of B with a k-point; see Remark 5.12.7 for the definition
of homogeneous space.

Proposition 5.2.7. Let 1→ A→ B → C → 1 be an exact sequence of fppf
group schemes over a field k. Then

(a) (Properties inherited by quotients) For any of the following properties,
if B has it, so does C: connected, reduced, finite type, smooth, étale,
unramified, finite, affine.

(b) (Properties inherited by extensions) Let blah be a property that is sta-
ble under composition, base extension, and fpqc descent (see Table 1 on
pp. 302–303). If A and C are blah (over k), so is B.

Proof.
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5.2. Fppf group schemes over a field 123

(a) Any image of a connected space is connected. For reduced, see [SGA 3I,
VIB 9.2(ix)]. For finite type, smooth, étale, unramified, and finite (which
over a field is equivalent to quasi-finite), see [SGA 3I, VIB 9.2(xii)]. For
affine, see [SGA 3I, VIB 11.7].

(b) The diagram

A

blah
��

A×Bpr1oo m //

pr2
��

B

��
Spec k Boo fpqc // C

blah
��

Spec k

is cartesian (for the square on the right, check on T -valued points). If
the first vertical arrow A→ Spec k is blah, then so are the second (base
extension) and the third (fpqc descent). If C → Spec k is blah too, then
the composition B → C → Spec k is blah. �

Definition 5.2.8. Let G be an algebraic group. A (finite) composition
series of G is a chain of subgroups

{1} = G0 ≤ G1 ≤ · · · ≤ Gn = G

in which Gi is a closed normal subgroup scheme of Gi+1 for 0 ≤ i < n.
The groups Gi+1/Gi are called the successive quotients of the composition
series.

5.2.3. Quotients and homomorphisms.

Theorem 5.2.9. Let f : G → H be a homomorphism of algebraic groups.
Then f factors into homomorphisms

G
q // // G

ker f
� � i // H,

where q is the canonical quotient homomorphism, and i is a closed immer-
sion.

Proof. See [Gro62, page 212-17, Corollary 7.4]. �

Corollary 5.2.10. Let f : G→ H be a homomorphism of algebraic groups.
Then ker f is the trivial group scheme if and only if f is a closed immersion.

Proof. If ker f is trivial, then f equals the closed immersion i in Theo-
rem 5.2.9. Conversely, if f is a closed immersion, then f : G(S) → H(S) is
injective for every k-scheme S, so ker f is trivial. �
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124 5. Algebraic groups

Definition 5.2.11. A homomorphism satisfying the equivalent conditions
of Corollary 5.2.10 is called an embedding of algebraic groups.

Theorem 5.2.12. The category of commutative algebraic groups over a
field k (a full subcategory of the category of group schemes over k) is an
abelian category.

Proof. This is a consequence of Theorem 5.2.9; see [SGA 3I, VIA 5.4,
Théorème]. �

5.2.4. Center, centralizer, and normalizer. Let k be a field. Let H be
a subgroup scheme of an fppf group scheme G over k. Let S be a k-scheme.
Let g ∈ G(S). If T is an S-scheme and g′ ∈ G(T ), we interpret gg′ ∈ G(T )
by mapping g into G(T ) before multiplying. Say that g centralizes H if for
every S-scheme T and every h ∈ H(T ), the identity gh = hg holds in G(T ).
Say that g normalizes H if for every S-scheme T and every h ∈ H(T ), we
have ghg−1 ∈ H(T ). Let CG(H) be the functor sending a k-scheme S to
{g ∈ G(S) : g centralizes H}. Let NG(H) be the functor sending a k-scheme
S to {g ∈ G(S) : g normalizes H}.

Theorem 5.2.13. The functors CG(H) and NG(H) are represented by closed
subgroup schemes of G, called the centralizer of H in G and the normalizer
of H in G.

Proof. See [SGA 3II, VIII.6.7]. �

The center of G is the closed subgroup scheme Z := CG(G).

�

Warning 5.2.14. The group Z(k) might be smaller than the center of G(k);
see Exercise 5.1.

Remark 5.2.15. Because centralizers, normalizers, and centers are defined
functorially, their formation automatically respects base field extension.

5.2.5. Smoothness.

Theorem 5.2.16. For an fppf group scheme G over a field k, the following
are equivalent:

(i) G is smooth over k.
(ii) G is geometrically reduced.
(iii) The local ring of Gk at the identity is reduced.

(iv) Either char k = 0, or char k = p > 0 and FG/k : G→ G(p) is surjective.
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5.2. Fppf group schemes over a field 125

Proof. None of the conditions are affected by base field extension, so assume
that k is algebraically closed.

(i)⇒(ii): Smooth implies reduced by Proposition 3.5.51(i).
(ii)⇒(iii): Trivial.
(iii)⇒(ii): Translating by elements of G(k) shows that the local ring of

G at each k-point is reduced. For algebraically closed k, this implies that G
is reduced.

(ii)⇒(i): By Proposition 3.5.64, the smooth locus is open and dense. In
particular, G is smooth at some k-point. By translation, G is smooth at
every k-point. Since k is algebraically closed, the only open subscheme of G
containing G(k) is G itself.

(i)⇔(iv): See [SGA 3I, VIIA 8.3.1]. �

Remark 5.2.17. In (iv), one could replace the relative p-power Frobenius
morphism by the relative q-power Frobenius morphism for any power q of p.

Corollary 5.2.18 (Cartier). Every fppf group scheme over a field of char-
acteristic 0 is smooth.

More generally:

Proposition 5.2.19. Any fppf group scheme G over a field k is an extension
of a smooth group scheme by a finite group scheme.

Sketch of proof. If char k = 0, the result follows from Corollary 5.2.18.
Therefore, assume that char k = p > 0. Let Fn : G → G(pn) denote the
relative pn-power Frobenius morphism, which is a homomorphism. Then
the group scheme kerFn is finite, and one shows that G/ kerFn is smooth
for sufficiently large n: for G is of finite type, this is [SGA 3I, VIIA 8.3],
and in general one may replace G by its connected component G0, which is
of finite type by Proposition 5.2.4. �

5.2.6. Quasi-projectivity.

Theorem 5.2.20. Every algebraic group over a field k is quasi-projective.

Proof. Chow proved that smooth algebraic groups (and even their homo-
geneous spaces) are quasi-projective [Cho57]. This can be extended to ar-
bitrary algebraic groups G by using Proposition 5.2.19; see [Con02, Corol-
lary 1.2]. �

Because of Theorem 5.2.20, fpqc descent involving algebraic groups is
automatically effective.
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126 5. Algebraic groups

5.3. Affine algebraic groups

An algebraic group whose underlying scheme is affine is also called a linear
algebraic group, because of the following.

Theorem 5.3.1. An algebraic group G is affine if and only if it embeds in
GLn for some n ≥ 0.

Proof. Since GLn itself is affine, any closed subgroup of GLn is affine.
Conversely, suppose thatG is affine, sayG = SpecA. Let A∗ be the space

of k-linear functionals A → k. Below, fiber products and tensor products
are over k. For any k-vector space V and k-algebra R, let VR = V ⊗R. The
proof will proceed in three steps.

1. Find a finite-type affine k-scheme X = SpecB with a faithful right G-
action. Let X be G with the right translation action. For later use, note
that we have the translation action of G(k) on A and B, and the induced
action on A∗.

2. Show that each b ∈ B is contained in a finite-dimensional G-invariant
subspace V ⊆ B; here “G-invariant” means that for each k-algebra R,
the G(R)-action on BR preserves VR. The action morphism X ×G→ X
corresponds to a homomorphism B → A⊗B, which induces A∗⊗B → B.
Let V be the image of the composition

(5.3.2) A∗
⊗b−→ A∗ ⊗B −→ B.

Let each g ∈ G(k) act as g ⊗ 1 on A ⊗ B and A∗ ⊗ B. The associative
axiom for the G-action on X shows that B → A⊗B is G(k)-equivariant,
so the maps in (5.3.2) are G(k)-equivariant. Thus V is G(k)-invariant.
The construction of V respects base change to any k-algebra R, and the
same argument shows that VR is G(R)-invariant.

The identity in G(k) is a k-morphism Spec k → G, so it corresponds
to a k-algebra homomorphism A→ k, which may be viewed as an element
of A∗. It is mapped by (5.3.2) to b. Thus b ∈ V .

Concretely, if B → A⊗B maps b to
∑
ai⊗bi, where the ai are chosen

to be k-independent, then V is the k-span of the bi, so V is finite-dimen-
sional.

3. Find a finite-dimensional subspace W ⊆ B such that G(R) acts faithfully
on WR for all R. Let B0 be a finite set of generators for B as a k-algebra.
For each b ∈ B0, construct a V = Vb as in step 2, and let W be their sum.
If g ∈ G(R) acts trivially on WR, then g acts trivially on B0 and on the
R-algebra BR it generates, but G acts faithfully on X, so g = 1.

Yoneda’s lemma now produces a homomorphism G → GLdimW . By Corol-
lary 5.2.10, it is an embedding. �
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Remark 5.3.3. It is not known whether affine finite-type group schemes
over k[ε]/(ε2) embed in GLn over that ring.

5.4. Unipotent groups

5.4.1. Powers of the additive group. Algebraic groups isomorphic to
Gn
a := (Ga)

n for some n ∈ N are sometimes called vector groups or vectorial
groups.

Proposition 5.4.1. If k is a field of characteristic 0, then Gn
a as an algebraic

group has no nontrivial twists.

Proof. An endomorphism of Ga is a polynomial map t 7→ f(t) such that the
polynomial f ∈ k[t] satisfies f(t+u) = f(t)+f(u) in k[t, u]. Since char k = 0,
the binomial theorem shows that the only such f are the homogeneous lin-
ear polynomials. In other words, EndGa = k. Similarly, EndGa,ks = ks.
Thus EndGn

a,ks
= Mn(ks), and AutGn

a,ks
= (Mn(ks))

× = GLn(ks). Finally,
H1(Gk,GLn(ks)) = 0 by Remark 1.3.16. �

Remark 5.4.2. A more difficult argument shows that Proposition 5.4.1
holds also for fields of characteristic p > 0. This follows from [KMT74,
Theorem 1.5.1, proof of Lemma 2.1.1].

�

Warning 5.4.3. There exists an inseparable extension of fields L ⊇ k and
an algebraic group G 6' Ga over k such that GL ' Ga,L; see Exercise 5.4
and [Rus70]. More generally, [KMT74, Section 2.6] classifies, over any
field k, all algebraic groups over k that become isomorphic to Gn

a after base
extension to k.

5.4.2. Unipotent elements.

Definition 5.4.4. Let k be a field. An element u of GLn(k) is called unipo-
tent if it satisfies one of the following equivalent conditions:

• The eigenvalues of u are all 1.
• One has (u− 1)n = 0.
• The element u is conjugate in GLn(k) to a matrix in Un(k).

More generally, if G is an affine algebraic group, an element u ∈ G(k) is
called unipotent if for every n and every homomorphism Gk → (GLn)k, the
image of u in GLn(k) is unipotent.

Remark 5.4.5. To check that an element u ∈ G(k) is unipotent, it suffices to
check that its image under any one embedding Gk ↪→ (GLn)k is unipotent.
This follows from the “multiplicative Jordan decomposition”; see [Spr98,
Theorem 2.4.8 and Corollary 2.4.9].
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5.4.3. Unipotent groups.

Definition 5.4.6. Let G be an algebraic group over k. Then G is called
unipotent ifGk admits a composition series in which each successive quotient
is isomorphic to a closed subgroup of Ga,k .

Examples 5.4.7.

(i) Any power of Ga is unipotent.
(ii) For each n ≥ 0, the algebraic group Un in Section 5.1.5 is unipotent.
(iii) If char k = p > 0, then the constant group scheme Z/pZ is unipotent.
(iv) If char k = p > 0, then αp is unipotent.
(v) Suppose that char k = p. For n ≥ 0, there is a connected algebraic

group (even a ring scheme) Wn over Fp such that for each Fp-algebra
A, the group Wn(A) is the additive group of length-n Witt vectors
with coordinates in A; see [Ser79, p. 44]. It is unipotent by induction
on n: there is a surjective homomorphism Wn+1 → Wn with kernel
isomorphic to Ga (not surprising, given that there is a surjective ho-
momorphism Z/pn+1Z → Z/pnZ with kernel isomorphic to Fp as an
abelian group).

Theorem 5.4.8 (Characterizations of unipotent groups). The following
three conditions are equivalent for an algebraic group G over a field k:

(i) The group G is unipotent.
(ii) There is an embedding of G in Un for some n ≥ 0.
(iii) The group G admits a composition series (over k) such that

(a) if char k = 0, then each successive quotient is Ga; and
(b) if char k = p, then each successive quotient is one of αp, Ga, or a

twist of (Z/pZ)n for some n ≥ 1.
These conditions imply
(iv) Every element of G(k) is unipotent in the sense of Definition 5.4.4.

If G is smooth, then all four conditions are equivalent.

Proof.
(i)⇔(ii)⇔(iii): See [SGA 3II, XVII, Théorème 3.5(i, ii, v)]. Stronger

statements about the composition series are available in [SGA 3II, XVII,
Théorème 3.5(iii, iv)]. A standard specialization argument [SGA 3II, XVII,
Proposition 1.2] shows that unipotence is unchanged by extension of the
ground field, so we now know that (iii) and (iv) are unchanged as well.

(iii)⇒(iv): If g ∈ G(k) ≤ Un(k), then g is unipotent by Remark 5.4.5.
(iv)⇒(iii) for smooth G: Since both (ii) and (iii) are unchanged by base

extension from k to k, we may assume that k is algebraically closed. Now see
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[Spr98, Proposition 2.4.12] (which applies only to smooth algebraic groups
over an algebraically closed field). �

�

Warning 5.4.9. Condition (iv) does not necessarily imply the others if
G is not smooth. For example, suppose that G is µp over a field k of
characteristic p > 0. Then G(k) = {1}, so (iv) holds. But G is a group
scheme of prime order, so G is simple, and therefore G violates (iii).

Proposition 5.4.10. If char k = 0 and G is a commutative unipotent group
over k, then G ' Gn

a for some n ≥ 0.

Sketch of proof. First of all, Gmust be connected, since otherwise it would
have a nontrivial finite quotient embedding in some GLn, and the elements
of the image over k would not be unipotent.

Let LieG be the power of Ga corresponding to the tangent space of G
at the origin. For a unipotent group G ≤ Un, the exponential map gives an
isomorphism LieG→ G of varieties, the inverse being given by

1 + u 7−→ log(1 + u) := u− u2

2
+
u3

3
− · · · ,

which is a finite series for any nilpotent matrix u. If G is also commutative,
then the exponential map and its inverse are also homomorphisms of group
schemes. �

�

Warning 5.4.11. The hypothesis “commutative” in Proposition 5.4.10 is
necessary: consider U3.

�

Warning 5.4.12. The hypothesis “char k = 0” in Proposition 5.4.10 is
necessary too. For example, the constant group scheme Z/pZ over Fp is a
counterexample: it embeds in Ga ' U2, so it is unipotent. One can also
give a connected counterexample: the underlying variety of the Witt group
scheme Wn is An, but if n ≥ 2, then Wn is not isomorphic to Gn

a since the
group Wn(Fp) ' Z/pnZ is not killed by p.

Trying to classify all unipotent groups up to isomorphism is like trying
to classify finite p-groups: hopeless.

5.5. Tori

(Reference: [Spr98, §3.2])

5.5.1. Homomorphisms between powers of the multiplicative
group.
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Lemma 5.5.1. Consider the multiplicative group scheme Gm = Spec k[t, t−1]
over a field k. We have

EndGm ' Z, Hom(Gn
m,Gp

m) ' Mp×n(Z), AutGn
m ' GLn(Z),

computed in the category of k-group schemes.

Proof. An endomorphism of Gm is given by t 7→ f(t), where f ∈ k[t, t−1]×

satisfies f(tu) = f(t)f(u) in k[t, t−1, u, u−1] (respecting the comultiplications
amounts to this identity). Elements of k[t, t−1]× are monomials, and the
only ones satisfying f(tu) = f(t)f(u) are f(t) = tn for some n ∈ Z. Thus
EndGm ' Z. The other two claims follow from this: in particular, the unit
group of Mn(Z) is GLn(Z). �

5.5.2. Tori.

Definition 5.5.2. Let k be a field. A torus over k is a twist of Gn
m (as

a group scheme) for some n ∈ N. It is called a split torus if it is actually
isomorphic to Gn

m.

Example 5.5.3. Let T be the affine variety x2 +2y2 = 1 in A2
Q. We secretly

think of a point (x, y) on T as representing x+ y
√
−2 and hence define

m : T × T −→ T

(x1, y1), (x2, y2) 7−→ (x1x2 − 2y1y2, x1y2 + y1x2).

Then one can show that T is a nonsplit 1-dimensional torus over Q.

Example 5.5.4. If L ⊇ k is a finite separable extension of fields and T is a
torus over L, then the restriction of scalars ResL/k T is a torus over k.

Example 5.5.5. If L ⊇ k is a finite separable extension of fields, then the
norm homomorphism L× → k× is the map on k-points of a homomorphism
of tori ResL/kGm

N→ Gm. The kernel of N is a torus Res1
L/kGm of di-

mension [L : k]− 1 over k. For example, Res1
Q(
√
−2)/QGm is the torus T in

Example 5.5.3.

5.5.3. Character groups.

Definition 5.5.6. The character group of a k-torus T is the Gk-module

X(T ) := Homks-group schemes (Tks ,Gm,ks) .

If T is an n-dimensional torus, then Lemma 5.5.1 implies that X(T )
stripped of its Gk-action is a free abelian group of rank n.

5.5.4. Classification of tori.
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Theorem 5.5.7. The functor

{tori/k} ←→ {Gk-modules that are free of finite rank over Z}opp

T 7−→ X(T )

is an equivalence of categories.

Proof. If k = ks, then the Gk-action is irrelevant, and the result follows
from Lemma 5.5.1. For arbitrary k, equipping a finite-rank free Z-module
with a Gk-action corresponds to equipping a corresponding torus over ks
with a descent datum as in Proposition 4.4.4(i), since Gk acts trivially on
AutGn

m,ks
' GLn(Z), so the result for k follows from the result from ks.

(Strictly speaking, Proposition 4.4.4(i) is for a finite Galois extension, so it
would be better to proceed as in the proof of Theorem 4.5.2 by first showing
that k-tori which split over a fixed finite Galois extension k′ are classified
by Gal(k′/k)-modules that are free of finite rank, and then taking a direct
limit.) �

Remark 5.5.8. Here is another way of thinking about Theorem 5.5.7: The-
orem 4.5.2 gives a bijection

{n-dimensional tori/k}
= {twists of Gn

m}
= H1

(
Gk,AutGn

m,ks

)
= H1(Gk,GLn(Z)) (where Gk acts trivially on GLn(Z))
= Homconts(Gk,GLn(Z))/conjugacy
= {Gk-modules that are free of rank n over Z},

where each set is really a set of isomorphism classes.

5.5.5. Rationality. Whether a given n-dimensional torus T is k-rational
(i.e., birational to projective space over k) is a subtle question. By enumer-
ating the possibilities for the action of Gk on the character group, Voskre-
senskii proved that if n ≤ 2, then T is k-rational [Vos67]. On the other
hand, Chevalley showed that there is a 3-dimensional torus over Qp that is
not Qp-rational, namely Res1

K/Qp Gm for any Galois extension K/Qp with
Gal(K/Qp) ' Z/2Z× Z/2Z [Che54, §5].

5.5.6. Groups of multiplicative type. The additive category of tori is
not an abelian category because, for instance, the squaring homomorphism
Gm

2→ Gm is an epimorphism that is not a cokernel of any homomorphism
T → Gm. This motivates enlarging the category slightly.

Definition 5.5.9. A group of multiplicative type over k is an algebraic
group G that after base extension to ks is isomorphic to a product of groups
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each isomorphic to either Gm or µn for some n. (Some authors extend the
notion also to group schemes that are not of finite type.)

Groups of multiplicative type do form an abelian category; see [SGA 3II,
IX, Corollaire 2.8] for a generalization. Moreover, one can define the charac-
ter group X(G) as for tori, and there is a generalization of the classification
theorem (Theorem 5.5.7):

Theorem 5.5.10. The functor

{groups of multiplicative type/k} ↔
{

Gk-modules that are
finitely generated as Z-modules

}opp

G 7→ X(G)

is an equivalence of abelian categories.

Proof. See [SGA 3II, X, Proposition 1.4]. �

Corollary 5.5.11. Each group G of multiplicative type contains a unique
maximal torus T of the same dimension.

Proof. Theorem 5.5.10 translates this into a statement about character
groups. The torus T is the one for which X(T ) = X(G)/X(G)tors. �

Over a separably closed field, groups of multiplicative type are exactly
the algebraic groups that for some n embed into the torus in GLn consisting
of diagonal matrices.

5.5.7. Maximal tori. Every algebraic group G contains a maximal torus
T (usually not normal in G); moreover, any such T remains maximal after
base field extension. Call G split if G contains a split maximal torus.

5.6. Semisimple and reductive algebraic groups

(Reference: [Kne67])

5.6.1. Radical and unipotent radical.

Definition 5.6.1. The commutator subgroup [G,G] of an algebraic group
is the intersection of all algebraic subgroups containing the (scheme-theoret-
ic) image of the morphism G×G→ G sending g, h ∈ G(T ) to ghg−1h−1 ∈
G(T ) for each k-scheme T .

Definition 5.6.2. Let G be a smooth affine algebraic group. The derived
series of G is the sequence of algebraic subgroups

G = G0 BG1 BG2 B · · · ,
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5.6. Semisimple and reductive algebraic groups 133

each normal in the preceding one, defined by G0 := G and Gi+1 := [Gi, Gi]
for i ≥ 0. Call G solvable if Gn is trivial for some n. (It turns out that
this condition is equivalent to solvability of the abstract group G(K) for any
algebraically closed field K containing k [SGA 3I, VIB 8.3(i)⇔(iii)].)

Let G be a smooth affine algebraic group. One can show that G contains
a unique maximal smooth connected solvable normal subgroup R(G), called
the radical of G. Also, G contains a unique maximal smooth connected
unipotent normal subgroup Ru(G), called the unipotent radical of G.

Remark 5.6.3 (Radicals under field extension). For any field extension
L ⊇ k, by definition R(G)L ⊆ R(GL). If L is a separable algebraic extension
of k, then descent theory shows that equality holds. On the other hand,
equality sometimes fails if L is inseparable over k. Analogous statements
hold for the unipotent radical Ru(G).

5.6.2. Semisimple and reductive groups.

Definition 5.6.4. Let G be a smooth affine algebraic group over a field k.
Call G semisimple if R(Gk) = {1}. Call G reductive if Ru(Gk) = {1}.

�

Warning 5.6.5. Many authors also require a semisimple or reductive group
to be connected.

�

Warning 5.6.6. Definition 5.6.4 uses the geometric radicals, i.e., the radical
or unipotent radical of Gk instead of G. Remark 5.6.3 shows that this makes
no difference if k is perfect. But if k is imperfect, it matters; see Section 5.9.3.

By Theorem 5.4.8, smooth connected unipotent groups are solvable, so
the unipotent radical is contained in the radical. In particular, semisimple
groups are reductive.

Example 5.6.7. The algebraic group SLn is semisimple.

Example 5.6.8. The algebraic group GLn is reductive but not semisimple.
Its radical is a copy of Gm, consisting of the scalar multiples of the identity.

Remark 5.6.9. Although GLn contains nontrivial smooth connected unipo-
tent subgroups (e.g., Un), they are not normal. Similarly, SLn contains non-
trivial smooth connected solvable subgroups (e.g., the torus consisting of
diagonal matrices of determinant 1), but they are not normal.

5.6.3. Center of a reductive group.

Theorem 5.6.10. The center of a connected reductive group is a group of
multiplicative type.
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Sketch of proof. Let G be a connected reductive group over k. For any
maximal torus T ≤ G, we have CG(T ) = T [SGA 3III, XIX, 2.8]. The
center Z of G is a closed subgroup of CG(T ) = T , so Z is of multiplicative
type. �

Corollary 5.6.11. The center of a connected semisimple group is a finite
group of multiplicative type.

Proof. Let G be a connected semisimple group. Let Z be its center. By
Theorem 5.6.10, Z is a group of multiplicative type. Let T be the maximal
torus in Z given by Corollary 5.5.11. Since T ⊆ Z, the group T is normal
in G, so T ⊆ R(G) = {1}, since G is semisimple. Hence T = {1}. Now
dimZ = dimT = 0, so Z is finite. �

Example 5.6.12. The center of the reductive group GLn is Gm.

Example 5.6.13. The center of the semisimple group SLn is µn.

5.6.4. Isogenies. An isogeny between connected algebraic groups is a sur-
jective homomorphism G → H whose kernel is finite. If the kernel of an
isogeny is (scheme-theoretically) contained in the center of G, then it is
called a central isogeny, and G is called a central cover of H.

Example 5.6.14. Let n ≥ 1. The inclusion SLn ↪→ GLn is not surjective,
so it is not an isogeny. The projection GLn � PGLn has a kernel that is
not finite, so it is not an isogeny. But their composition SLn → PGLn is a
central isogeny with kernel µn.

Proposition 5.6.15. Every isogeny whose kernel is étale is central. In
particular, every isogeny over a field of characteristic 0 is central.

Proof. Let f : G → H be an isogeny with étale kernel K. We may assume
that k is algebraically closed, so K consists of a finite disjoint union of
points (Proposition 3.5.35). The conjugation action of G on K defines a
homomorphism from G to a finite group AutK, but G is connected, so this
homomorphism must be trivial. In other words, K is contained in the center
of G. �

Example 5.6.16. IfG is a smooth connected algebraic group over a field k of
characteristic p > 0, then the relative Frobenius morphism FG/k : G→ G(p)

is an isogeny, but not necessarily a central isogeny.

5.6.5. Simply connected and adjoint groups. Call a central cover
G′

f→ G trivial if f is an isomorphism.

Definition 5.6.17. A connected semisimple group G is called simply con-
nected if G has no nontrivial central cover.
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�

Warning 5.6.18. Let G be a connected semisimple group over a separably
closed field k. If char k = 0, then G is simply connected in the sense of
Definition 5.6.17 if and only if G is algebraically simply connected in the
sense of Definition 3.5.45. But if char k = p > 0, the notion of simply
connected is more restrictive. For example, PGLp is algebraically simply
connected but not simply connected: it has no nontrivial finite étale cover,
but SLp → PGLp is a nontrivial central cover with kernel µp.

Proposition 5.6.19. Let G be a connected semisimple group. Then the
following are equivalent:

(i) The group G is not a nontrivial central cover of any other group G′.

(ii) The center Z of G is trivial.

Proof. If G f→ G′ is a nontrivial central cover, then {1} 6= ker f ⊆ Z, so Z
is nontrivial. Conversely, if Z is nontrivial, then G → G/Z is a nontrivial
central cover. �

Definition 5.6.20. A connected semisimple group G is called adjoint if it
satisfies the conditions of Proposition 5.6.19.

Proposition 5.6.21. Let G be a connected semisimple group.

(a) Among all connected semisimple groups that centrally cover G, there is
a maximal one G̃ that centrally covers all others. This G̃ is unique up
to isomorphism (as a group equipped with a central isogeny to G) and is
simply connected.

(b) Among all connected semisimple groups that G centrally covers, there is
a minimal one Gad that is centrally covered by all others. This Gad is
unique up to isomorphism (as a group equipped with a central isogeny
from G to it) and is adjoint. If Z is the center of G, then Gad ' G/Z.

The formation of G̃ and Gad commutes with base field extension.

Proof.

(a) See [CGP10, Corollary A.4.11].

(b) By Corollary 5.6.11, Z is a finite group of multiplicative type, so the
connected semisimple groups centrally covered by G are the quotients
G/Z ′ for Z ′ ≤ Z. In particular, G/Z is the minimal such quotient. By
[SGA 3III, XXII, Proposition 4.3.5], the center of G/Z is trivial. �
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G̃

��
�� ��

simply connected SLn

central isogeny with kernel µn

����

G

�� ��
Gad adjoint PGLn

Example 5.6.22. The connected semisimple group SLn is simply connected.
Its center is µn, and the quotient (SLn)ad = SLn /µn is isomorphic to the
adjoint group PGLn.

Corollary 5.6.23. For a connected semisimple group, the properties of being
simply connected or adjoint are unchanged by base field extension.

Remark 5.6.24. Let us explain how the use of the word “adjoint” here
relates to other uses of the word. Each g ∈ G(k) induces an automorphism
x 7→ gxg−1 of G, which in turn induces an automorphism of its Lie algebra
g. This construction works with S-valued points as well as k-valued points,
so we get a homomorphism of algebraic groups Ad: G → GL(g), called the
adjoint homomorphism. The kernel of Ad turns out to be the center Z of
G, so the image Gad of Ad is isomorphic to G/Z.

Because of Proposition 5.6.21(a), to classify all connected semisimple
groups, it suffices to classify the simply connected semisimple groups G; then
for each such G compute the center Z, compute the finitely many subgroup
schemes Z ′ ⊆ Z, and consider the quotients G/Z ′.

5.6.6. Almost simple groups. A simple algebraic group is a connected
semisimple group G that has exactly two normal subgroup schemes, {1} and
G. If k is an algebraically closed field of characteristic 0, then an algebraic
group G is simple if and only if the abstract group G(k) is simple.

It is not true that every connected semisimple group is a product of
simple groups. For example, if n ≥ 2, then SLn is not simple (it has µn as a
normal subgroup scheme), but it is not a nontrivial product either. Therefore
we define a less restrictive concept: an almost simple algebraic group is a
connected semisimple group G such that the quotient G/Z of G by its center
Z is simple. (Recall that Z is finite; see Corollary 5.6.11.)

Remark 5.6.25. What we call “simple” is what other authors might call
“k-simple”: the notion is relative to the ground field, and might be lost if the
base field is extended. The same applies to “almost simple”.
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Theorem 5.6.26 (Classification of almost simple groups). Fix a separably
closed field k. Almost simple groups over k up to the equivalence relation
generated by central isogenies are in bijection with connected Dynkin dia-
grams. In particular, for each connected Dynkin diagram D, there is one
simply connected group and one adjoint group of type D.

Call G geometrically almost simple (or absolutely almost simple) if
Gks is almost simple. For each field k, let S (k) be the set of isomorphism
classes of split geometrically almost simple simply connected groups over k.

Theorem 5.6.27. For any field extension L ⊇ k, the map S (k) → S (L)
is a bijection.

Thus among geometrically almost simple simply connected groups over k
of a given type D, there is exactly one that is split, and all others are twists
of that one.

5.6.7. Decomposition of a semisimple group.

Theorem 5.6.28. Every simply connected semisimple group is uniquely ex-
pressible as a product of almost simple groups.

By taking the quotients by the centers, we find that every adjoint semi-
simple group is uniquely expressible as a product of adjoint simple groups.

Example 5.6.29. For n > 1, embed µn diagonally in SLn×SLn, and let
G = (SLn×SLn)/µn. Then G is not a product of almost simple groups, but
G̃ = SLn×SLn, and Gad = PGLn×PGLn.

Decompositions over k and over ks are related, as we now explain. Let
G be a simply connected semisimple group over k. Write Gks =

∏
i∈I Gi for

some almost simple groups Gi over ks. The Galois group Gk acts on Gks and
hence also on I. For each i ∈ I, the stabilizer of i is GLi ≤ Gk for some finite
separable extension Li ⊇ k contained in ks, and Gi descends to an algebraic
group Hi over Li. For each Gk-orbit J ⊆ I, the product

∏
i∈J Gi descends

to an almost simple group GJ over k. Thus the decomposition of G over k
corresponds to the decomposition of I into Gk-orbits. Finally, if i ∈ J , then
GJ ' ResLi/kHi. Thus the classification of simply connected groups reduces
to the classification of geometrically almost simple simply connected groups
over finite separable extensions.

5.6.8. Decomposition of a reductive group. The following theorem
says that a reductive group is almost a direct product of a semisimple group
and a torus.
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Theorem 5.6.30. Let G be a connected reductive group. Let T be the max-
imal torus in the center of G (see Corollary 5.5.11). Let G′ = [G,G] be the
commutator subgroup. Then G′ is semisimple, and the multiplication map
G′ × T → G is surjective with finite kernel isomorphic to G′ ∩ T .

Proof. We may assume that k is algebraically closed. In this case, the result
is contained in [PR94, Theorem 2.4]. �

Let us summarize how to build all reductive groups over a field k.

(1) Given a Dynkin diagram D and a finite separable extension L ⊇ k,
construct the unique split geometrically almost simple simply connected
group over L of type D.

(2) Use Galois cohomology to classify its twists over L; these are all geomet-
rically almost simple simply connected groups over L of type D.

(3) Apply ResL/k to these twists (for all D and L) to obtain the almost
simple simply connected groups over k.

(4) Take a finite product to obtain the simply connected groups over k.
(5) Divide by a subgroup scheme of the center to obtain the connected semi-

simple groups over k.
(6) Take the product with a torus, and divide again by a subgroup scheme

of the center to obtain the connected reductive groups over k.

Remark 5.6.31. Semisimple and reductive groups can also be understood
in terms of reduced root data.

5.7. Abelian varieties

(Reference: [Mum70, §3.2])

Definition 5.7.1. An algebraic group over a field k is called an abelian
variety if it is smooth, proper, and connected.

Example 5.7.2. A 0-dimensional abelian variety is the same thing as the
trivial algebraic group. A 1-dimensional abelian variety is the same thing as
an elliptic curve.

Proposition 5.7.3. Abelian varieties are nice.

Proof. Let A be an abelian variety. By Theorem 5.2.20, A is quasi-pro-
jective. Quasi-projective and proper imply projective. Since A has a k-
point (the identity), connected implies geometrically connected (Proposi-
tion 2.3.24). Smooth and geometrically connected imply geometrically inte-
gral (Proposition 3.5.67). �
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Abelian varieties are also commutative; see [Mum70, pp. 41–44] for two
proofs.

Proposition 5.7.4. Let A be an abelian variety over a field k, and let m be
an integer such that char k - m. Then the multiplication-by-m map A m→ A
is étale.

Sketch of proof. Because of Theorem 4.3.7(ii), we may assume that k is
algebraically closed. The set of points where the map is étale is open, so it
suffices to check that it is étale at each a ∈ A(k). By translating, it suffices
to check that it is étale at a = 0. One can show that its derivative at 0
equals multiplication-by-m as an endomorphism of the tangent space of A
at 0. If char k - m, then this linear map is invertible. �

Definition 5.7.5. A semiabelian variety is an extension G of an abelian
variety A by a torus T :

0→ T → G→ A→ 0.

5.7.1. Jacobian varieties.

(References: [Mil86b], [BLR90, Chapters 8 and 9], [Kle05])

Let X be a nice k-curve. Recall that there is a homomorphism

deg : PicX → Z
and that Pic0X is defined as its kernel.

Theorem 5.7.6. Let X be a nice k-curve of genus g. Assume that X has
a k-point. Then there is a g-dimensional abelian variety J = JacX, called
the Jacobian of X, such that J(k) ' Pic0X as groups, and more generally
J(L) ' Pic0XL for every field extension L ⊇ k, functorially in L.

Proof. See [Mil86b]. �

Remark 5.7.7. In fact, [Mil86b] contains a stronger version of Theo-
rem 5.7.6 that specifies not only J(L) for field extensions L ⊇ k, but also
J(T ) for every k-scheme T , i.e., the entire functor of points. This is needed
if one wants to determine the group scheme J uniquely up to isomorphism.
Under the hypotheses of Theorem 5.7.6, if π : X×k T −→ T denotes the sec-
ond projection, Xt denotes the fiber π−1(t) for each t ∈ T , and Lt ∈ PicXt

denotes the restriction of an element L ∈ Pic(X ×k T ) to Xt, then
(5.7.8)

J(T ) ' {L ∈ Pic(X ×k T ) : for every t ∈ T , we have deg Lt = 0}
π∗ PicT

.

Elements of J(T ) can be thought of as families of degree 0 line bundles on X
parameterized by the points of T ; the pullback of a line bundle on T restricts
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to the trivial line bundle on each fiber since the map from a fiber to T factors
through a point.

Remark 5.7.9. In both Theorem 5.7.6 and Remark 5.7.7, the assumption
that X has a k-point can be weakened to the assumption that X has a
degree 1 divisor, or equivalently X has closed points of degrees whose gcd
is 1.

�

Warning 5.7.10. If X does not have a degree 1 divisor, then the conclusions
of Theorem 5.7.6 and Remark 5.7.7 can sometimes fail. The problem is that
for any k-scheme J and for any Galois field extension L ⊇ k, there is a
bijection J(k)→ J(L)Gal(L/k), but in general Pic0X → (Pic0XL)Gal(L/k) is
only injective; see Corollary 6.7.8 for a related fact, and see Exercise 2.12 for
an example. In general, the Jacobian J still exists, but the correct description
of its points over a field L ⊇ k is J(L) ' (Pic0XLs)

Gal(Ls/L), functorially
in L. The correct generalization of this to T -valued points for an arbitrary
k-scheme T is that the functor of points of J is the fppf sheafification (see
Section 6.3.4) of the functor on the right-hand side of (5.7.8).

Remark 5.7.11. The functor has a variant using Pic instead of Pic0. It
is represented by the Picard scheme PicX/k, a group scheme that is only
locally of finite type over k. It has countably many connected components
PicnX/k, indexed by n ∈ Z, and each PicnX/k is a nice k-variety. Moreover,
Pic0

X/k is isomorphic to the Jacobian J , and there is an exact sequence

0→ J → PicX/k → Z→ 0,

where the Z on the right denotes a constant group scheme over k.

Remark 5.7.12. Even more generally, given an S-scheme X, the relative
Picard functor PicX/S is defined as the fppf sheafification of the functor

T 7→ Pic(X ×S T )

on S-schemes T . (The sheafification process automatically trivializes pull-
backs of line bundles on T , so it is not necessary to take the quotient as in
(5.7.8).) Here are two criteria for representability of PicX/S :

• If X → S is flat, projective, and finitely presented with geometrically
reduced fibers, then PicX/S is represented by a scheme that is locally
of finite presentation over S.
• If X is a proper k-scheme, then PicX/k is represented by a scheme that
is locally of finite type over k.

5.7.2. Albanese varieties.

(References: [Ser60], [Wit10, §2 and Appendix A])
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The notion of Jacobian of a curve generalizes in two different ways to
higher-dimensional varieties, as we discuss in this section and the next.

Let X be a geometrically integral variety over a field k. Is there a mor-
phism to an abelian variety, f : X → A, such that every other such morphism
f ′ : X → A′ factors uniquely as f followed by a homomorphism A → A′?
Not quite: for instance, if x ∈ X(k) is such that f(x) = 0, and f ′ is f
followed by a nonzero translation, then f ′(x) 6= 0, but any homomorphism
A→ A′ must map 0 to 0.

If a point x ∈ X(k) is fixed, however, and we restrict attention to mor-
phisms that send x to 0, then the answer becomes yes. This can be refor-
mulated as follows:

Theorem 5.7.13 (Existence of Albanese varieties). Let CX,x be the category
of pairs (A, f), where A is an abelian variety over k, and f : X → A is
a morphism such that f(x) = 0; a morphism from (A, f) to (A′, f ′) is a
homomorphism α : A→ A′ making the triangle

X
f //

f ′   

A

α
��
A′

commute. Then CX,x has an initial object (AlbX/k, ι).

Proof. See [Ser60, Théorème 5] for the case where k is algebraically closed,
and [Wit10, Appendix A] for the general case. �

Definition 5.7.14. The abelian variety AlbX/k is called the Albanese va-
riety of X.

Remark 5.7.15. For a variant that does not require a k-point x, see Ex-
ample 5.12.11. It will follow from Exercise 5.16 that AlbX/k is independent
of x.

Remark 5.7.16. There is also a variant using semiabelian varieties instead
of only abelian varieties; see [Ser60, Théorème 7] and [Wit08, Appendix A].

5.7.3. Picard varieties.

(References: [Gro95b], [Kle05])

Let X be a nice k-variety. The group scheme Pic0
X/k is proper over k

[Gro95b, Théorème 2.1(ii)], but in general it may happen that it is not
reduced and hence not an abelian variety. The Picard variety of X is the
associated reduced subscheme Pic0

X/k,red.
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Theorem 5.7.17 ([Gro95b, Corollaire 3.2]). The scheme Pic0
X/k,red is a

subgroup scheme of Pic0
X/k, and it is an abelian variety.

Sketch of proof. In general, for an algebraic group G over a field k of
characteristic p > 0, it can happen that Gred is not a subgroup scheme;
see Exercise 5.11. But if G is commutative, proper, and connected, then
Proposition 5.2.19 and its proof imply that G is an extension of an abelian
variety A by a finite commutative connected group scheme F of order pn

for some n; then it turns out that pnF = 0, so pnG (the scheme-theoretic
image of multiplication-by-pn) is isomorphic to pnA = A, so pnG is a closed
subgroup of G whose underlying scheme is Gred. Apply this to G := Pic0

X/k.
�

Remark 5.7.18. The group scheme Pic0
X/k is an abelian variety even before

passing to the reduced subscheme if any of the following hold:

• char k = 0;
• X is a curve; or
• X is an abelian variety.

But there exist nice varieties X of dimension ≥ 2 over an algebraically closed
field k of characteristic p such that Pic0

X/k is not reduced; see Example 5.7.22
for an example and [Kle05, Remark 9.5.15] for discussion.

Definition 5.7.19. If X is an abelian variety, then Pic0
X/k is called the dual

abelian variety.

Theorem 5.7.20 (Albanese–Picard duality). Let X be a nice k-variety.
Then Pic0

X/k,red is the dual abelian variety of AlbX/k.

Proof. See [Gro95b, Théorème 3.3(iii)]. �

Remark 5.7.21. Let X be a nice k-variety. Let 0 be the identity point of
Pic0

X/k, and let T0 Pic0
X/k be the tangent space there. Then it turns out that

T0 Pic0
X/k ' H1(X,OX). In particular, if dimPic0

X/k < dim H1(X,OX),
then Pic0

X/k is not smooth at 0, and hence not reduced (see Theorem 5.2.16).

Example 5.7.22 ([Igu55]). Let k be a field of characteristic 2. Let E and
E′ be elliptic curves over k such that E has a k-point e of order 2. Let ι be
the order 2 automorphism of E × E′ given by (x, y) 7→ (x + e,−y). Then ι
has no fixed points, so the quotient variety X := (E×E′)/ι is a nice surface.
One can show that AlbX/k is the quotient of E by the subgroup generated
by e; in particular, dimPic0

X/k = dim AlbX/k = 1. On the other hand, it
turns out that dim H1(X,OX) = 2. Thus, by Remark 5.7.21, Pic0

X/k is not
reduced. (For other examples, see [Ser58, §20].)



Un
offi
cia
l v
ers
ion

for
inc
ide
nta

l o
nli
ne
use

5.7. Abelian varieties 143

5.7.4. Abelian schemes.

(Reference: [Mil86a, §20])

Definition 5.7.23. A group scheme A → S is an abelian scheme if it is
smooth and proper and has connected fibers.

An abelian scheme over S may be thought of as a family of abelian
varieties parameterized by the points of S.

Remark 5.7.24. Let R be a discrete valuation ring, and let K = FracR.
Let A be an abelian variety over K. If A has good reduction in the sense
of Section 3.5.14, so there exists a smooth proper R-model A, then it turns
out that A → SpecR is automatically an abelian scheme. Thus A has good
reduction if and only if it is the generic fiber of an abelian scheme over
SpecR.

5.7.5. Néron models of abelian varieties.

(Reference: [BLR90])

Recall the notion of Néron model from Section 3.5.16.

Theorem 5.7.25 (Néron). Let R be a discrete valuation ring. Let K =
FracR. Let A be an abelian variety over K. Then A has a Néron model N ,
and N is of finite type over R.

Proof. See [Art86a, Theorem 1.2] or [BLR90, §1.3, Corollary 2]. �

Proposition 5.7.26. Let R,K,A,N be as in Theorem 5.7.25. Let T be
a smooth R-scheme. Then any K-rational map TK 99K A extends to an
R-morphism T → N .

Proof. According to [Wei48b, §2, No. 15, Théorème 6], any K-rational
map TK 99K A is a K-morphism. Next, the Néron property says that any
K-morphism TK → A extends to an R-morphism T → N . �

Remark 5.7.27. Theorem 5.7.25 extends to the case where R is replaced
by an integral Dedekind scheme, and K is its function field. See [BLR90,
§1.4, Theorem 3]. For example, an abelian variety over Q has a Néron model
over Z.

Remark 5.7.28. Theorem 5.7.25 can be extended also in a different di-
rection, to the case where A is a semiabelian variety over a discrete valua-
tion ring. See [Art86a, Theorem 1.9] or [BLR90, §10.2, Theorem 2]. But
these Néron models are generally no longer of finite type. For example, if
A = Gm,K and π ∈ R is a uniformizer, then A(K) = K× = R× × πZ, and
the Néron model N can be constructed by gluing copies of Gm,R indexed by
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n ∈ Z along their generic fibers, with the nth generic fiber glued to the 0th
by multiplication-by-πn on Gm,K ; see [BLR90, §10.1, Example 5].

It is not yet known if Remarks 5.7.27 and 5.7.28 can be combined; see
[BLR90, §10.3].

5.7.6. Néron models of elliptic curves.

(References: [BLR90, §1.5], [Liu02, §10.2], [Con15])

Here we describe in more explicit terms the Néron model of an elliptic
curve E, and we relate it to Weierstrass equations. Let R be a discrete
valuation ring, and let K = FracR. Let v : K � Z ∪ {∞} be the discrete
valuation.

Start with an elliptic curve E over K. If charK is not 2 or 3, then E is
the closure in P2

K of an affine plane curve y2 = x3 +Ax+B with A,B ∈ K
such that 4A3 + 27B2 6= 0. Without restriction on the characteristic, E is
the curve in P2

K defined by a Weierstrass equation

(5.7.29) y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3

such that a certain polynomial ∆ in a1, a2, a3, a4, a6 is nonzero [Sil09, III.§1].
A Weierstrass model of E is a closed subscheme of P2

R cut out by an equa-
tion (5.7.29) with a1, a2, a3, a4, a6 ∈ R whose generic fiber over K is isomor-
phic to E. Among all such models, any one that minimizes v(∆) is called a
minimal Weierstrass model; cf. [Sil09, Chapter VII].

Let W be a minimal Weierstrass model, so W is a proper R-scheme. If
v(∆) = 0, then W is an abelian scheme over R; this is the case in which E
has good reduction. If v(∆) > 0, then the special fiber Wk has a nonsmooth
point, so W → SpecR is not smooth, but W might be regular. In any case,
one can iteratively blow up nonregular points until one reaches a regular
proper model E , which in fact is the minimal regular proper model in the
sense of Section 9.3.1.6 (usually constructing the minimal regular proper
model requires normalizations as well as blowups, and requires blowing down
some exceptional curves, but this turns out to be unnecessary for elliptic
curves; see the end of [Con15]). Although E is regular, it need not be
smooth over R. Removing from E all nonsmooth points of the special fiber
Ek (which may include removing entire irreducible components of Ek if they
are of multiplicity > 1) yields the smooth locus Esmooth. Similarly, removing
from W the nonsmooth point of the special fiber Wk (if there is one) yields
the smooth locus W smooth.

Theorem 5.7.30. Let R be a discrete valuation ring. Let K = FracR. Let
E be an elliptic curve over K. Let W , E, and N be, respectively, a minimal
Weierstrass model, the minimal regular proper model, and the Néron model.
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Let N 0 be the open subscheme of N obtained by removing the non-identity
components of the special fiber of N . Then Esmooth ∼→ N andW smooth ∼→ N 0.

Proof. See [Con15, Theorems 5.4 and 5.5]. The morphisms come from the
Néron property. For example, the identity E → E extends to Esmooth → N .

�

The first conclusion in Theorem 5.7.30 generalizes to higher genus; see
Theorem 3.5.83.

5.7.7. Arithmetic of abelian varieties.

Theorem 5.7.31 (Mordell–Weil theorem). Let A be an abelian variety over
a global field k. Then the abelian group A(k) is finitely generated.

Sketch of proof. Fix m ∈ Z≥2 not divisible by char k. Theorem 5.7.31
implies the “weak Mordell–Weil theorem” that A(k)/mA(k) is finite, but in
fact, all known proofs of Theorem 5.7.31 involve proving the weak Mordell–
Weil theorem (or some variant) first. For a proof of the weak Mordell–
Weil theorem, see Theorem 8.4.9. Combining this with the theory of height
functions completes the proof; see [Ser97, 4.3]. �

Let A be an abelian variety over a global field k. To A one can attach
two objects that are conjecturally related to A(k):

• The Shafarevich–Tate group1 of A is

X(A) := ker
(
H1(k,A)→

∏
v∈Ωk

H1(kv, A)
)
.

Because X(A) is a subgroup of a Galois cohomology group, it is a
torsion abelian group.
• The L-function of A is

L(A, s) :=
∏

finite v

det
(
1− q−sv Frobv |(V`A)Iv

)−1
,

where qv is the order of the residue field, Frobv ∈ Gk is a Frobenius
element, V`A is as in Example 7.5.5, and Iv ≤ Gk is an inertia group. It
turns out that the product converges for Re s > 3/2, and conjecturally
it has an analytic continuation to all of C [Tat95a, p. 216].

Conjecture 5.7.32 (Shafarevich–Tate conjecture [Tat63, Conjecture 4.1]).
For every abelian variety A over a global field k, the group X(A) is finite.

1Or should we say Tate–Shafarevich group? In the Cyrillic alphabet, the first letter X of
Shafarevich comes after T.
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Conjecture 5.7.32 is open even for elliptic curves A over Q: this case has
been proved only under the additional hypothesis that the order of vanishing
of its L-function at s = 1 is at most 1.

Conjecture 5.7.33 (Birch and Swinnerton-Dyer conjecture, rank part). Let
A be an abelian variety over a global field k. Then ords=1 L(A, s) = rkA(k).

Remark 5.7.34. The full Birch and Swinnerton-Dyer conjecture predicts
that the leading coefficient in the Taylor series of L(A, s) at s = 1 equals a
product of certain arithmetic invariants of A, including #X(A); it may be
considered an analogue of the Dirichlet analytic class number formula. The
conjecture was formulated for elliptic curves overQ by Birch and Swinnerton-
Dyer [BSD65,SD67] and generalized to abelian varieties over global fields
by Tate [Tat95a].

Conjecture 5.7.33 is known for all elliptic curves A over Q satisfying
ords=1 L(A, s) ≤ 1.

5.8. Finite étale group schemes

A smooth algebraic group of dimension 0 over k is the same thing as a finite
étale group scheme over k.

A Gk-group is a discrete group equipped with a continuous action of Gk.
A Gk-module is a discrete abelian group equipped with a continuous action
of Gk. A Gk-group or Gk-module is finite if it is finite as a set. The following
gives a concrete way to study finite étale group schemes over k:

Theorem 5.8.1. The functors

{finite étale group schemes over k} ←→ {finite Gk-groups}
G 7−→ G(ks)

Spec Homsets(A, ks)
Gk ←− [ A

are inverse equivalences of categories, and they restrict to equivalences of
categories

{commutative finite étale group schemes over k} ←→ {finite Gk-modules}.

Proof. The first equivalence arises from taking the group objects on both
sides of Theorem 1.3.2 and using the anti-equivalence between affine k-
schemes and k-algebras. Then imposing commutativity on both sides yields
the second equivalence. �

5.9. Classification of smooth algebraic groups

(Reference: [Kne67])
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5.9.1. Classification over perfect fields. Let G be a smooth algebraic
group over a perfect field k. We will define a chain of smooth algebraic
subgroups in G, each normal in G.

The connected component Gconn = G0 of G is a closed and open nor-
mal subgroup of G (Proposition 5.2.4), and G/Gconn is a finite étale group
scheme, called the component group of G (this holds even if k is not neces-
sarily perfect and G is not necessarily smooth). Next, Chevalley’s theorem
states that there is a unique exact sequence of smooth connected algebraic
groups

(5.9.1) 0→ Gaffine → Gconn → A→ 0,

where Gaffine is affine and A is an abelian variety; in fact, Gaffine is the
unique maximal smooth connected affine algebraic subgroup of Gconn (or
of G). As mentioned in Section 5.6, the radical Gsolv := R(Gaffine) is the
unique maximal smooth connected solvable normal subgroup of Gaffine; the
quotient Gaffine/Gsolv is semisimple. As mentioned in Section 5.6, the unipo-
tent radical Gunip := Ru(Gaffine) = Ru(Gsolv) is the unique maximal smooth
connected unipotent normal subgroup of Gaffine; then Gsolv/Gunip is a torus.

To summarize, we have the following chain of normal algebraic subgroups
of G:

G

finite étale

properGconn

abelian variety

Gaffine

semisimple

reductiveGsolv

torus

Gunip

unipotent

{1}.
Each label between groups indicates the type of group that arises as the
quotient.

5.9.2. Functorial properties.

Proposition 5.9.2. If L ⊇ k is an extension of perfect fields, then the chain
for GL is obtained by base-extending each group in the chain for G.
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Proof. For Gconn it follows since Gconn is geometrically connected (Propo-
sition 5.2.4). For Gaffine it follows from the uniqueness of (5.9.1), since
base-extending (5.9.1) yields a sequence with the same properties over L.
For Gsolv, this has been mentioned already in Remark 5.6.3. For Gunip

see [CGP10, Proposition 1.1.9(1)]. �

Proposition 5.9.3. Let f : G→ H be a homomorphism of smooth algebraic
groups. Then

(a) f restricts to a homomorphism Gconn → Hconn, and

(b) f restricts to a homomorphism Gaffine → Haffine.

Proof.

(a) The image of Gconn is connected and contains the identity point 1 of H.

(b) Let I be the image of the compositition

Gaffine ↪→ Gconn → Hconn � Hconn/Haffine.

By Theorem 5.2.9, I is both a quotient of the smooth affine connected
group Gaffine and a closed subgroup of the abelian variety Hconn/Haffine.
The former shows that I is smooth, affine, and connected (Proposi-
tion 5.2.7(a)), and the latter shows that I is proper. Thus I is trivial. �

�

Warning 5.9.4. A homomorphism f : G → H of smooth algebraic groups
does not necessarily restrict to Gsolv → Hsolv and Gunip → Hunip. (For a
counterexample, let f be the embedding Un ↪→ SLn for some n ≥ 2.)

5.9.3. Imperfect fields.

(Reference: [CGP10])

A few aspects of the classification fail over imperfect fields k. Let G be
a smooth connected affine algebraic group.

• As in Remark 5.6.3, if k is not perfect, the unipotent radical of Gk
need not descend to an algebraic group over k; thus Ru(Gk) can be
strictly larger than Ru(G)k. In fact, it can happen that Ru(Gk) 6= {1}
while Ru(G) = {1}; see Exercise 5.13. Call G pseudo-reductive if
Ru(G) = {1} [CGP10, Definition 1.1.1]; this is weaker than being
reductive.

• There are similar issues with the radical R(G). Moreover, it turns
out that semisimplicity condition R(Gk) = {1} implies [G,G] = G,
but the weaker condition R(G) = {1} does not, so it is natural to
require [G,G] = G separately. Therefore call G pseudo-semisimple if
R(G) = {1} and [G,G] = G [CGP10, Definition 11.2.2].
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• Chevalley’s theorem above must be modified as follows: A connected
algebraic group G contains a smallest connected affine normal subgroup
scheme Gaffine such that G/Gaffine is an abelian variety. But Gaffine

need not be smooth; see [BLR90, 9.2, Theorem 1]. In particular, the
formation of Gaffine does not commute with inseparable base extension.

There is an alternative to Chevalley’s theorem that works over any field,
but is backward in that the affine group is the quotient instead of the sub-
group. Call an algebraic group A anti-affine if O(A) = k. Anti-affine alge-
braic groups are smooth, connected, and commutative; see [Bri09] and the
references listed there for these and more properties of these groups.

Theorem 5.9.5. A smooth connected algebraic group G over a field k fits
in an exact sequence of smooth connected algebraic groups

0→ A→ G→ L→ 0

in which A is anti-affine and L is affine.

Sketch of proof. Let L = Spec O(G), and use the group structure on G to
define a group structure on L. See [DG70, III, §3, no. 8] for the rest of the
proof. �

For cohomological purposes, Theorem 5.9.5 is superior to the original
Chevalley theorem in that the commutative group is on the left.

5.10. Approximation theorems

(References: [PR94, Chapter 7] and [Rap14])

Recall from Section 2.6.4.5 the notions of weak and strong approximation
for varieties over a global field.

5.10.1. Weak approximation. Recall from Section 2.6.2 that for any va-
rietyX over R (or a subfield), the setX(R) can be equipped with the analytic
topology.

Theorem 5.10.1 (Real approximation theorem). Let G be a connected
affine algebraic group over Q. Then G(Q) is dense in G(R).

Theorem 5.10.1 is implied by the case k = Q of Theorem 5.10.4(a) below.
�

Warning 5.10.2. The conclusion of Theorem 5.10.1 can fail if G is not
connected; see Exercise 5.14. It can fail also if G is not affine: consider a
rank 0 elliptic curve over Q.

�

Warning 5.10.3. There exists a connected semisimple algebraic group G
over Q such that G(Q) is not dense in G(Q2) [San81, Exemple 5.8].
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Theorem 5.10.4 (Weak approximation theorem). Let G be a connected
affine algebraic group over a number field k.

(a) There exists a finite set of finite places T of k such that G(k) is dense
in
∏
v/∈T G(kv).

(b) The closure of G(k) in
∏
v∈Ωk

G(kv) is an open normal subgroup, and
the quotient is a finite abelian group.

(c) If G is a simply connected or adjoint group, then G satisfies weak ap-
proximation.

Proof.

(a) Let L ⊇ k be a finite Galois extension such that GL is split. Let T be
the set of v ∈ Ωk for which a decomposition group of v in Gal(L/k)
is not cyclic. Thus T is a subset of the set of ramified finite primes
in the extension L ⊇ k. It turns out that T satisfies the conclusion
[San81, Corollaire 3.5(ii)]. The proof reduces to the case of tori, which
is attributed to Serre. (In general, a variety over a global field that
satisfies weak approximation away from finitely many places is said to
satisfy weak weak approximation!)

(b) See [San81, Corollaire 3.5(i)]. The quotient is called the defect of weak
approximation.

(c) See [PR94, Theorem 7.8]. �

Remark 5.10.5. If instead k is a global function field, (c) still holds [Har67,
Satz 2.2.4], but (a) and (b) can fail. For example, if p is odd, k = Fp(t),
and G ≤ G2

a is defined by yp = txp + x over k, then G(k) is finite by
[Vol91, Theorem 3], but G(kv) is infinite for every v by Proposition 3.5.75.

For more on weak approximation in algebraic groups, see [PR94, §7.3].

5.10.2. Strong approximation.

Theorem 5.10.6 (Strong approximation theorem). Let G be a connected
semisimple algebraic group over a global field k. Let S be a finite set of places
of k. Then G(k) is dense in G(AS) if and only if G is simply connected and
for each almost simple factor Gi of G, there exists v ∈ S such that Gi(kv) is
noncompact.

Proof. See the original sources [Kne66, Pla69, Pra77,Mar77], or see
[PR94, §7.4]. �

See Theorem 8.4.10 for the reason for the simply connected hypothesis.
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Remark 5.10.7. If k is a number field, there is a more general statement,
applicable to any algebraic group G over k. Namely, G satisfies strong ap-
proximation if and only if G is connected and affine, the torus Gsolv/Gunip

is trivial, and the semisimple quotient G/Gsolv satisfies the criterion of The-
orem 5.10.6.

5.11. Inner twists

Let G be a smooth algebraic group over k. The action of G on itself by inner
automorphisms defines a homomorphism

G(ks)→ AutGks .

This induces a map of pointed sets

(5.11.1) H1(k,G)→ H1(k,AutGks).

The image of an element τ ∈ H1(k,G) under (5.11.1) (or, more precisely, a
cocycle representing this image) defines a twist Gτ of the algebraic group G,
called an inner twist. It is another smooth algebraic group over k.

5.12. Torsors

(Reference: [BLR90, §6.4], Chapter 2 of [Sko01])

5.12.1. Warmup: Torsors of groups. Let G be a group.

Definition 5.12.1. A (right) G-torsor (also called torsor under G or prin-
cipal homogeneous space of G) is a right G-set isomorphic to

G with the right action of G by translation.

In other words, a G-torsor is a set X with a simply transitive G-action
(simply transitive means that X is nonempty and that for every x, x′ ∈ X
there exists a unique g ∈ G such that xg = x′).

If X is a G-torsor, then a choice of x ∈ X determines an isomorphism of
G-sets

G −→ X

g 7−→ xg.

Example 5.12.2. If G is a subspace of a vector space V , andX is a translate
of G, then X is a G-torsor. Here X is not canonically isomorphic to G, but
a choice of x ∈ X determines a translation isomorphism G → X sending 0
to x.
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5.12.2. Torsors under algebraic groups. Let k be a field. Let G be
a smooth algebraic group over k. The trivial G-torsor over k, which for
convenience we denote by G, is

the underlying variety of G equipped with
the right action of G by translation.

Definition 5.12.3. A G-torsor over k (also called torsor under G or prin-
cipal homogeneous space of G) is a k-variety X equipped with a right
action of G such that Xks equipped with its right Gks-action is isomorphic
to Gks (the isomorphism is required to respect the right actions of Gks). A
morphism of G-torsors is a G-equivariant morphism of k-schemes.

Remark 5.12.4. The definition can be generalized to nonsmooth G, but
then one should use k instead of ks. We restrict to smooth G for now so
that Galois cohomology suffices in Section 5.12.4. For a generalization, see
Section 6.5.

Remark 5.12.5. If X is a G-torsor over k, then X(ks) is a G(ks)-torsor in
the sense of Section 5.12.1.

�

Warning 5.12.6. A k-variety X equipped with a right G-action making
X(ks) a G(ks)-torsor is not necessarily a G-torsor. For example, if G is a
smooth algebraic group over Fp, then X could be G with the action

X ×G −→ X

(x, g) 7−→ x · F (g),

where F : G → G is the Frobenius endomorphism; this X is not a G-torsor
if dimG > 0.

Remark 5.12.7. The notion of torsor can be generalized to the notion of
homogeneous space. First suppose that G is a group. A right G-set X
decomposes as a disjoint union of G-orbits. If X consists of exactly one
G-orbit, then X is called a homogeneous space of G. If H is a subgroup
of G, then H\G is a homogeneous space; conversely, if X is a homogeneous
space, andH is the stabilizer of some x ∈ X, thenX ' H\G as homogeneous
spaces.

Now suppose thatG is a smooth algebraic group. A k-varietyX equipped
with a rightG-action is called a homogeneous space if there exists x ∈ X(ks)
such that

Gks −→ Xks

g 7−→ xg

is surjective, or equivalently if there exists a closed subgroup H ≤ Gks such
that Xks ' H\Gks as ks-varieties equipped with right Gks-action.
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5.12.3. Examples.

Example 5.12.8. Let T be the torus x2 + 2y2 = 1 of Example 5.5.3. Then
the affine variety X defined by x2 + 2y2 = −3 in A2

Q can be viewed as a
T -torsor over Q. It is a nontrivial torsor, since X(Q) = ∅.

Example 5.12.9. Let L ⊇ k be a finite Galois extension of fields. Let G be
the constant group scheme over k associated to Gal(L/k); see Section 5.1.5.
Then the left action of Gal(L/k) on L induces a right action of G on SpecL
that makes SpecL a G-torsor over k.

Example 5.12.10. Let A be a smooth closed subgroup of a smooth algebraic
group B. Let φ : B → C := B/A be the natural surjective morphism to the
quotient (which in general is only a k-variety, since we did not assume that
A was normal). Let c ∈ C(k). Then the closed subscheme φ−1(c) ⊆ B is an
A-torsor over k.

Example 5.12.11 (Albanese torsor). Let X be a geometrically integral va-
riety over a field k. Let CX be the category of triples (A, T, f), where A is
an abelian variety over k, and T is an A-torsor, and f : X → T is a mor-
phism; a morphism from (A, T, f) to (A′, T ′, f ′) consists of a homomorphism
α : A→ A′ and a morphism of varieties τ : T → T ′ such that the diagrams

T ×A //

(α,τ)
��

T

τ
��

T ′ ×A′ // T ′

and
X

f //

f ′   

T

τ
��
T ′

commute. Then CX has an initial object (AlbX/k,Alb1
X/k, ι); see [Wit08,

Appendix A].
The abelian variety AlbX/k is called the Albanese variety of X, and its

torsor Alb1
X/k is called the Albanese torsor of X. In the case that X has a

k-point x, the abelian variety AlbX/k defined using CX,x in Theorem 5.7.13
coincides with the abelian variety AlbX/k defined using CX ; see Exercise 5.16.

As in Remark 5.7.16, there is a semiabelian variant: see [Wit08, Ap-
pendix A].

Example 5.12.12. Let X be a nice genus 1 curve, so AlbX/k, the Jacobian
of X, is a 1-dimensional abelian variety, an elliptic curve. One can show that
the morphism X → Alb1

X/k is an isomorphism, so X is a torsor under the
elliptic curve AlbX/k.
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5.12.4. Classification of torsors. For any fixed smooth algebraic group
G over k, we have bijections

{G-torsors over k } = { twists of G }
↔ H1(k,AutGks) (by Theorems 4.5.2 and 5.2.20)

= H1(k,G(ks)) (see Exercise 5.15)

=: H1(k,G).

(the first two sets should really be sets of k-isomorphism classes). Given a
G-torsor X, let [X] denote its class in H1(k,G).

Remark 5.12.13. The cohomology class of a torsor can also be constructed
explicitly. Given a G-torsor X, choose x ∈ X(ks), and define gσ ∈ G(ks)
by σx = x · gσ; then σ 7→ gσ is a 1-cocycle representing the class of X in
H1(k,G).

A G-torsor is analogous to a coset of a group G in some larger group, or
to a translate of a subspace G in some larger vector space. To trivialize a
torsor T , one must choose a point in T to be translated back to the identity
of G, but such a point might not exist over the ground field. With this
intuition, the following should not be a surprise:

Proposition 5.12.14 (Trivial torsors). Let G be a smooth algebraic group
over a field k. Let X be a G-torsor over k. The following are equivalent:

(i) X is isomorphic to the trivial torsor G.
(ii) X(k) 6= ∅.
(iii) [X] ∈ H1(k,G) is the neutral element.

Proof.
(i)⇔(iii): This is a general fact about twists.
(i)⇒(ii): The set G(k) contains the identity.
(ii)⇒(iii): This follows from the explicit construction of a cocycle above.

�

Exercise 5.22 gives another way of thinking about torsors when G is
commutative.

5.12.5. Geometric operations on torsors. Throughout this section, G
is a smooth algebraic group over k. When G is commutative, H1(k,G) is an
abelian group. The group operations can be expressed in purely geometric
terms, as we now explain. In fact, some versions of the operations make
sense even when G is not commutative.
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5.12.5.1. Inverse torsors. Let G be the trivial right G-torsor. It also has a
left action of G := G, so one says that G is a G-G-bitorsor:

G � G 	 G.

The automorphism group scheme of the right G-torsor G is G acting on the
left.

Now let τ ∈ H1(k,G). The left action of G on G does not commute
with the left action of other elements of G, so if we twist G by (a cocycle
representing) τ to get the corresponding right G-torsor T , then the left action
of G must be twisted too. The result is that T is a Gτ -G-bitorsor, where Gτ
is the inner twist (see Section 5.11):

Gτ � T 	 G.

The same k-scheme T has a left action of G defined by g · t := tg−1 and
a right action of Gτ defined by t · g := g−1t. The resulting G-Gτ -bitorsor is
denoted T−1, and is called the inverse torsor:

G � T−1 	 G
τ
.

Example 5.12.15. If G is commutative, then Gτ = G and [T−1] = −[T ] in
the abelian group H1(k,G).

5.12.5.2. Contracted products. Let T be a right G-torsor; let τ ∈ H1(k,G)
be its class. Let X be a quasi-projective k-variety equipped with a left
G-action. This action defines a homomorphism G(ks)→ AutXks and hence
a map H1(k,G)→ H1(k,AutXks). The image of (a cocycle representing) τ
under this map corresponds to a twist of X, called the contracted product

T
G
×X. Geometrically, it is the quotient of T ×kX by the G-action in which

g ∈ G acts by (t, x) 7→ (tg−1, gx).
In a similar way, if T is a left G-torsor and Z is a quasi-projective variety

with a right G-action, then we can construct the contracted product Z
G
× T .

Example 5.12.16. If G is commutative and Z also is a G-torsor, then Z
G
×T

is another G-torsor, and [Z
G
× T ] = [Z] + [T ] in the abelian group H1(k,G).

Example 5.12.17. If Z is a right G-torsor, and T is a G-H-bitorsor, then

Z
G
× T is a right H-torsor.

5.12.5.3. Subtraction of torsors. Let Z and T be two right G-torsors; let
ζ, τ ∈ H1(k,G) be their classes. As in Section 5.12.5.1, T−1 is a G-Gτ -

bitorsor. By Example 5.12.17, Z
G
× T−1 is then a right Gτ -torsor. If we fix
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T , then the “subtraction-of-τ ” map

H1(k,G)
−τ−→ H1(k,Gτ )

[Z] 7−→ [Z
G
× T−1]

is a bijection, the inverse bijection being subtraction-of-[T−1].

Example 5.12.18. If G is commutative, then Gτ = G and the class of the

right G-torsor Z
G
× T−1 is ζ − τ by Examples 5.12.15 and 5.12.16.

5.12.6. Torsors over fields of dimension ≤ 1. The following theorem
shows that certain algebraic groups over certain fields have no nontrivial
torsors:

Theorem 5.12.19.

(a) (Lang) Let k be a finite field, and let G be a smooth connected algebraic
group over k. Then H1(k,G) = 0.

(b) (Steinberg) Let k be a perfect field. Then dim k ≤ 1 if and only if
H1(k,G) = 0 for all smooth connected affine algebraic groups G over
k.

Proof.

(a) We follow the original proof of [Lan56]. An element of H1(k,G) corre-
sponds to a G-torsor X. By Proposition 5.12.14, it suffices to show that
X has a k-point.

Fix x ∈ X(k). Then every other point of X(k) is of the form xg
for some g ∈ G(k), and to say that xg is a k-point is to say that it is
fixed by the Frobenius automorphism σ ∈ Gal(k/k). Thus we must find
g ∈ G(k) such that σ(xg) = xg, or equivalently σx σg g−1 = x. Since X is
a torsor, there exists b ∈ G(k) such that σx b = x, so it suffices to show
the following:

(5.12.20) Every b ∈ G(k) is of the form σg g−1.

(Alternatively, we could have reduced to proving (5.12.20) by using the
definition of nonabelian H1.)

Let q = #k. Let F : G → G be the q-power Frobenius endomor-
phism; it acts on k-points in the same way as σ. There is a left action
of G on T := G in which g acts as t 7→ F (g) t g−1. Then (5.12.20) is
equivalent to b being in the G(k)-orbit of 1.

Fix t ∈ T (k) and define a morphism

φ : Gk −→ Tk

g 7−→ F (g) t g−1.
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The derivative of F is everywhere 0, so the derivative of φ at g = 1
equals the derivative of the invertible morphism g 7→ tg−1 at g = 1;
thus the derivative of φ at g = 1 is invertible. If a morphism between
smooth varieties V →W of the same dimension has invertible derivative
somewhere, its image contains a nonempty Zariski open subset of W .
Applying this to φ : Gk → Tk shows that an arbitrary G(k)-orbit in
T (k) contains a nonempty Zariski open subset of G(k). Since also G
is connected, and hence geometrically connected, any two orbits will
intersect. But orbits are disjoint, so there can be only one. In particular,
b is in the G(k)-orbit of 1, as required.

(b) See [Ste65, Theorem 1.9], or the reproduction in Theorem 1′ of III.§2
and III.Appendix 1 of [Ser02]. �

Remark 5.12.21. The same proof shows that Theorem 5.12.19(a) remains
true if the smoothness hypothesis is dropped and one interprets H1(k,G) as
the Čech fppf cohomology set defined in Section 6.4.4.

Corollary 5.12.22. A nice genus 1 curve X over a finite field k has a
k-point.

Proof. Let E be the Jacobian of X. As discussed in Example 5.12.12, X is
an E-torsor. By Theorem 5.12.19(a), H1(k,E) = 0, so X is a trivial torsor.
By Proposition 5.12.14(i)⇒(ii), X has a k-point. �

Remark 5.12.23. The first proof of Corollary 5.12.22 used the Riemann–
Roch theorem; see [Sch31, Satz 20]. Corollary 5.12.22 can also be viewed
as a consequence of the Hasse–Weil bound; see Corollary 7.2.1.

5.12.7. Torsors over local fields.

Theorem 5.12.24. Let k be a local field.

(a) (Borel–Serre) Let G be an affine algebraic group over k. If char k = 0 or
G is connected and reductive, then H1(k,G) is finite.

(b) (Kneser, Bruhat–Tits) If k 6' R, and G is a simply connected semisimple
algebraic group over k, then H1(k,G) = 0.

(c) (Tate) If A is an abelian variety over k, then

H1(k,A) ' Homconts(A(k),Q/Z).

Proof.

(a) See [BS64, Théorème 6.1] and [Ser02, III.§4.3, Remark 2].
(b) This was proved in [Kne65a,Kne65b] using the classification of such

groups when k is a finite extension of Qp. It was extended to local fields
of characteristic p in [BT87], which gave a classification-free proof.
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(c) See [Tat95b]. �

�

Warning 5.12.25. With regard to Theorem 5.12.24(a), it is not true that
H1(k,G) is finite for every affine algebraic group G over a local field k of char-
acteristic p, even if k is commutative and smooth. For example, H1(k,Z/pZ)
is infinite in this case, since if t ∈ k is a uniformizer, then each positive in-
teger n not divisible by p gives rise to a Z/pZ-extension k[y]/(yp − y − t−n)
of k, and these are distinct because their discriminants are distinct. For a
connected pseudo-reductive example, see [CGP10, Example 11.3.3].

�

Warning 5.12.26. Theorem 5.12.24(a) can fail if the affineness assumption
is dropped. For example, if A is a nonzero abelian variety, then Theo-
rem 5.12.24(c) implies that H1(k,A) is infinite.

�

Warning 5.12.27. Theorem 5.12.24(b) is false for k = R. For example,
#H1(R,Spinn) → ∞ as n → ∞, as can be deduced from the fact that the
number of isomorphism types of rank n quadratic forms over R grows with
n. Nevertheless, the group H1(R, G) can be described explicitly for every
simply connected group over R [Bor88].

For more results along the lines of Theorems 5.12.19 and 5.12.24, see
[Ser02, Chapter III].

5.12.8. Local-global principle for torsors. Let G be an algebraic group
over a global field k. Let X be a right G-torsor, and let [X] denote its class
in H1(k,G) (throughout this section, if char k = p and G is not smooth, then
interpret H1(k,G) as the Čech fppf cohomology set defined in Section 6.4.4).
By Proposition 5.12.14, X has a k-point if and only if [X] is the neutral
element 0. Similarly, X has a kv-point if and only if the image [Xkv ] of [X]
under H1(k,G) → H1(kv, G) is 0. Thus the statement that X satisfies the
local-global principle is the statement

If [X] maps to 0 in H1(kv, G) for every v, then [X] = 0 in H1(k,G).

Hence the statement that all right G-torsors satisfy the local-global principle
is the statement that the kernel

X1(k,G) := ker
(
H1(k,G)→

∏
v

H1(kv, G)
)

is trivial.
If G is noncommutative, then a stronger statement is that the map

(5.12.28) H1(k,G) −→
∏
v

H1(kv, G)
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is injective. For each τ ∈ H1(k,G), we have an inner twist Gτ of G, and
the subtraction-of-τ bijection H1(k,G)→ H1(k,Gτ ) of Section 5.12.5.3 iden-
tifies the fiber of (5.12.28) containing τ with X1(k,Gτ ). Thus injectivity
of (5.12.28) is equivalent to the statement that X1(k,Gτ ) = 0 for every
inner twist Gτ of G. There are also variants in which v ranges not over all
places of k, but only over places outside a fixed finite subset S; one defines

X1
S(k,G) := ker

(
H1(k,G)→

∏
v/∈S

H1(kv, G)
)
.

None of the injectivity statements are true in general, but the following
weaker result holds:

Theorem 5.12.29. Let k be a global field. Let S be a finite set of places of k.
Let G be an affine algebraic group over k. Then H1(k,G)→∏

v/∈S H1(kv, G)
has finite fibers.

Proof. The number field case was proved by Borel and Serre [BS64, The-
orem 7.1]. For the global function field case, see [Nis79], [BP90, §4],
[Oes84, IV, 2.6, Proposition(a)], and [Con12b, Theorem 1.3.3(i)]. �

Remark 5.12.30. The analogue of Theorem 5.12.29 for abelian varieties is
a conjecture; see Conjecture 5.7.32.

Theorem 5.12.31 (Kneser, Harder, Chernousov). Let G be a simply con-
nected semisimple group over a global field k. Then the map

H1(k,G) −→
∏
v

H1(kv, G) '
∏
real v

H1(kv, G)

is a bijection. In particular, if k is a totally imaginary number field or a
global function field, then H1(k,G) = 0.

Proof. By Theorem 5.12.24(b), H1(kv, G) is trivial for each nonreal place
v. For the number field case, see [PR94, Theorem 6.6]. The statement
H1(k,G) = 0 for a global function field is proved in [Har75]. �

Theorem 5.12.32 (Voskresenskii). Let T be a torus of dimension at most
2 over a global field k. Then X1(k, T ) = 0.

Sketch of proof. One classifies all finite subgroups of GLd(Z) for d ≤ 2
to classify all possibilities for T , and one checks the result in each case; see
[Vos65] for the details. �
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Exercises

5.1. (Center of a group scheme vs. center of its group of points) Over a
field k, let {±1} denote the constant group scheme associated to a
two-element group (view 1 and −1 as symbols that are distinct even
if char k = 2). Let {±1} act on Gm so that −1 acts as x 7→ x−1. Let
G be the semidirect product Gm o {±1} over k. Let Z be the center
of G.
(a) Prove that Z ' µ2.
(b) Show that if k = F2, then Z(k) is strictly smaller than the center

of G(k).

5.2. Let S be a scheme.
(a) Prove that the group schemes Un,S and Gn(n−1)/2

a,S over S have the
same underlying S-scheme.

(b) Prove that if S is nonempty and n ≥ 3, they are not isomorphic
as group schemes.

5.3. (Group schemes of order p) Let k be a field of characteristic p. Show
that µp, αp, and the constant group scheme Z/pZ over k are pairwise
nonisomorphic as group schemes over k.

5.4. (“Inseparable twist” of Ga) Let k be a field of characteristic p, and
suppose that t ∈ k− kp. (So in particular, k is not perfect.) Let G be
the k-subvariety of G2

a defined by the equation yp = txp + x. Prove
that
(a) G is a subgroup scheme of G2

a.
(b) Gk ' Ga,k as k-group schemes.
(c) G is not isomorphic to the k-group scheme Ga.
(d) G as a k-variety (without group structure) is not isomorphic to

A1.
(e) G is birational to A1 over k if and only if p = 2.

5.5. (Coordinate-free variant of GLn) Let k be a field, and let V be a finite-
dimensional k-vector space. For each k-algebra A, define GLV (A) to
be the group of A-module automorphisms of V ⊗k A. Prove that the
functor GLV is represented by an algebraic group.

5.6. (Representations of Gm) Let G be an algebraic group over a field k.
A (finite-dimensional) representation of G is a finite-dimensional k-
vector space V equipped with a homomorphism G→ GLV of algebraic
groups. Prove that giving a representation of Gm on a vector space
V is equivalent to giving a direct sum decomposition V =

⊕
n∈Z Vn

into subspaces indexed by Z. (Hint : Given a decomposition, define an
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action of Gm on V such that each a ∈ k act as multiplication-by-an

on Vn and likewise for elements of k-algebras.)

5.7. (Hodge structures [Del71, 2.1])
(a) Define the Deligne torus S := ResC/RGm. Prove that there is a

unique isomorphism SC
∼→ Gm × Gm of algebraic groups over C

such that the induced homomorphism

C× = S(R) ↪→ S(C) −→ (Gm ×Gm)(C) = C× × C×

is z 7→ (z, z̄).
(b) Let V be an R-vector space. Complex conjugation acts on the

space VC := V ⊗R C through the second factor. Let W be a
C-subspace of VC. Let W be the image of W under complex
conjugation. Prove that W is another C-subspace of VC.

(c) A Hodge structure over R is a finite-dimensional representation
of S. Prove that giving a Hodge structure is the same as giving
a finite-dimensional R-vector space V equipped with a direct sum
decomposition VC =

⊕
(p,q)∈Z2 V pq into C-subspaces V pq such that

V qp = V pq for all (p, q) ∈ Z2.

5.8. The cocharacter group of a k-torus T is the Gk-module

Y(T ) := Homks-group schemes (Gm,ks , Tks) .

(a) Describe the abelian group Y(T ) stripped of its Gk-action.
(b) Define a bilinear Gk-equivariant pairing

X(T )×Y(T )→ Z,
and show that it identifies each of X(T ) and Y(T ) with the Z-dual
of the other.

(c) Restate Theorem 5.5.7 using Y(T ) instead of X(T ).
(Remark : One advantage of X(T ) over Y(T ) is that it can be used
also in the generalization given in Theorem 5.5.10.)

5.9. Compute Hom(µn,Gm) in the category of algebraic groups over a
field k.

5.10. Let T be a group of multiplicative type over a field k. Prove that T
is smooth if and only if either char k = 0, or char k = p and X(T ) has
no nontrivial elements of order p.

5.11. Let k = F2(t). Let f : Ga → Ga be the homomorphism x 7→ x4 − tx2.
Let G = ker f .
(a) Prove that G0 ' α2.
(b) Prove that Gred is not a subgroup scheme of G.

5.12. Let k be a field. Let n ≥ 1. Let A = k[ε]/(εn). Let G = ResA/kGm.
Prove that there exists a unipotent group U of dimension n − 1 and
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162 5. Algebraic groups

an exact sequence

1→ U → G→ Gm → 1

of smooth algebraic groups.
5.13. (Example of a pseudo-reductive group) Let k be a separably closed

field of characteristic p having a field extension L of degree p. Let
G = ResL/kGm.
(a) Prove that dim Ru(Gk) = p− 1.
(b) Prove that G(k) has no nontrivial elements of order p.
(c) Prove that Ru(G) = {1}.
(d) Deduce that G is pseudo-reductive but not reductive.
For a generalization, see [CGP10, Example 1.1.3].

5.14. (Failure of real approximation) Let T be the torus x2 + 2y2 = 1 of
Example 5.5.3. Let G be the kernel of the cubing map T 3→ T . Prove
that G(Q) is not dense in G(R).

5.15. Let G be a smooth algebraic group over a field k. Let G be the trivial
right G-torsor. Prove that there is an isomorphism G(k) ' AutG.

5.16. Let X be a geometrically integral k-variety with a k-point x. Prove
that the category CX,x of Section 5.7.2 is equivalent to the category
CX of Example 5.12.11, and that the two definitions of AlbX/k are
compatible.

5.17. Let k be a field. (Assume char k 6= 2 if you want to make the problem
easier.)
(a) Find explicit equations for all 1-dimensional tori T over k.
(b) For each T , find explicit equations for all T -torsors over k.

5.18. Prove that any smooth connected algebraic group G over a field k is
geometrically integral.

5.19. Use Theorem 5.12.19(a) to give another proof of Wedderburn’s the-
orem that every finite division ring is commutative, or equivalently,
that the Brauer group of a finite field is trivial.

5.20. In [Lan56], Lang proved a stronger version of Theorem 5.12.19(a).
Specifically, he proved that any homogeneous space X of a smooth
connected algebraic group G over a finite field k has a k-point. Prove
this.

5.21. Let k be a finite field. Let G be an algebraic group over k.
(a) Prove that H1(k,G) is finite.

(Hint : To handle the noncommutative case, use [Ser02, I.§5.5,
Corollary 2].)

(b) Give an example to show that H1(k,G) can have more than one
element.
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5.22. (Extensions and torsors) Let G be a smooth commutative algebraic
group over a field k, with group law written additively. An extension
of the constant group scheme Z by G (in the category of commutative
k-group schemes) is a commutative k-group scheme E fitting in an
exact sequence

0→ G→ E → Z→ 0.

A morphism of extensions is a commutative diagram

0 // G // E //

��

Z // 0

0 // G // E′ // Z // 0.

Given an extension, write E =
∐
n∈ZEn, where En is the inverse

image under E → Z of the point corresponding to the integer n.
(a) Prove that each En is a G-torsor.
(b) Prove that

{ extensions of Z by G } −→ {G-torsors over k }
(0→ G→ E → Z→ 0) 7−→ E1

defines an equivalence of categories. Deduce that the set of iso-
morphism classes of extensions is in bijection with H1(k,G).

(c) Prove that any extension induces an exact sequence of Gk-modules

0→ G(ks)→ E(ks)→ Z→ 0

and that the image of n under the coboundary homomorphism
Z = H0(Gk,Z)→ H1(k,G) is [En].

(Remark : Similarly, a 2-extension

0→ G→ E1 → E0 → Z→ 0

gives rise to a class in H2(k,G), and so on; this is related to the notion
of gerbe.)
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Chapter 6

Étale and fppf
cohomology

(References: [SGA 41
2 ], [Mil80], [FK88], [Tam94])

Étale cohomology was developed by M. Artin and Grothendieck for rea-
sons to be discussed in Section 6.1. To set up the foundations of étale coho-
mology properly would require a whole book. In fact, there are several books
about this, cited above. We will only introduce some of the key concepts
and definitions. Many results will be cited without proof.

In this chapter, schemes are assumed to be separated and locally noe-
therian.

6.1. The reasons for étale cohomology

6.1.1. Generalization of Galois cohomology. Étale cohomology over
Spec k is the same as Galois cohomology, so étale cohomology over more
general schemes can be thought of as a generalization of Galois cohomology.
More precisely, it will turn out that any abelian sheaf F for the étale topol-
ogy on Spec k gives rise to a continuous Gk-module called F (ks) (and vice
versa), and the étale cohomology group Hi

et(Spec k,F ) equals the Galois
cohomology group Hi(Gk,F (ks)). See Theorem 6.4.6.

For instance, in Section 5.12 we saw that torsors under a smooth al-
gebraic group A over k could be classified by the Galois cohomology set
H1(Gk, A(ks)). To classify torsors under group schemes over a more general
scheme S we need étale cohomology.

165
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166 6. Étale and fppf cohomology

One can also generalize the cohomological description of the Brauer
group of a field, to define the Brauer group of an arbitrary scheme.

6.1.2. Comparison with classical cohomology theories. Given a com-
pact complex manifold X, one can define singular cohomology groups
Hi(X,Z), Hi(X,Z/nZ), and so on. One can also define cohomology of co-
herent analytic sheaves; this can be useful in proving the existence of global
meromorphic functions on compact complex manifolds, for instance. These
cohomology theories use the analytic topology on X.

It would be nice if these cohomology theories worked for varieties over
other fields. But one does not usually have an analytic topology on such
a variety, so one needs to find substitutes. To measure the success of a
cohomology theory, we check whether for proper C-varieties it gives the same
answers as the classical topological cohomology theories such as singular
cohomology.

It turns out that the Zariski topology on a proper variety gives the right
answers for cohomology of coherent sheaves; see [Ser55] or [Har77, The-
orem B.2.1]. But the Zariski topology is not fine enough to give the right
answers for constant coefficients. For instance, if X is a nice C-curve of
genus g, then the singular cohomology group H1(X(C),Z) and the sheaf co-
homology group H1(Xan,Z) for the analytic topology both give Z2g, which
should be considered the right answer; but if we use the Zariski topology on
X, and let Z be the constant sheaf Z on X, then H1(X,Z) = 0 since Z is
flasque [Har77, Proposition III.2.5]. Again, the problem is that the Zariski
topology has too few open subsets in comparison with the analytic topology.

To obtain a sufficiently fine topology on a scheme, one must be open-
minded about what a topology is, and in particular about what open subsets
and open coverings are; see Section 6.2. The “topologies” that follow are not
topologies in the usual sense.

The étale topology on X, which is finer than the Zariski topology, is
a substitute for the analytic topology, and has an associated cohomology
theory. Étale cohomology does not give the right answer for H1(X,Z), but
it does give the right answers for cohomology with a finite abelian group
as coefficients, at least when the order of the group is not divisible by the
characteristic. For instance, if X is a nice curve of genus g over an alge-
braically closed field k, and n is an integer not divisible by char k, then we
get the right answer H1

et(X,Z/nZ) ' (Z/nZ)2g. One can also define an even
finer topology, the fppf topology, which lets one remove the restriction on
the characteristic.
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6.2. Grothendieck topologies 167

Étale cohomology with coefficients in some rings of characteristic 0 can
be defined by taking an inverse limit; for instance,

Hi
et(X,Z`) := lim←−

n

Hi
et(X,Z/`nZ).

This is important for an application to the Weil conjectures; see Chapter 7.
Other applications of étale and fppf cohomology, to torsors and to Brauer
groups of schemes, are given toward the end of Chapter 6.

6.2. Grothendieck topologies

(Reference: [Vis05, §2.3])

Before the notion of a topology on a set was invented, people studied
metric spaces. Then people noticed that many properties of metric spaces
could be defined without reference to the metric; for many purposes, just
knowing which subsets were open was enough. This led to the definition
of a topology on a set, in which an arbitrary collection of subsets could
be decreed to be the open sets, provided that the collection satisfied some
axioms modeled after the theorems about open sets in metric spaces. (See
[Moo08] for the history.)

Grothendieck took this one step further by observing that sometimes
one does not even need to know the open subsets: for many purposes (for
instance, the concept of a sheaf), it suffices to have a notion of open covering.
This led to the notion of a Grothendieck topology, which is usually not a
topology in the standard sense. Just as an open set in a topological space
need not be open relative to any metric, an open covering in a Grothendieck
topology need not consist of actual open subsets!

This relaxation of the notion of open covering is necessary to obtain a
sufficiently fine topology on a scheme.

Remark 6.2.1. This point of view was used already in Chapter 4.

Definition 6.2.2. Let C be a category. (Our set-theoretic conventions are
such that the collection of objects in each category is a set; see Section A.4.)
We consider all families of morphisms {Ui → U}i∈I in C having a common
target. A Grothendieck (pre)topology on C is a set T whose elements are
some of these families (the families that do belong to T are called the open
coverings), satisfying the following axioms:

(i) Isomorphisms are open coverings: If U ′ → U is an isomorphism, then
the one-element family {U ′ → U} belongs to T .

(ii) An open covering of an open covering is an open covering: If {Ui → U}
belongs to T and {Vij → Ui} belongs to T for each i, then {Vij → U}
belongs to T .
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168 6. Étale and fppf cohomology

(iii) A base extension of an open covering is an open covering: If {Ui → U}
belongs to T and V → U is a morphism, then the fiber products
V ×U Ui exist and {V ×U Ui → V } belongs to T .

Remark 6.2.3. There is another approach, using sieves, which has advan-
tages and disadvantages, one disadvantage being that it is farther from geo-
metric intuition. The definition of Grothendieck topology in [SGA 4I, II.1.1]
is in terms of sieves. A Grothendieck pretopology gives rise to a Grothen-
dieck topology, and all the Grothendieck topologies we will use arise this way.
From now on, we will abuse terminology and call a pretopology a topology,
as is commonly done.

Definition 6.2.4. A pair (C, T ) consisting of a category C and a Grothen-
dieck topology T on C is called a site.

6.2.1. The Zariski site. Let X be a topological space. Let C be the cate-
gory whose objects are the open sets in X, and such that for any U, V ∈ C,

Hom(U, V ) =

{
{i}, if U ⊆ V , and i : U → V is the inclusion,
∅, otherwise.

Let T be the collection of families {Ui → U} such that
⋃
i Ui = U . Then T is

a Grothendieck topology on C, called the classical Grothendieck topology.
Let X be a scheme. The (small) Zariski site XZar is the site associated

to the underlying topological space sp(X).

6.2.2. The (small) étale site. Fix a scheme X. Take C to be the category
EtX whose objects are schemes U equipped with an étale morphism U → X
and whose morphisms are X-morphisms. (These morphisms will automati-
cally be étale [SP, Tag 02GW].) Call a family {φi : Ui → U} of morphisms
in C an open covering if

⋃
i φi(Ui) = U as topological spaces. This defines

the (small) étale site Xet.

Remark 6.2.5. For the big étale site, one would take C = SchemesX .
Open coverings are defined as families of étale morphisms {φi : Ui → U}
such that

⋃
i φi(Ui) = U . The definitions of sheaves and cohomology (see

Sections 6.3.2 and 6.4.1) make sense for both the small and the big étale
sites. But the cohomology of a big étale sheaf equals the cohomology of its
restriction to the small étale site [SP, Tag 03YX], and the small étale site is
easier to work with, so the small étale site is generally preferred.

6.2.3. The (big) fppf and fpqc sites. Fix a scheme X. Take C =
SchemesX . An open covering is a family {φi : Ui → U} of X-morphisms
such that

∐
Ui → U is fppf (respectively, fpqc). This defines the (big) fppf

site Xfppf (respectively, the (big) fpqc site Xfpqc).

http://stacks.math.columbia.edu/tag/02GW
http://stacks.math.columbia.edu/tag/03YX
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6.3. Presheaves and sheaves 169

Remark 6.2.6. By the étale site, we will always mean the small étale site.
By the fppf or fpqc site, we will always mean the big site. (Here is one
reason for this. For the small étale site, morphisms between objects are
automatically étale [SP, Tag 02GW], as mentioned already in Section 6.2.2.
But if one considered the small fppf site, by taking C to be the category
of fppf X-schemes with X-morphisms, it would not be automatic that X-
morphisms between objects were fppf—for example, all k-varieties are fppf
over Spec k, but a k-morphism between two k-varieties need not be flat. The
same problem arises with fpqc.)

6.2.4. Continuous maps of sites.

Definition 6.2.7. A continuous map of sites (C′, T ′) → (C, T ) is a func-
tor in the opposite direction F : C → C′ respecting open coverings, in the
following sense:

(1) for every open covering {Ui → U} in T , collection {FUi → FU} is an
open covering in T ′, and

(2) for every open covering {Ui → U} in T and C-morphism V → U , the
C′-morphism F (V ×U Ui)→ FV ×FU FUi is an isomorphism.

The reversal of direction makes the definition compatible with maps of
topological spaces:

Example 6.2.8. Let f : X ′ → X be a continuous map of topological spaces.
Equip the categories of open subsets of X and X ′ with the classical Grothen-
dieck topologies to obtain sites (C, T ) and (C′, T ′). Then f induces a con-
tinuous map of sites (C′, T ′) → (C, T ): the functor C → C′ takes an open
subset U of X to the open subset f−1U of X ′.

If a set X is equipped with topologies T ′ and T (in the usual sense) and
T ′ is finer (more open sets) than T , then the identity map (X, T ′)→ (X, T )
is a continuous map of topological spaces. Similarly:

Example 6.2.9. For any scheme X, Proposition 3.8.2 yields continuous
maps

Xfpqc → Xfppf → Xet → XZar.

Remark 6.2.10. There is a more restrictive notion, called a morphism of
sites. This is a continuous map of sites for which the inverse image functor
on the categories of sheaves is exact; see [SP, Tag OOX1]. The maps in
Example 6.2.9 are morphisms of sites.

6.3. Presheaves and sheaves

6.3.1. Presheaves.

http://stacks.math.columbia.edu/tag/02GW
http://stacks.math.columbia.edu/tag/OOX1
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170 6. Étale and fppf cohomology

Definition 6.3.1. A presheaf of abelian groups (or abelian presheaf) F
on a category C is a functor

Copp −→ Ab

U 7−→ F (U).

An element of F (U) is called a section of F over U . A morphism of
presheaves is a morphism of functors.

Remark 6.3.2. Similarly, one may define a presheaf of sets, a presheaf of
groups, and so on.

Example 6.3.3. If C is the category of open subsets of a topological space
(Section 6.2.1), then we get the same notion of presheaf as in [Har77, II.§1].
(The condition F (∅) = 0 there is unnatural and should be deleted.) For this
reason, for arbitrary C, the homomorphism F (U) → F (V ) induced by a
morphism V → U of C is called the restriction from U to V and is denoted
s 7→ s|V , even though V might not be an actual subset of U .

Example 6.3.4. Let A be an abelian group. The constant presheaf A on
a category C is the functor F such that F (U) = A for all U ∈ C, and such
that F takes each morphism in C to the identity A→ A.

6.3.2. Sheaves.

Definition 6.3.5. Let A,B,C be sets, and let f : A → B, g : B → C, and
h : B → C be functions. Then

A
f→ B

g

⇒
h
C

is called exact if

(i) f is injective, and
(ii) f(A) equals the equalizer {b ∈ B : g(b) = h(b)} of g and h.

Example 6.3.6. If A,B,C are abelian groups and f, g, h are homomor-
phisms, then

A
f→ B

g

⇒
h
C

is exact if and only if the sequence of abelian groups

0 −→ A
f−→ B

g−h−→ C

is exact.

Definition 6.3.7. Let F be a presheaf on a site (C, T ). Then F is a sheaf
if and only if

(6.3.8) F (U)→
∏
i

F (Ui)⇒
∏
i,j

F (Ui ×U Uj)
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6.3. Presheaves and sheaves 171

is exact for all open coverings {Ui → U} in T . (Here the two arrows on the
right correspond to the two projections, from Ui ×U Uj to Ui and to Uj .) A
morphism of sheaves F → G is simply a morphism of presheaves.

Example 6.3.9. If T is the classical Grothendieck topology on a topological
space, then the sheaf condition says

(i) an element s ∈ F (U) is determined by its restriction to an open cov-
ering, and

(ii) given elements si ∈ F (Ui) for an open covering {Ui → U} that are
compatible (they agree on pairwise intersections), one can glue to ob-
tain an element s ∈ F (U) whose restriction to Ui is si for each i.

Remark 6.3.10. Suppose that {Ui → U} is an open covering in one of the
sites Xet, Xfppf , or Xfpqc. Let U ′ =

∐
Ui and U ′′ = U ′×UU ′. If a presheaf F

already satisfies F (U ′) =
∏

F (Ui), then exactness of (6.3.8) is equivalent to
exactness for the open covering consisting of the single morphism U ′ → U ,
the exactness of

(6.3.11) F (U)→ F (U ′)⇒ F (U ′′).

Definition 6.3.12. An abelian sheaf is a sheaf of abelian groups. A group
sheaf is a sheaf of groups.

6.3.3. Examples of sheaves. Here we show that some presheaves arising
commonly in algebraic geometry are fpqc sheaves. The sheaf property in
each case turns out to be a consequence of fpqc descent.

Definition 6.3.13. Let X be a scheme, and let C be a subcategory of
SchemesX . Let F be a quasi-coherent OX -module; in particular, F is
a sheaf on XZar. Define a presheaf FC on C by

FC(U) := (p∗F )(U) = Hom(p∗OX , p
∗F )

for each object U p→ X of C.

Example 6.3.14. Take C to be the underlying category of Xfpqc; then Defi-
nition 6.3.13 extends a quasi-coherent OX -module F to a presheaf Ffpqc on
Xfpqc.

Proposition 6.3.15. Let F be a quasi-coherent OX-module on a scheme
X. Then the presheaf Ffpqc on Xfpqc in Example 6.3.14 is an abelian sheaf.
(And hence the same is true on XZar, Xet, and Xfppf . Of course, this is
trivial for XZar, on which FZar = F .)

Proof. By Remark 6.3.10, it suffices to check exactness of (6.3.11) for each
fpqc morphism p : S′ → S of X-schemes. For this, we may replace F by
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172 6. Étale and fppf cohomology

its restriction to S, which we now rename F . Let S′′ = S′ ×S S′, and let
q : S′′ → S be the projection. Then (6.3.11) for Ffpqc is

Hom(OS ,F )→ Hom(p∗OS , p
∗F )⇒ Hom(q∗OS , q

∗F ).

This is exact, because Theorem 4.2.3 implies that the functor from quasi-
coherent S-modules to quasi-coherent S′-modules with descent data is fully
faithful. �

Proposition 6.3.16. Let S be a scheme, and let X and Y be S-schemes.
Then the functor U 7→ HomU (XU , YU ) is a sheaf of sets on Sfpqc, denoted
Hom(X,Y ).

Proof. Remark 6.3.10 lets us reduce to showing that for each fpqc morphism
p : U ′ → U of S-schemes, if U ′′ := U ′ ×U U ′, then
(6.3.17) HomU (XU , YU )→ HomU ′(XU ′ , YU ′)⇒ HomU ′′(XU ′′ , YU ′′)

is exact. The map from HomU (XU , YU ) to the equalizer sends a U -morphism
XU → YU to the morphism between the associated U ′-schemes with descent
data; this map is a bijection by Theorem 4.3.5(i). Thus (6.3.17) is exact. �

Corollary 6.3.18. Let S be a scheme, and let X be an S-scheme. The
functor U 7→ AutU (XU ) is a group sheaf on Sfpqc.

Proof. By Proposition 6.3.16, the monoid presheaf Hom(X,X) is a sheaf.
Take the subgroup of invertible elements in each monoid. �

Recall from Definition 2.3.3 that if X is a scheme and Y is an X-scheme,
then the functor of points hY : Schemesopp

X → Sets is defined by hY (U) :=
HomX(U, Y ).

Proposition 6.3.19. Let S be a scheme, and let X be an S-scheme. Then
the functor of points hX , viewed as a presheaf on the fpqc site Sfpqc, is a
sheaf (and hence the same is true for the Zariski, étale, fppf sites).

Proof. Remark 6.3.10 lets us reduce to showing that for each fpqc morphism
p : U ′ → U of S-schemes, if U ′′ := U ′ ×U U ′, then

HomS(U,X)→ HomS(U ′, X)⇒ HomS(U ′′, X)

is exact. Applying Proposition 2.3.15 to each term rewrites this as

HomU (U,XU )→ HomU ′(U
′, XU ′)⇒ HomU ′′(U

′′, XU ′′),

which, as a special case of (6.3.17), is exact. �

Remark 6.3.20. If G is a group scheme over X, then hG is a group sheaf.
We sometimes write G when we mean the associated sheaf. For instance,
the abelian sheaf Ga on XZar is the same as OX , and the abelian sheaf Ga
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on Xfpqc is the same as (OX)fpqc. Another example is the abelian sheaf Gm

on Xfpqc sending each U to OU (U)×.

6.3.4. Sheafification.

Definition 6.3.21. A sheafification of a presheaf F is a sheaf F+ equipped
a morphism i : F → F+ such that every presheaf morphism from F to a
sheaf factors uniquely through i.

The definition implies that a sheafification is unique if it exists.

Proposition 6.3.22 (cf. [Har77, Proposition-Definition II.1.2]). Let F be
a presheaf on a site. Then the sheafification of F exists.

Sketch of proof. Let F be a presheaf. Call two sections s, t ∈ F (U)
equivalent if there exists an open covering {Ui → U} such s|Ui = t|Ui for all
i. This defines an equivalence relation. Let F1(U) be the set of equivalence
classes. Then F1 is another presheaf.

Loosely speaking, a section of F+ is something that is locally (for some
open covering in the Grothendieck topology) a section of F1. More precisely,
one should define F+(U) := Ȟ

0
(U,F1) (the notation Ȟ

0 is explained in
Section 6.4.4). �

Remark 6.3.23. The Zariski, étale, and fppf topologies are independent of
the choice of universe in the sense that

(1) any open covering can be refined to one in which all the morphisms
Ui → U are open immersions, étale morphisms of finite presentation, or
flat morphisms of finite presentation, respectively, and

(2) for any U , the isomorphism classes of such morphisms form a set that
does not grow as one enlarges the universe.

The same is not true for fpqc morphisms. For instance, over Spec k one has
the fpqc morphism SpecL → Spec k, where L is the purely transcendental
extension k({ti : i ∈ I}) for a set I of arbitrary cardinality, bounded only
by the size of the universe. In the fpqc topology, even the sheafification
of a presheaf can depend on the choice of universe [Wat75, Theorem 5.5,
Remark (c)]. Because of this, in situations requiring sheafification, the fppf
topology is preferred over the fpqc topology.

Definition 6.3.24. The constant presheaf A (on a Zariski, étale, fppf, or
fpqc site) is usually not a sheaf, so we define the constant sheaf to be the
sheafification of the constant presheaf.
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6.3.5. Exact sequences.

Definition 6.3.25. Let α : G →H be a morphism of abelian sheaves on a
site. Its kernel ker(α) is defined as the presheaf U 7−→ ker(G (U)→H (U)).
It turns out to be a sheaf.

�

Warning 6.3.26. In contrast, the presheaf image U 7−→ im(G (U)→H (U))
need not be a sheaf.

Definition 6.3.27. A sequence of abelian sheaves

F
α−→ G

β−→H

on a site (C, T ) with β◦α = 0 is called exact (at G ) if ker(β) is a sheafification
of the presheaf image of α (for the natural morphism from this presheaf image
to ker(β)). In other words, the sequence is exact if for each U ∈ C and for
each g ∈ G (U), we have β(g) = 0 if and only if there exist an open covering
{Ui → U} and fi ∈ F (Ui) with α(fi) = g|Ui for each i.
Remark 6.3.28. Let A, B, C be fppf group schemes over a scheme S. A
sequence

A→ B → C

of homomorphisms of group schemes over S is exact in the sense of Defini-
tion 5.1.18 if and only if the associated sequence of sheaves on Sfppf is exact.
(One can make sense of this even if A, B, and C are noncommutative.)

6.4. Cohomology

6.4.1. The derived functor definition. In this section we fix a scheme
X and an element • of {Zar, et, fppf}, so that X• is one of the sites we have
defined. It turns out that the category of abelian sheaves on X• has enough
injectives.

Definition 6.4.1 (cf. [Har77, III.§1]). For q ∈ N, define the functor

{abelian sheaves on X•} −→ Ab

F 7−→ Hq
•(X,F )

as the qth right derived functor of the (left exact) global sections functor

{abelian sheaves on X•} −→ Ab

F 7−→ F (X).

If F is an abelian sheaf on X•, then the abelian group Hq
•(X,F ) is called

the qth


Zariski
étale
fppf

cohomology group of F .
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In particular, for any exact sequence of abelian sheaves on X•
0→ F → G →H → 0,

we get a long exact sequence

0 −→ H0
•(X,F ) −→ H0

•(X,G ) −→ H0
•(X,H )

−→ H1
•(X,F ) −→ H1

•(X,G ) −→ H1
•(X,H )

−→ · · · .
Remark 6.4.2. For each abelian sheaf F on X• = (C, T ) and for each “open
subset” U ∈ C, one can define Hq

•(U,F ) by taking the derived functors
of Γ(U,−). There is a canonical “pullback” homomorphism Hq

•(X,F ) →
Hq
•(U,F ). In fact,

Copp −→ Ab

U 7−→ Hq
•(U,F )

defines a presheaf called H q(F ).
Alternatively, one can restrict F to the site U• and take Hq

•(U,F |U ).
There is a canonical isomorphism

Hq
•(U,F ) ' Hq

•(U,F |U ),

because one can show that the functor F 7→ F |U takes injective sheaves on
X• to injective sheaves on U•; see [Mil80, III.1.10 and III.1.11].

6.4.2. Étale cohomology and limits. Exercise 1.17 stated that for a
direct limit of fields K = lim−→Kα, we have BrK = lim−→BrKα. There
are various versions of this for schemes and étale cohomology, discussed in
[SGA 4II, VII, §5]. Here is one:

Theorem 6.4.3. Let (Xi)i∈I be a filtered inverse system of schemes. Sup-
pose that the Xi are quasi-compact and quasi-separated, and that the mor-
phisms in the system are affine.

(a) The limit X := lim←−Xi exists in the category of schemes.
(b) Suppose that 0 ∈ I and G0 is a commutative group scheme of finite pre-

sentation over X0. For i ≥ 0, let Gi = G0 ×X0 Xi. Let G = G0 ×X0 X.
For each q ∈ N, the natural homomorphism

lim−→Hq
et(Xi, Gi) −→ Hq

et(X,G)

is an isomorphism.

Proof. See [SGA 4II, VII, Corollaire 5.9]. �

6.4.3. Étale cohomology and Galois cohomology. For this section, we
fix a field k and a separable closure ks. By Proposition 3.5.35, the only field



Un
offi
cia
l v
ers
ion

for
inc
ide
nta

l o
nli
ne
use

176 6. Étale and fppf cohomology

extensions L of k for which SpecL→ Spec k is étale are the finite separable
extensions.

Definition 6.4.4. If F is a sheaf on (Spec k)et, define F (ks) := lim−→F (L),
where the direct limit is over all finite separable extensions L ⊇ k contained
in ks, and F (L) means F (SpecL).

Remark 6.4.5. We get the same direct limit if we take only finite Galois
extensions L ⊇ k. Then Gk acts continuously on each L, hence on each
F (L). Thus F (ks) is naturally a Gk-set.

Theorem 6.4.6 (Étale cohomology over a field).

(i) The functor

{ sheaves of sets on (Spec k)et } −→ {Gk-sets }
F 7−→ F (ks)

is an equivalence of categories. The global section functor F 7→ F (k)
corresponds to functor that takes a Gk-set M to the set of invariants
MGk .

(ii) The equivalence in part (i) restricts to an equivalence

{ abelian sheaves on (Spec k)et } −→ {Gk-modules }.
(iii) There are natural isomorphisms

Hq
et(Spec k,F ) ' Hq(Gk,F (ks))

for all q ∈ N.

Proof.

(i) We describe an inverse functor. Let S be a Gk-set. For each finite
separable extension L ⊇ k contained in ks, define F (L) = SGal(ks/L).
By Proposition 3.5.35, every étale k-scheme U is a disjoint union of
k-schemes of the form SpecL, and we define F (U) as the corresponding
product of the sets F (L). The restriction morphisms are products of
inclusion morphisms

F (L) = SGal(ks/L) ↪→ SGal(ks/M) = F (M)

for finite separable extensions L/M of finite separable extensions of k
contained in ks. The rest of the proof of (i) is easy.

(ii) This is obvious from (i).

(iii) Under (ii), the global sections functor corresponds to the Gk-invariants
functor. Take derived functors on both sides. �
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6.4.4. Čech cohomology. Let U = {Ui → U}i∈I be an open covering on
some site S. For (i0, . . . , ip) ∈ Ip+1, define

Ui0...ip := Ui0 ×
U
Ui1 ×

U
· · · ×

U
Uip .

If (i0, . . . , ip) ∈ Ip+1 and j ∈ {0, . . . , p}, then forgetting the jth factor gives a
projection Ui0...ip → Ui0...îj ...ip , where the

̂means that that index is omitted.
We obtain∐

i0
Ui0

∐
i0i1

Ui0i1oo oo
∐
i0i1i2

Ui0i1i2oo oo
oo · · · .oooo

oooo

Let F be an abelian presheaf on S. Then we obtain∏
i0

F (Ui0) ////
∏
i0i1

F (Ui0i1)
//////
∏
i0i1i2

F (Ui0i1i2)
// ////// · · · .

Relabel these products as C0, C1, and so on, and combine each stack of
arrows by taking their alternating sum to obtain homomorphisms dq:

C0 d0 // C1 d1 // C2 d2 // · · · .
Definition 6.4.7. The elements of Cq, ker(dq), im(dq−1), respectively, are
called Čech q-cochains, Čech q-cocycles, and Čech q-coboundaries.

One can check that the composition dq ◦ dq−1 of any two successive ho-
momorphisms is zero, so we have a complex. Take the cohomology groups of
this complex, and denote them

Ȟ
q
(U ,F ) =

ker dq

im dq−1
,

where we interpret im dq−1 as 0 if q = 0.
�

Warning 6.4.8. In the case of the Zariski site, one obtains the same group
Ȟ
q
(U ,F ) if one fixes a well ordering on I and takes products only over

(p+ 1)-tuples satisfying i0 < i1 < · · · < ip, as in [Har77, III.§4]. But for the
étale site and other sites, this approach gives the wrong cohomology groups
because the fiber products contain new information even when some of the
indices are equal.

Definition 6.4.9. Let U = {Ui → U}i∈I and V = {Vj → U}j∈J be open
coverings with respect to some site (C, T ). Then U is called a refinement of
V if there exists a map π : I → J and a morphism Ui → Vπ(i) for each i ∈ I.

If U is a refinement of V, then there is an induced morphism Ȟ
q
(V,F )→

Ȟ
q
(U ,F ) for each q ≥ 0.

Definition 6.4.10. Let F be an abelian presheaf on a site (C, T ), let U ∈ C,
and let q ∈ N. The qth Čech cohomology group of U with coefficients in
F is

Ȟ
q
(U,F ) := lim−→ Ȟ

q
(U ,F ),
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where the direct limit is taken over all open coverings of U , ordered by
refinement.

�

Warning 6.4.11. The abelian groups Ȟ
q
(U,F ) and Hq(U,F ) need not be

isomorphic.

Proposition 6.4.12. If F is an abelian sheaf on a site (C, T ), and U ∈ C,
then we have

Ȟ
0
(U,F )

∼→ H0(U,F ) = F (U)

Ȟ
1
(U,F )

∼→ H1(U,F )

Ȟ
2
(U,F ) ↪→ H2(U,F ).

Sketch of proof. The first line is immediate from the definition of Ȟ
0
(U,F )

and the sheaf property of F . For the second and third lines, let H (F ) be
the presheaf of Remark 6.4.2, and use Proposition 6.7.1 for the spectral
sequence of Čech cohomology

Epq2 := Ȟ
p
(U,H q(F )) =⇒ Hp+q(U,F ),

and use the fact Ȟ
0
(U,H q(F )) = 0; see [Sha72, pp. 200–201]. �

Theorem 6.4.13 (M. Artin). Let X be a quasi-compact scheme such that
every finite subset of X is contained in an affine open subset. (This is
automatic if X is quasi-projective over an affine scheme.) Let F be an
abelian sheaf on Xet. Then there are canonical isomorphisms Ȟ

q
et(X,F )

∼→
Hq

et(X,F ) for all q ∈ N.

Proof. See the original reference [Art71], or see [Mil80, III.2.17]. �

Important Remark 6.4.14. In group cohomology, one can define H0(G,A)
and H1(G,A) even when the group A is nonabelian. Similarly, one can define
Ȟ

0
(X,F ) and Ȟ

1
(X,F ) for a presheaf F of possibly nonabelian groups; see

[Mil80, p. 122].

6.5. Torsors over an arbitrary base

(Reference: [Mil80, III.§4])

Torsors under a group scheme G over a general base scheme can be
thought of as families of torsors. (In differential geometry, such objects are
sometimes called principal G-bundles.)
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6.5.1. Definition of torsors.

Definition 6.5.1. Let G→ S be an fppf group scheme. An G-torsor over S
(or simply G-torsor) is an fppf S-scheme X equipped with a right G-action

X ×S G −→ X

such that one of the following equivalent conditions holds:

(i) There exists an fppf base change S′ → S such that

XS′ with its right GS′-action

is isomorphic over S′ to

GS′ with the right translation GS′-action.

(ii) The morphism

X ×S G −→ X ×S X
(x, g) 7−→ (x, xg)

is an isomorphism.

Proof of equivalence.
(ii)⇒(i): Take S′ = X. Then (ii) backward says that S′ ×S X '

S′ ×S G. In other words, XS′ ' GS′ . Moreover, the right G-actions corre-
spond: this is simply the formula (xg)h = x(gh) coming from the definition
of right G-action on X.

(i)⇒(ii): Let φ be the morphism

X ×S G −→ X ×S X
(x, g) 7−→ (x, xg).

Base extend φ by S′ → S and use (i) to replace XS′ by GS′ . This gives

φS′ : GS′ ×S′ GS′ −→ GS′ ×S′ GS′
(x, g) 7−→ (x, xg).

Since G is a group scheme, φS′ is an isomorphism. But S′ → S is fppf, hence
fpqc, so fpqc descent (Theorem 4.3.7(ii)) implies that φ was an isomorphism
to begin with. �

Remark 6.5.2. Let X be an G-torsor over S. By fpqc descent (Theo-
rem 4.3.7(i)), many properties of G are inherited by X. For instance, if G is
smooth over S, then X is smooth over S.

6.5.2. Trivial torsors. The following generalizes Proposition 5.12.14.

Proposition 6.5.3. Let G → S be an fppf group scheme, and let X be a
G-torsor over S. The following are equivalent:
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(i) X is isomorphic to the trivial torsor (G with right translation action).
(ii) X(S) 6= ∅; i.e., X → S admits a section.

(iii) X corresponds to the neutral element of Ȟ
1
fppf(S,G) (see Section 6.5.5).

Proof.
(i)⇒(ii): This is because G→ S has the identity section.
(ii)⇒(i): The second definition of torsor gives us an isomorphism XX '

GX of GX -torsors over X. If we have a section S → X, we can further base
extend by this to get XS ' GS ; in other words, X ' G as G-torsors over S.

(i)⇔(iii): This follows from the definition of the correspondence given in
Section 6.5.5. �

6.5.3. Examples. Generalizing Example 5.12.9, we have:

Example 6.5.4. Let G be a finite group. A Galois covering S′ → S with
Galois group G in the sense of Remark 4.4.7 is the same thing as a torsor
under the constant S-group scheme corresponding to G.

Example 6.5.5. Let L be a invertible sheaf on a scheme S. Let L→ S be
the corresponding line bundle, i.e., L := SpecSym(L ) (some authors use
L −1 instead). Thus there exists a finite cover of S by open subsets U such
that LU → U is isomorphic to U ×A1 → U . Let Z be the zero section of the
line bundle, viewed as a closed subscheme of L. Then the open subscheme
X := L− Z of L is an Gm,S-torsor over S. This torsor is trivial if and only
if L ' OS .

Example 6.5.6. The same construction as in Example 6.5.5 associates to
any locally free rank n sheaf a GLn-torsor.

6.5.4. Torsor sheaves. Recall that a scheme gives rise to its functor of
points, which is a sheaf of sets. Thus sheaves of sets can be viewed as
a generalization of schemes. Similarly, group sheaves can be viewed as a
generalization of group schemes.

Definition 6.5.7. Let G be a group sheaf on a site with final object S (e.g.,
the étale site on a scheme S). A G-torsor sheaf T is a sheaf of sets equipped
with a right action T (U) × G(U) → T (U) for each U ∈ C, functorially in
U , such that there exists an open covering {Ui → S} and an isomorphism
T |Ui

∼→ G|Ui identifying the right G|Ui-action on T |Ui with the right action
of G|Ui on itself by translations.

Definition 6.5.8. Say that an open covering {Vi → S} trivializes a torsor
sheaf T if there exist isomorphisms T |Vi ' G|Vi respecting the rightG-actions
for all i.
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6.5.5. Torsors and H1. Section 5.12 used Galois descent to show that
(scheme) torsors under a smooth algebraic group G over k are classified by
H1(k,G). The generalization to base schemes S other than Spec k breaks up
into two steps:

(1) Relate Ȟ
1
(S,G) to torsor sheaves. By definition, giving a sheaf locally

is the same as giving a sheaf, so the question of descent does not come
up.

(2) Ask whether torsor sheaves are represented by (scheme) torsors. This
is the delicate part, because it involves descent of schemes, which is not
always effective.

The following handles the first step:

Proposition 6.5.9. Let G be a group sheaf on a site with final object S.
Then there is a isomorphism of pointed sets

{G-torsor sheaves}
isomorphism

∼→ Ȟ
1
(S,G).

Proof. The construction is similar to the construction of a 1-cocycle from
a twist in Remark 4.5.4, as we now demonstrate.

Let T be a G-torsor sheaf. Choose an open covering U := {Ui → S}
and isomorphisms fi : G|Ui ' T |Ui . Then on the overlaps Uij = Ui ×S Uj
the transition maps f−1

i fj : G|Uij
∼→ G|Uij are given by left multiplication by

some gij ∈ G(Uij). The gij form a Čech 1-cocycle. Changing the isomor-
phisms fi corresponds to replacing the 1-cocycle by a cohomologous one. In
this way, we get an isomorphism of pointed sets

{G-torsor sheaves trivialized by U}
isomorphism

∼→ Ȟ
1
(U ,F ).

Taking the direct limit over all open coverings gives the desired isomorphism.
�

Fortunately, it is often true that torsor sheaves are represented by torsor
schemes:

Theorem 6.5.10. Let G be an fppf group scheme over a locally noetherian
scheme S. Then we have

{G-torsors}
isomorphism

↪→ {G-torsor sheaves}
isomorphism

∼→ Ȟ
1
fppf(S,G)

∼
99K H1

fppf(S,G),

where the last term and the last isomorphism should be included only if G is
commutative (since otherwise H1

fppf(S,G) is not defined). Moreover, the first
injection is a bijection in any of the following cases:

(i) G→ S is an affine morphism.
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(ii) G is of finite presentation and separated over S, and dimS ≤ 1.

(iii) G→ S is an abelian scheme, and G is locally factorial.

Proof. For the last isomorphism, see [Mil80, III.4.7]. Case (i) follows from
Theorem 4.3.5(ii). Case (ii) follows from [Ray70b, Théorème XI.3.1(1)] in
the smooth case, and [Ana73, Théorème 4.D] in general. Case (iii) is a
special case of [Ray70b, Théorème XI.3.1(2)]. In [Ray70b, XI and XIII]
one can find other hypotheses that guarantee that the injection is a bijection.
On the other hand, [Ray70b, XII] contains some counterexamples. �

Remark 6.5.11. To avoid the delicate issue of representability by a scheme,
one can enlarge the category of schemes to the category of algebraic spaces.
Under the hypotheses of Theorem 6.5.10 (or the weaker hypothesis that
G→ S is a group algebraic space over an algebraic space), a G-torsor sheaf
for the fppf topology on S is always represented by aG-torsor algebraic space,
because the definition of algebraic space is fppf local; see [LMB00, 10.4.2]
and [SP, Tag 04SK].

To simplify notation, we write H1(S,G) for Ȟ
1
fppf(S,G) from now on.

6.5.6. Geometric operations on torsors over schemes. The notions of
inner twist, inverse torsors, contracted product, and subtraction of torsors
in Sections 5.11 and 5.12.5 can be generalized to base schemes S other than
Spec k. The idea in each case is that the construction is easy in the case
where the torsor T → S involved is trivial, so we do the construction after
fppf base change and then descend the result to S. We will only state the
results here; see [Sko01, pp. 20–21] for more details.

Let G be an fppf group scheme over a scheme S. Assume that G is affine
over S; this is to ensure that descent is effective, so that we can work with
torsors as schemes instead of only as sheaves.
6.5.6.1. Inner twists. Given τ ∈ H1(S,G) (perhaps the class of a G-torsor
T → S), one obtains another fppf group scheme Gτ affine over S.
6.5.6.2. Inverse torsors. Let T → S be a right G-torsor, and let τ be its
class in H1(S,G). Then T may be viewed as a Gτ -G-bitorsor, and the same
S-scheme may be viewed as a G-Gτ -bitorsor T−1.
6.5.6.3. Contracted products. Let G → S be an fppf group scheme. Let X
be an S-scheme that is affine over S and equipped with a right G-action
(but X is not necessarily a torsor). Let T be a left G-torsor over S. The

contracted product X
G
× T is the quotient of X ×S T by the G-action in

which g ∈ G acts by (x, t) 7→ (xg, g−1t). The result is an S-scheme that is
affine over S.

http://stacks.math.columbia.edu/tag/04SK
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6.5.6.4. Subtraction of torsors. Let Z and T be two right G-torsors over S.

Let τ = [T ] ∈ H1(S,G) be their classes. Then Z
G
× T−1 is a right Gτ -torsor

over S.

Example 6.5.12 (Twisted torsor). Let k be a field. Let S be a k-scheme.
Let G be an affine algebraic group over k. Then GS is an fppf group scheme
over S that is affine over S. Suppose that f := Z → S is a right GS-torsor,
but T → Spec k is a right G-torsor. Define

Zτ := Z
GS× S TS = Z

G
×k T

and let f τ : Zτ → S be its structure morphism. Then Zτ is a right Gτ -torsor
over S (i.e., a right (Gτ )S-torsor).

6.5.7. Unramified torsors. This section will be essential for the finiteness
of Selmer sets in Section 8.4.4. Let k be a global field. Let S be a finite
nonempty set of places of k containing all the archimedean places. Let Ok,S
be the ring of S-integers in k. For v /∈ S, let Ok,v be the local ring of Ok,S
at v, let Ov be its completion, and let kv = FracOv, so kv is the completion
of k at v. Let G be a smooth finite-type affine group scheme over Ok,S .
Affineness guarantees that every element of H1 is actually represented by a
torsor scheme (Theorem 6.5.10(i)). Let G = G ×Ok,S k.

Let τ ∈ H1(k,G) and v /∈ S. Let τv be the image of τ in H1(kv, G). Call
τ unramified at v if τ is in the image of H1(Ok,v,G) → H1(k,G), or equiv-
alently, if τv is the image of H1(Ov,G)→ H1(kv, G) (the equivalence follows
from a fancy version of fpqc descent; see [BLR90, §6.2, Proposition D.4(b)]).
Call τ unramified outside S if τ is unramified at every v /∈ S. In this case,
τ comes from an element of H1(Ok,S ,G): first, the torsor corresponding to
τ spreads out over Ok,S′ for some finite S′ ⊇ S; then apply fpqc descent
to SpecOk,S′ q

∐
v∈S′\S SpecOk,v → SpecOk,S . Let H1

S(k,G) be the set of
τ ∈ H1(k,G) that are unramified outside S.

As in Section 5.9.1, we have an exact sequence of smooth algebraic groups
over k

1→ G0 → G→ F → 1,

where G0 is the connected component of G, and F is finite étale over k.
Enlarging S if necessary, we get a corresponding exact sequence of smooth
finite-type separated group schemes over Ok,S

1→ G0 → G → F → 1

in which G0 has connected fibers and F is finite étale of order n. The map
H1(k,G)→ H1(k, F ) restricts to a map h : H1

S(k,G)→ H1
S(k,F).

Theorem 6.5.13. Under the hypotheses above,
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(a) the maps H1
S(k,G)

h−→ H1
S(k,F) −→∏

v∈S H1(kv, F ) have finite fibers;

(b) if k is a number field, then H1
S(k,G) itself is finite.

Proof.
Step 1: For each v /∈ S, the kernel of H1(Ov,F)→ H1(kv, F ) is trivial.

If T is an F-torsor over Ov, then T is finite over Ov by Remark 6.5.2, so
T is proper over Ov, and hence T (Ov) = T (kv) by the valuative criterion for
properness. Thus T (Ov) 6= ∅ if and only if T (kv) 6= ∅. That is, T is trivial if
and only if Tkv is trivial.
Step 2: H1(Ov,G0) = 0.

Let T → SpecOv be a G0-torsor. Its special fiber Tk(v) over the residue
field corresponds to an element of H1(k(v),G0

k(v)), which is trivial by Lang’s
theorem (Theorem 5.12.19(a)). Thus Tk(v) has a k(v)-point. Since G0 is
smooth over Ov, so is T (Remark 6.5.2). Hence we may apply Hensel’s
lemma (Theorem 3.5.63(a)) to deduce that T has an Ov-point. Thus T is a
trivial torsor.
Step 3: The kernel of h is finite.

For each v /∈ S, we have the following commutative diagram in which
the maps labelled Step 1 and Step 2 have trivial kernel:

H1(k,G) //

��

H1(k, F )

��
H1(kv, G) // H1(kv, F )

H1(Ov,G)

88

Step 2
// H1(Ov,F).

Step 1

88

Suppose τ ∈ kerh. By definition of H1
S(k,G), for each v /∈ S, the element

τv comes from some τOv ∈ H1(Ov,G). The diagram shows that τOv maps
to 0 in H1(kv, F ). Step 1 shows that τOv maps to 0 already in H1(Ov,F).
Step 2 shows that τOv = 0. Thus τv = 0.

Hence kerh is contained in

X1
S(k,G) := ker

(
H1(k,G)→

∏
v/∈S

H1(kv, G)

)
,

which is finite by Theorem 5.12.29 since G is affine.
Step 4: Every fiber of h is finite.
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Given a nonempty fiber h−1(φ) with φ ∈ H1
S(k,F), choose τ ∈ h−1(φ) ⊆

H1
S(k,G). Then τ comes from an element of H1(Ok,S ,G). Call this element

τ also.
If G were commutative, then h−1(φ) would be in bijection with h−1(0)

via the subtraction-of-τ map. In the general case, subtraction-of-τ and
subtraction-of-φ (see Section 5.12.5.3) identify the top row of

H1
S(k,G)

h //

−τ
��

H1
S(k,F)

−φ
��

H1
S(k,Gτ )

hτ // H1
S(k,Fφ)

with the bottom row, and h−1(φ) is identified with (hτ )−1(0). By Step 3
applied to Gτ , the latter is finite. Thus h−1(φ) is finite.
Step 5: The map H1

S(k,F)→∏
v∈S H1(kv, F ) has finite fibers.

Fix ξv ∈ H1(kv, F ) for each v ∈ S. Consider τ ∈ H1
S(k,F) mapping to

ξv for all v. By Theorem 4.3.7(i), the torsor T → Spec k corresponding to
τ is finite étale. By Proposition 3.5.35, T as k-scheme is a disjoint union of
k-schemes of the form SpecL for some separable field extensions L ⊇ k of
degree bounded by n := #F . For v /∈ S, the class τv comes from H1(Ov,F),
so the base extension Tkv comes from a finite étale Ov-scheme, which by
Theorem 3.5.52 is a disjoint union of Ov-schemes SpecR, where each R
is the valuation ring of a finite unramified extension of kv. This implies
that each L ⊇ k above is unramified outside S. For finite v ∈ S, the
v-adic valuation of the discriminant of each L/K may be nonzero, but it is
bounded given ξv. A variant of Hermite’s theorem [Ser97, 4.1] says that
k has only finitely many separable extensions of degree ≤ n and bounded
discriminant. Let k′ be the compositum of them all, so k′ ⊇ k is a finite
Galois extension. Then T (k′) is nonempty, so τ maps to 0 in H1(k′, F ).
Thus τ comes from H1(Gal(k′/k), F (k′)) in the inflation-restriction sequence
of Galois cohomology

0 −→ H1(Gal(k′/k), F (k′)) −→ H1(k, F ) −→ H1(k′, F ).

Since Gal(k′/k) and F (k′) are finite, the set H1(Gal(k′/k), F (k′)) is finite,
so there are only finitely many possibilities for τ . This completes the proof
of (a).
Step 6: If k is a number field, then H1

S(k,G) is finite.
If k is a number field, then (an elementary case of) Theorem 5.12.24(a)

shows that H1(kv, F ) is finite for each of the finitely many v in S. Thus the
conclusion follows from (a). �
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6.6. Brauer groups

(References: [Gro68b,Gro68c,Gro68d] and [Mil80, IV])

6.6.1. Cohomology of Gm.

Proposition 6.6.1. Let X be a scheme. Then

(i) H0
Zar(X,Gm) ' H0

et(X,Gm) ' H0
fppf(X,Gm) ' OX(X)×.

(ii) H1
Zar(X,Gm) ' H1

et(X,Gm) ' H1
fppf(X,Gm) ' PicX (generalization

of Hilbert’s theorem 90).

Proof.

(i) This is true by definition.
(ii) For each Zariski open covering U = {Ui → X}, we have

{line bundles trivialized by U}
isomorphism

' Ȟ
1
Zar(U ,Gm),

because the transition maps needed to describe a line bundle are in-
vertible functions on the pairwise intersections. Taking the direct limit
over open coverings, we get the first of the isomorphisms in

PicX ' Ȟ
1
Zar(X,Gm) ' H1

Zar(X,Gm),

and the second isomorphism comes from Proposition 6.4.12.
If we repeat the argument using the étale topology instead of the

Zariski topology, we get an isomorphism

PicXet ' H1
et(X,Gm),

where PicXet is the group of isomorphism classes of “étale line bundles”,
that is, sheaves L on Xet such that there exists an étale open covering
{Ui → X} such that L |Ui ' OUi for all i.

We claim that for any étale surjective morphism X ′ → X, the maps{
line bundles on X
trivialized by X ′

}
fpqc descent //

{
trivial line bundles on X ′

with descent datum

}

��{
line bundles on Xet

trivialized by X ′et

}
étale gluing //

{
trivial line bundles on X ′et

with descent datum,

}
,

where each set denotes a set of isomorphism classes, are bijections. The
top horizontal map is a bijection by Theorem 4.2.3 on fpqc descent of
quasi-coherent sheaves: one can show that descending a line bundle
yields a line bundle. The right vertical map is the functor of Defini-
tion 6.3.13: it gives a bijection, because the descent data are given by
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6.6. Brauer groups 187

isomorphisms of trivial line bundles, and the automorphism groups of
the trivial line bundle OX and OXet are both equal to OX(X)× for
every scheme X. The bottom horizontal map is a bijection because an
étale sheaf is uniquely determined by its restriction to an étale open
cover with gluing data.

Finally, taking the limit of the bijection between the sets on the left
over all X ′ → X yields PicX ' PicXet, since every line bundle (on X
or Xet) is trivialized by some X ′. Thus PicX, PicXet, H1

Zar(X,Gm),
H1

et(X,Gm) are all isomorphic.
The same proof shows that PicX ' H1

fppf(X,Gm). �

Remark 6.6.2. Specializing part (ii) to the case X = Spec k with the
étale topology gives H1(Gk, ks

×) = 0, which is (Noether’s generalization
of) Hilbert’s theorem 90.

Remark 6.6.3. More generally, for any smooth commutative group scheme
G over a scheme X, there is an isomorphism Hq

et(X,G)
∼→ Hq

fppf(X,G)

[Gro68d, Théorème 11.7]. The analogue for smooth noncommutative G

holds too, as far as it makes sense: Ȟ
1
et(X,G) ' Ȟ

1
fppf(X,G) [Gro68d, Re-

marque 11.8(3)].

6.6.2. The cohomological Brauer group. For a field k, Theorems 1.5.12
and 6.4.6(iii) yield

Br k ' H2(Gk, ks
×) ' H2

et(Spec k,Gm).

The right-hand side makes sense when Spec k is replaced by an arbitrary
scheme, so we are led to the following definition:

Definition 6.6.4. For any scheme X, define the (cohomological) Brauer
group as

BrX := H2
et(X,Gm).

If R is a commutative ring, define BrR := Br(SpecR).

�

Warning 6.6.5. Some authors use BrX instead to denote the Brauer group
defined using Azumaya algebras as in Definition 6.6.14, and use Br′X to de-
note the cohomological Brauer group. Some instead use Br′X to denote
the torsion subgroup of the cohomological Brauer group, because of Theo-
rem 6.6.17(iii).

Remark 6.6.6. For any scheme X, we have BrX ' H2
fppf(X,Gm), by Re-

mark 6.6.3.



Un
offi
cia
l v
ers
ion

for
inc
ide
nta

l o
nli
ne
use
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If X → Y is a morphism of schemes, then there is an induced homomor-
phism BrY → BrX, and we obtain a functor

Schemesopp −→ Ab

X 7−→ BrX.

Proposition 6.6.7 (Brauer group of a regular integral noetherian scheme).
Let X be a regular integral noetherian scheme. Then

(i) BrX → Brk(X) is injective.
(ii) BrX is a torsion abelian group.

Proof.

(i) This is a special case of [Gro68c, Corollaire 1.10].
(ii) Since Brk(X) is a Galois cohomology group, it is torsion. So (i) im-

plies (ii). �

�

Warning 6.6.8. Without regularity, Proposition 6.6.7 can fail: Exercise 6.6
gives a counterexample to (i) from [AG60, p. 388]. Part (ii) can fail too; see
Warning 6.6.18(i).

For an extension of Proposition 6.6.7(i), see Theorem 6.8.3.

Corollary 6.6.9. If X → Y is a birational morphism of regular integral
noetherian schemes, then BrY → BrX is injective.

Proof. Functoriality of Br yields a commutative diagram

BrX // Brk(X)

BrY //

OO

Brk(Y ),

and the horizontal homomorphisms are injective by Proposition 6.6.7(i). �

See Corollary 6.8.5 for a partial refinement of Corollary 6.6.9.

Proposition 6.6.10 (Brauer group of a limit). Let (Xi)i∈I be a filtered
inverse system of schemes. Suppose that the Xi are quasi-compact and quasi-
separated, and that the morphisms in the system are affine. Let X = lim←−Xi.
Then BrX ' lim−→BrXi.

Proof. Take G0 = Gm and q = 2 in Theorem 6.4.3. �

Proposition 6.6.10 is useful for spreading out Brauer group elements:
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Corollary 6.6.11. Let X be a variety over a global field k. Let A ∈ BrX.
Then for some finite set S of places of k, there exist a finite-type Ok,S-scheme
X , an element A ∈ BrX and a morphism X ↪→ X identifying X with the
generic fiber Xk such that BrX → BrX maps A to A.

Proof. Theorem 3.2.1 lets us spread out X to a finite-type Ok,S-scheme X .
The open subschemes XOk,T , as T ranges over finite sets of places with T ⊇ S,
form a filtered inverse system and lim←−XOk,T ' X. By Proposition 6.6.10,
BrX ' lim−→BrXOk,T . Thus A comes from an element of BrXOk,T for some
T . Rename T as S, and rename XOk,T as X . �

6.6.3. Azumaya algebras. A matrix algebra over a field k is EndV for
some finite-dimensional vector space over k. The generalization of this over
a scheme X is the OX -algebra EndOX (E ) := HomOX (E ,E ) for some locally
free OX -module E .

An Azumaya algebra over k is a k-algebra that becomes isomorphic to an
r × r matrix algebra for some r ∈ Z>0 after finite separable base extension.
The generalization of this is the following:

Definition 6.6.12 ([Gro68b, Théorème 5.1]). An Azumaya algebra on a
scheme X is an OX -algebra A that is coherent as an OX -module with Ax 6= 0
for all x ∈ X, and that satisfies one of the following equivalent conditions:

(i) There is an open covering {Ui → X} in the étale topology such that
for each i there exists ri ∈ Z>0 such that A⊗OX OUi ' Mri(OUi).

(ii) There is an open covering {Ui → X} in the fppf topology such that for
each i there exists ri ∈ Z>0 such that A⊗OX OUi ' Mri(OUi).

(iii) A is locally free as an OX -module, and the fiber A(x) := A⊗OX k(x)
is an Azumaya algebra over the residue field k(x) for each x ∈ X.

(iv) A is locally free as an OX -module, and the canonical homomorphism
A⊗OX Aopp → EndOX (A) is an isomorphism.

6.6.3.1. The Azumaya Brauer group.

Definition 6.6.13. Two Azumaya algebras A and A′ on X are similar (and
we then write A ∼ A′) if there exist locally free coherent OX -modules E and
E ′ of positive rank at each x ∈ X such that

A ⊗
OX

EndOX (E ) ' A′ ⊗
OX

EndOX (E ′).

Definition 6.6.14. Let X be a scheme. The Azumaya Brauer group
BrAzX is the the set of similarity classes of Azumaya algebras on X. The
multiplication is induced by A,B 7→ A ⊗OX B, the inverse is induced by
A 7→ Aopp, and the identity is the class of OX .
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Then BrAz is a functor from Schemesopp to Ab, just as Br was.
6.6.3.2. Cyclic Azumaya algebras. The cyclic algebra constructions from Sec-
tion 1.5.7 generalize in a straightforward way to an arbitrary base scheme
X. Namely, suppose that a ∈ Γ(X,O×X) is a global unit and that Y → X
is a Z/nZ-torsor. As in Section 1.5.7, we define a twisted polynomial alge-
bra OY [x]σ, where σ acts as the generator of Z/nZ, and x` = (σ`)x for all
sections ` of OY . Then the OX -algebra OY [x]σ/(x

n − a) turns out to be an
Azumaya OX -algebra, split by the étale cover Y → X.

There is a cohomological version of this construction. The exact sequence

1 −→ µn −→ Gm
n−→ Gm −→ 1

lets us map a to an element of H1(X,µn). On the other hand, the torsor
Y → X has a class in H1(X,Z/nZ). The cup product yields an element of
H2(X,µn), which can be mapped to an element of H2(X,Gm) =: BrX.

The two constructions above are related: the homomorphism (6.6.16)
defined in the next section maps the class of OY [x]σ/(x

n−a) to the element
of BrX.

Remark 6.6.15. Suppose that X is a scheme over Z[1/n, ζn], so Z/nZ is
isomorphic to µn over X. Then we may form a cyclic algebra from two units
a, b ∈ Γ(X,O×X), by reinterpreting the µn-torsor SpecOX [x]/(xn−b) −→ X
as a Z/nZ-torsor and proceeding as before.

6.6.4. Comparison of the two definitions of the Brauer group. Just
as Azumaya algebras of dimension n2 over a field k are classified up to
isomorphism by H1(k,PGLn), Azumaya algebras of rank n2 over a scheme
X are classified by H1(X,PGLn): a Čech 1-cocycle gives the transition data
needed to glue sheaves of matrix algebras using fpqc descent.

The exact sequence

0 −→ Gm −→ GLn −→ PGLn −→ 0

of sheaves on Xet (or Xfppf) gives rise to a map

H1(X,PGLn) −→ H2(X,Gm) = BrX

so each Azumaya algebra A of rank n2 gives rise to an element of BrX. If
the rank of A is not constant, one can apply the same construction on each
open and closed subset of X where the rank is constant. It turns out that
this induces a map

(6.6.16) BrAzX −→ BrX,

functorial in X.

Theorem 6.6.17.
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(i) For any scheme X, the natural map

BrAzX −→ BrX := H2
et(X,Gm)

is an injective homomorphism.
(ii) An Azumaya algebra A on X that is locally free of rank n2 defines an

element of BrAzX that is killed by n. In particular, if X has at most
finitely many connected components, BrAzX is torsion.

(iii) If X has an ample invertible sheaf (e.g., X is quasi-projective over
SpecA for some noetherian ring A), then the injection in (i) induces
an isomorphism

BrAzX
∼→ (BrX)tors.

Proof.

(i) See [Gro68b, equation (2.1)].
(ii) We have a commutative diagram of fppf group schemes

0 // µn //

��

SLn //

��

PSLn //

��

0

0 // Gm
// GLn // PGLn // 0.

The snake lemma, together with the surjectivity of Gm
n→ Gm, shows

that PSLn → PGLn is an isomorphism. Taking cohomology gives a
commutative diagram

H1(X,PSLn) // H2(X,µn)

��
H1(X,PGLn) // H2(X,Gm).

Now A corresponds to an element of H1(X,PGLn). The diagram shows
that its image in H2(X,Gm) comes from an element of H2(X,µn) and
is hence killed by n. By (i), the class of A in BrAzX is killed by n too.

(iii) This is an unpublished theorem of Gabber. A different proof, using
α-twisted sheaves, was found by de Jong [dJ05]. �

�

Warning 6.6.18.

(i) Mumford constructed a normal singular surface X over C such that
BrX is not torsion [Gro68c, Remarque 1.11b]. But BrAzX is torsion.
This shows the necessity of taking the torsion subgroup on the right-
hand side of Theorem 6.6.17(iii).

(ii) There is a nonseparated normal surface with BrAzX $ (BrX)tors,
namely the cone SpecC[x, y, z]/(xy − z2) with a doubled vertex. The
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original reference is [EHKV01, Corollary 3.11]; see [Ber05, §3] for a
simpler proof.

Corollary 6.6.19. If X is a regular quasi-projective variety over a field,
then BrAzX ' (BrX)tors = BrX.

Proof. The first isomorphism comes from Theorem 6.6.17(iii). By Proposi-
tion 3.5.5, the variety X is a finite disjoint union of integral varieties, and
applying Proposition 6.6.7(ii) to each shows that BrX is torsion. �

6.6.5. Computing Brauer groups. Two main methods for computing
Brauer groups are

• the Hochschild–Serre spectral sequence in étale cohomology (see Corol-
lary 6.7.8), and
• residue homomorphisms (see Theorem 6.8.3).

6.7. Spectral sequences

(References: [Mil80, Appendix B], [Sha72, II.§4], [Wei94, Chapter V])

Suppose that one has left exact functors between abelian categories

A f−→ B g−→ C.
Then the composite functor gf : A → C is also left exact. If A and B have
enough injectives, one can form the derived functors Rnf , Rng, and Rn(gf).
If moreover f takes injectives to g-acyclics (that is, Rqg(f(A)) = 0 for any
injective object A ∈ A and any q ∈ Z>0), then there is a spectral sequence

Ep,q2 := (Rpg)(Rqf)(A) =⇒ (Rp+q(gf))(A)

that sometimes lets one compute Rn(gf) in terms of the other two derived
functors.

The notation
Ep,q2 =⇒ Lp+q

used above means all of the following:

• For each r ∈ Z≥2 ∪ {∞}, there is a page r consisting of objects Ep,qr of
C for p, q ∈ Z such that Ep,qr = 0 when p < 0 or q < 0. (The objects on
a given page are usually displayed in a table.)
• The objects Ep,q2 on page 2 are the ones given in the notation.
• For r ∈ Z≥2, one has morphisms “of degree (r, 1− r)”: this means that
there is a morphism

dp,qr : Ep,qr → Ep+r,q+1−r
r
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for each p, q ∈ Z. For example, page 2 has the form

...
...

...
...

...

E0,3
2

((

E1,3
2

((

E2,3
2

((

E3,3
2 E4,3

2 · · ·

E0,2
2

((

E1,2
2

((

E2,2
2

((

E3,2
2 E4,2

2 · · ·

E0,1
2

((

E1,1
2

((

E2,1
2

((

E3,1
2 E4,1

2 · · ·

E0,0
2 E1,0

2 E2,0
2 E3,0

2 E4,0
2 · · · .

• For each r ∈ Z≥2, the morphisms on page r form complexes:

dp,qr ◦ dp−r,q+r−1
r = 0

for all p, q ∈ Z.
• For each r ∈ Z≥2, the objects on page r+ 1 are the cohomology objects
of the complexes on page r:

Ep,qr+1 =
ker dp,qr

im dp−r,q+r−1
r

.

• For fixed p, q ∈ Z, the page∞ object Ep,q∞ is equal to Ep,qr for sufficiently
large r. (Note that for r sufficiently large, the dr morphisms coming into
and out of Ep,qr extend outside the nonnegative quadrant, so they are
automatically zero, and hence Ep,qr = Ep,qr+1 = Ep,qr+2 = · · · .)
• The “limit objects” Ln for n ∈ N are objects of C.
• The object Ln has a filtration

Ln = Ln0 ⊇ Ln1 ⊇ · · · ⊇ Lnn ⊇ 0

such that the quotients of successive terms equal (respectively) the ob-
jects

E0,n
∞ , E1,n−1

∞ , . . . , En,0∞

along a diagonal on page ∞. (Thus E0,n
∞ is a subobject of Ln.)

One says that Ep,q2 converges to (or abuts to) Lp+q.

Proposition 6.7.1. Suppose that

Ep,q2 =⇒ Lp+q
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is a spectral sequence. Abbreviate Ep,q2 as Ep,q. Then there is an exact
sequence

0→ E1,0 → L1 → E0,1 d→ E2,0 −→ ker
(
L2 → E0,2

)
−→ E1,1 → E3,0.

Remark 6.7.2. Spectral sequences also arise in some situations not having
to do with the composition of left exact functors. For instance, cohomology
of the total complex of a double complex is the limit of a spectral sequence
starting with page 1.

6.7.1. The Hochschild–Serre spectral sequence in group cohomol-
ogy.

Theorem 6.7.3. Let G be a profinite group, and let H be a normal closed
subgroup of G. Then there is a spectral sequence

Ep,q2 := Hp(G/H,Hq(H,A)) =⇒ Hp+q(G,A)

for each (continuous) G-module A.

Sketch of proof. The composition of the left exact functors

{G-modules} −→ {G/H-modules} −→ Ab

M 7−→ MH

N 7−→ NG/H

equals M 7→ MG (all group actions are assumed continuous). One checks
that the first functor takes injectives to acyclics. �

Applying Proposition 6.7.1 to Theorem 6.7.3, one gets the following ex-
tension of the inflation-restriction sequence:

Corollary 6.7.4 (Inflation-restriction sequence). Let G be a profinite group,
and let H be a normal closed subgroup of G. Then for any G-module A, there
is an exact sequence

0→ H1(G/H,AH)
Inf−→ H1(G,A)

Res−→ H1(H,A)G/H

→ H2(G/H,AH) −→ ker
(
H2(G,A)→ H2(H,A)

)
−→ H1(G/H,H1(H,A))

→ H3(G/H,AH).

6.7.2. The Hochschild–Serre spectral sequence in étale cohomol-
ogy. Recall from Example 6.5.4 that a Galois covering of schemes X ′ → X
with Galois group G (assumed finite) is the same thing as a torsor under
the constant group scheme associated to G. Then X ′ → X is finite and
surjective, so it is fpqc. Since X ′ → X becomes étale after base extension
by X ′ → X, it was étale to begin with (Theorem 4.3.7(ii)).
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Theorem 6.7.5. Let X ′ → X be a Galois covering of schemes with Galois
group G. Let F be a sheaf on Xet. Then there is a spectral sequence

Hp(G,Hq
et(X

′,F )) =⇒ Hp+q
et (X,F ).

Sketch of proof. The right G-action on X ′ makes F (X ′) a left G-module.
The sheaf condition for the open covering {X ′ → X} implies that the com-
position of the left exact functors

{sheaves on Xet} −→ {G-modules} −→ Ab

F 7−→ F (X ′)

N 7−→ NG

equals F 7→ F (X). Moreover, the first functor takes injectives to acyclics.
�

Remark 6.7.6. A common application of Theorem 6.7.5 is to the case where
X is a k-variety and X ′ = XL for some finite Galois extension L of k. By
taking a direct limit, one obtains an analogous spectral sequence for an
infinite Galois extension, such as ks over k.

Theorem 6.7.5 and Remark 6.7.6 help us compute Brauer groups of va-
rieties over non-algebraically closed fields.

Definition 6.7.7. If X is a variety over a field k, let Xs = Xks and define
the algebraic part of the Brauer group of X by

Br1X := ker (BrX → BrXs) .

Corollary 6.7.8. Let X be a proper and geometrically integral variety over
a field k. Then there is an exact sequence

0→ PicX → (PicXs)Gk → Br k → Br1X → H1(Gk,PicXs)→ H3(k,Gm).

Proof. We apply Theorem 6.7.5 and Remark 6.7.6 with F = Gm, and plug

H0
et(X

s,Gm) = ks
× (Proposition 2.2.22),

H1
et(X

s,Gm) = PicXs (Proposition 6.6.1),

H2
et(X

s,Gm) = BrXs (by definition),

H1
et(X,Gm) = PicX (Proposition 6.6.1),

H2
et(X,Gm) = BrX (by definition),

H1(Gk, ks
×) = 0 (Hilbert’s theorem 90),

H2(Gk, ks
×) = Br k (Theorem 1.5.12)

into the exact sequence of Proposition 6.7.1. �

Remark 6.7.9. For a nice k-variety X, the homomorphism

(PicXs)Gk −→ Br k



Un
offi
cia
l v
ers
ion

for
inc
ide
nta

l o
nli
ne
use

196 6. Étale and fppf cohomology

given in Corollary 6.7.8 is the same as the homomorphism constructed in the
proof of Proposition 4.5.12.

Remark 6.7.10. The cohomological approach to class field theory gives as
a byproduct that if k is a local or global field, then H3(k,Gm) = 0. The local
case is obtained by taking a direct limit of [NSW08, 7.2.2]. The number
field case is [NSW08, 8.3.11(iv)] applied to the set S of all places of k. The
function field case follows from the fact scd k ≤ 2 [NSW08, 8.3.17].

6.8. Residue homomorphisms

(References: [GS06, Chapter 6], [Gro68d, §2])

6.8.1. Residue homomorphisms for discrete valuation rings. Given
an integral divisorD on a varietyX, one has the associated discrete valuation
ring R inside the function field K := k(X). An element of K× need not
come from the subgroup R×; the obstruction is measured by the valuation
K× → Z; in other words, a rational function has no zero or pole along D if
and only if its valuation is 0. Analogously, an element of BrK need not come
from the subgroup BrR; the obstruction is measured by a certain residue
homomorphism:

Proposition 6.8.1. If R is a discrete valuation ring with fraction field K
and residue field k, then there is an exact sequence

0 −→ BrR −→ BrK
res−→ H1(k,Q/Z),

with the caveat that one must exclude the p-primary parts from all the groups
if k is imperfect of characteristic p.

Proof. This is a special case of [Gro68d, Proposition 2.1]. �

The residue homomorphism can be defined as follows. First, we may
replace R by its completion. Let Kunr be the maximal unramified extension
of K. If k is perfect, then Example 4 in Section 1.2.4 implies that Kunr is C1,
so BrKunr = 0 by Proposition 1.5.28. If k is imperfect of characteristic p,
then [Gro68d, Corollaire 1.3] implies that BrKunr = 0 still holds after
the p-primary part is excluded; in the rest of this paragraph, we exclude
p-primary parts in this case. Proposition 1.3.15(iii) applied to the extension
Kunr of K implies that BrK ' H2(Gal(Kunr/K), (Kunr)×), which maps to
H2(Gal(Kunr/K),Z) via the valuation. Also, Gal(Kunr/K) ' Gk. Finally,
the long exact sequence associated to the exact sequence of groups

0→ Z→ Q→ Q/Z→ 0
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with trivial Gk-action yields an isomorphism H1(k,Q/Z)
∼→ H2(k,Z). The

composition

BrK ' H2(Gal(Kunr/K), (Kunr)×)

−→ H2(Gal(Kunr/K),Z) ' H2(k,Z) ' H1(k,Q/Z)

is the residue homomorphism.
�

Warning 6.8.2. The caveat in Proposition 6.8.1 cannot be dropped. For
example, if k = ks 6= k and R = k[[t]], then BrR ' Br k = 0 (Proposi-
tion 6.9.1 below), and H1(k,Q/Z) = 0 (since Gk = {1}), but Br k((t)) 6= 0
(Exercise 1.26).

6.8.2. Residue homomorphisms for regular integral schemes, and
purity. For any discrete valuation v on a field K with residue field k,
applying Proposition 6.8.1 to the valuation ring gives a homomorphism
BrK

res→ H1(k,Q/Z), modulo the caveat. On a regular integral noether-
ian scheme X, each integral divisor defines a discrete valuation v on k(X),
and the integral divisors are in bijection with the set X(1) of codimension 1
points of X. Taking all the associated residue homomorphisms yields the
following global variant of Proposition 6.8.1, saying roughly that an element
of Brk(X) belongs to the subgroup BrX if and only if it has “no poles”
along any integral divisor of X.

Theorem 6.8.3. Let X be a regular integral noetherian scheme. Then the
sequence

0 −→ BrX −→ Brk(X)
res−→

⊕
x∈X(1)

H1(k(x),Q/Z)

is exact, with the caveat that one must exclude the p-primary part of all the
groups if X is of dimension ≤ 1 and some k(x) is imperfect of characteris-
tic p, or if X is of dimension ≥ 2 and some k(x) is of characteristic p.

Proof. This is a consequence of [Gro68d, Proposition 2.1] and Grothen-
dieck’s absolute cohomological purity” conjecture, proved by Gabber; see
[Fuj02]. �

�

Warning 6.8.4. The caveat in Theorem 6.8.3 cannot be removed completely.
For example, suppose that k = ks 6= k and X := P1

k. Then BrX = 0

(Theorem 6.9.7 below) and H1(k(x),Q/Z) = 0 for every x ∈ X(1), but
Br k(X) 6= 0 (Exercise 1.26). On the other hand, it might be that excluding
the p-primary parts for p such that some k(x) is imperfect of characteristic p
is enough even when dimX ≥ 2.
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Corollary 6.8.5. Let X be a regular integral noetherian scheme. Let Z be
a closed subscheme of codimension ≥ 2, and let U = X − Z. Then the
homomorphism BrX → BrU is an isomorphism, with the caveat that one
considers only the `-primary parts for primes ` invertible on X.

Proof. Theorem 6.8.3 describes BrX and BrU as the same subgroup of
Brk(X). �

Remark 6.8.6. The caveat in Corollary 6.8.5 might be unnecessary.

Corollary 6.8.7. Let X and X ′ be nice varieties over a field k. If X and
X ′ are birational, then BrX and BrX ′ are isomorphic, with the caveat that
one considers only the prime-to-p parts if char k = p > 0.

Proof. We give the proof when char k = 0; the same proof applies to the
prime-to-p parts if char k = p > 0. The domain of definition U of the bira-
tional mapX 99K X ′ is the complement of a closed subscheme of codimension
≥ 2 in X. Corollary 6.8.5 implies that BrX → BrU is an isomorphism. The
composition

BrX ′ → BrU
∼← BrX

is compatible with the embeddings of all three groups in Brk(X) = Brk(X ′).
Thus BrX ′ ⊆ BrX. Similarly BrX ⊆ BrX ′. �

Remark 6.8.8. If in Corollary 6.8.7 we assume moreover that dimX =
dimX ′ ≤ 2, then BrX ' BrX ′; i.e., the caveat becomes unnecessary. See
[Gro68d, Corollaire 7.5].

6.9. Examples of Brauer groups

6.9.1. Local rings and fields.

Proposition 6.9.1. Let R be a complete local ring with residue field k. Then
the quotient homomorphism R→ k induces an isomorphism BrR→ Br k.

Proof. The (equivalent) analogue for BrAz was first proved in [Azu51, The-
orem 31]. See [Mil80, III.3.11(a)] for a proof for Br. �

Remark 6.9.2. Proposition 6.9.1 holds more generally for henselian local
rings [Mil80, IV.2.13]. (See Section B.3 for the definition of henselian.) Even
more generally, if R is henselian local ring with residue field k, and G is a
smooth commutative group scheme over R, then Hq(R,G)

∼→ Hq(k,G) for
all q ≥ 1; see [Gro68d, equation (2.6)] for the case where R is a henselian
discrete valuation ring, and [Mil80, III.3.11(b)] for the general case. For
q = 1, we can formulate the same statement for noncommutative G, and it
is true [SGA 3III, XXIV, Proposition 8.1].
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Corollary 6.9.3. Let R be the valuation ring of a nonarchimedean local field
K. Then BrR = 0.

Proof. The residue field k is finite, so Br k = 0 by Theorem 1.5.32. Now
use Proposition 6.9.1. �

For R and K as in Corollary 6.9.3, we have

H1(k,Q/Z) = Homconts(Ẑ,Q/Z) = Q/Z,
so the exact sequence of Proposition 6.8.1 becomes

0 −→ 0 −→ BrK
res−→ Q/Z.

In fact, res is (up to sign) the homomorphism inv : BrK
∼→ Q/Z in Theo-

rem 1.5.34.

6.9.2. Rings of S-integers and arithmetic schemes.

Example 6.9.4. Let k be a global field. Let S be a nonempty set of places
of k containing all the archimedean places. Let Ok,S be as in Definition 1.1.1.
For v /∈ S, let Fv be the residue field. Theorem 6.8.3 yields an exact sequence

0 −→ BrOk,S −→ Br k
res−→
⊕
v/∈S

H1(Fv,Q/Z).

By the previous discussion, the homomorphism Br k → H1(Fv,Q/Z) is the
same as the homomorphism invv : Br k → Q/Z. Comparing with the de-
scription of Br k in Theorem 1.5.36(i) yields an exact sequence

(6.9.5) 0 −→ BrOk,S −→
⊕
v∈S

Br kv

∑
invv−→ Q/Z.

Question 6.9.6 (M. Artin). If X is proper over Z, must BrX be finite?
[Mil80, IV.2.19]

A positive answer to Question 6.9.6 in the special case of nice sur-
faces over finite fields would already have significant implications; see Theo-
rem 7.6.8.

6.9.3. Curves.

Theorem 6.9.7. If X is a proper curve over a separably closed field k, then
BrX = 0.

Proof. If k is algebraically closed and X is nice, then this follows from
Proposition 6.6.7(i) and Tsen’s theorem. For the general case, see [Gro68d,
Corollaire 5.8]; the proof uses fppf cohomology. �
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200 6. Étale and fppf cohomology

6.9.4. Rational varieties. The following lemma will allow us to compute
the Brauer groups of Pnk and other rational varieties.

Lemma 6.9.8. Let π : X → B be a morphism of regular integral noetherian
schemes. Suppose that π has a section s : B → X, and that the generic fiber
of π is isomorphic to P1

k(B) as a k(B)-scheme. Then π∗ : BrB → BrX is
an isomorphism.

Proof. By functoriality, we have a diagram

BrP1
k(B) BrXoo

s∗

��
Brk(B)

OO

BrBoo

π∗

UU

containing two commutative squares. By Proposition 6.6.7(i), we may view
BrB as a subgroup of Brk(B). By Corollary 6.6.9, BrX → BrP1

k(B) is injec-
tive. The left vertical homomorphism is an isomorphism by Theorem 6.9.7.
Hence all four groups in the diagram may be viewed as subgroups of BrP1

k(B).
Then π∗ shows that BrB ⊆ BrX, and s∗ shows that BrX ⊆ BrB. Thus
BrB = BrX. �

Proposition 6.9.9. Let k be a field. Let n ∈ Z≥0. Then Br k
∼→ BrPnk .

Proof. We use induction on n. The case n = 0 is trivial, so suppose that
n ≥ 1. Let P = (1 : 0 : · · · : 0) ∈ Pn(k), and let X be the blowup of Pn at P .
Projection from P is a rational map Pn 99K Pn−1 sending (x0 : x1 : · · · : xn)
to (x1 : · · · : xn), and it has a rational section sending (x1 : · · · : xn) to
(1 : x1 : · · · : xn). Resolving the indeterminacy yields a morphism X → Pn−1

with a section. Lemma 6.9.8 shows that BrX ' BrPn−1, and the inductive
hypothesis yields BrPn−1 ' Br k, so BrX ' Br k.

By functoriality we have Br k → BrPn ↪→ BrX, with the injectivity
coming from Corollary 6.6.9. The previous paragraph showed that the com-
position is an isomorphism, so Br k → BrPn is an isomorphism too. �

Proposition 6.9.10. Let X be a nice variety over a field k. If X is birational
to Pnk for some n ≥ 0, then Br k

∼→ BrX.

Proof. If char k = 0, this follows from Proposition 6.9.9 and Corollary 6.8.7.
For the general case, see [Sal85, Proposition 1.7 and the paragraph after
Lemma 1.2]. �

Corollary 6.9.11. Let X be a nice variety over a field k. If Xks is birational
to Pnks for some n ≥ 0, then BrXks = 0 and Br1X = BrX.
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6.9.5. Quadrics. A quadric over a field k is a degree 2 hypersurface in Pnk
for some n ≥ 2.

Proposition 6.9.12. If X is a smooth quadric over a field k, then the
homomorphism Br k → BrX is surjective.

Proof. By Proposition 3.5.67, the variety X is geometrically integral. By
Corollary 6.7.8, it suffices to prove that BrXs = 0 and H1(Gk,PicXs) = 0.
Corollary 6.9.11 yields BrXs = 0.

By [Har77, Exercise II.6.5(c) and Corollary II.6.16],

PicXs '
{
Z× Z if dimX = 2,
Z if dimX = 1 or dimX ≥ 3.

with OXs(1) corresponding to 2 if dimX = 1, to (1, 1) if dimX = 2, and
to 1 if dimX ≥ 3. If dimX = 1 or dimX ≥ 3, then the Galois action on
PicXs ' Z is trivial (ampleness must be preserved), so H1(Gk,PicXs) = 0.
Now suppose that dimX = 2. If the Gk-action on PicXs ' Z × Z is
trivial, then H1(Gk,PicXs) = 0 again. If not, then PicXs ' Z[Gk/GL] for
some quadratic extension L of k, so by Shapiro’s lemma, H1(Gk,PicXs) =
H1(GL,Z) = 0. �

6.9.6. Quadric bundles.

Lemma 6.9.13. Let k be a field of characteristic 0. Let π : X → B be a flat
morphism of regular integral k-varieties. Let η be the generic point of B. For
x ∈ X(1) mapped by π to some b ∈ B(1), the inclusion k(b)→ k(x) induces a
homomorphism ix : H1(k(b),Q/Z) → H1(k(x),Q/Z); also let ex/b ∈ Z≥1 be
the ramification index, and let εx,b = ex/bix. If x ∈ X(1) and b ∈ B(1) satisfy
π(x) 6= b, then let εx,b = 0. Together, these εx,b define a homomorphism ε in
the diagram

0 // BrB //

��

Brk(B)
res //

��

⊕
b∈B(1)

H1(k(b),Q/Z)

ε

��

0 // BrX // BrXη
res //

⊕
x∈X(1)

π(x)6=η

H1(k(x),Q/Z).

(6.9.14)

This diagram commutes and has exact rows.

Proof. The first row is exact by Theorem 6.8.3. By Theorem 6.8.3, BrXη is
cut out in Brk(X) by the residue homomorphisms for x ∈ X(1) lying above
η, while BrX is cut out in Brk(X) by the residue homomorphisms for all
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x ∈ X(1); thus the second row of (6.9.14) is exact. The first square commutes
since Br is a functor. The second square commutes by Exercise 6.12. �

Proposition 6.9.15. Let k be a field of characteristic 0. Let π : X → B be
a flat morphism of regular integral k-varieties. Suppose that every fiber of π
has an irreducible component of multiplicity 1 that is geometrically integral.
Suppose also that the generic fiber Xk(B) is a smooth quadric over k(B).
Then the homomorphism BrB → BrX is surjective.

Proof. Proposition 6.9.12 shows that the middle vertical homomorphism
of (6.9.14) is surjective. Surjectivity of the left vertical homomorphism will
follow from the four-lemma if the homomorphism ε in (6.9.14) is injective.

Suppose that b ∈ B(1). By hypothesis, the fiber Xb has an irreducible
component Z of multiplicity 1 that is a geometrically integral k(b)-variety.
Let x be the generic point of Z. By flatness, x ∈ X(1). By Proposi-
tion 2.2.19(i)⇒(iv), the extension k(x) ⊇ k(b) is primary, so the largest
separable algebraic extension of k(b) in k(x) is k(b). Equivalently, by Galois
theory, if we choose compatible separable closures k(b)s ⊆ k(x)s, then the
restriction homomorphism of absolute Galois groups Gk(x) → Gk(b) is sur-
jective. Applying Homconts(−,Q/Z) shows that ix is injective. Also, ex/b is
the multiplicity of Z, which is 1. Thus εx,b = ex,bix = ix, which is injective.
Since for every b ∈ B(1) there exists an x as above, ε is injective. �

Exercises

6.1. (Kummer sequence) Let X be a scheme, and let n ∈ Z≥1. Consider
the sequence of sheaves

1 −→ µn −→ Gm
n−→ Gm −→ 1

on either Xet or Xfppf , where µn(U) ↪→ Gm(U) is the inclusion, and
Gm(U)→ Gm(U) is the nth-power homomorphism.
(a) Prove that the sequence is exact when considered as a sequence

of sheaves on Xfppf .
(b) Give an example to show that it need not be exact when considered

as a sequence of sheaves on Xet.
(c) Prove that if 1/n ∈ OX (that is, the image of n under Z→ OX(X)

is invertible), then the sequence is exact on Xet.
6.2. Is it true that the groups Hq

Zar(X,Gm) and Hq
et(X,Gm) are isomorphic

for all schemes X and all q ≥ 0?
6.3. Show that the general definition of “G-torsor over S” is equivalent, in

the case where S = Spec k and G is a smooth algebraic group over k,
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to the definition of “G-torsor over k” given earlier. (Hint : Use the fact
that smoothness is preserved by base extension and fpqc descent.)

6.4. Let k be an imperfect field of characteristic p. Fix a ∈ k− kp, and let
X = Spec k(a1/p).
(a) Prove that X can be made an αp-torsor over k.
(b) Prove that X can also be made a µp-torsor over k.

6.5. Let k be a global field. Let S be a finite nonempty set of places
of k containing all the archimedean places. Let Ok,S be the ring of
S-integers. Use familiar theorems of algebraic number theory to prove
that H1

fppf(SpecOk,S ,µn) is finite for each n ≥ 1.

6.6. Let H be as in Example 1.5.8. Let A = R[x, y]/(x2 + y2), and let
K = FracA. Prove that the class h of the Azumaya A-algebra H⊗RA
is a nonzero element of ker(BrA→ BrK).

6.7. Let k be an algebraically closed field. Let X be a nice k-curve of
genus g. Let n be a positive integer not divisible by char k. Using
that BrX = 0, calculate Hq

et(X,µn) for q = 0, 1, 2. (You may assume
the following fact: if A is an abelian variety of dimension g over an
algebraically closed field k and char k - n, then the multiplication-by-n
homomorphism A(k)

n→ A(k) is surjective and has kernel isomorphic
to (Z/nZ)2g.)

6.8. Let O be the ring of integers of a number field k. Using (6.9.5), show
that BrO is a finite abelian group, and compute its structure.

6.9. Let k be a finite field. Let X be a nice k-curve. Show that BrX = 0.
6.10. Let X be a proper and geometrically integral variety over a field k.

Assume that X(k) 6= ∅.
(a) Prove that the homomorphism Br k → BrX is injective.
(b) Prove that the homomorphism PicX → (PicXs)Gk is an isomor-

phism.
(c) Show that the same two conclusions hold if k is a global field and

the hypothesis “X(k) 6= ∅” is weakened to “X(kv) 6= ∅ for all
places v of k”.

6.11. (Brauer group of a conic) Let k be a field. Let X be a nice genus 0
curve over k. Let c ∈ Br k be the class of X viewed as a 1-dimensional
Severi–Brauer variety. Prove that the homomorphism Br k → BrX
is surjective with kernel generated by c. (Hint : Use the theorem of
Lichtenbaum mentioned in the proof of Proposition 4.5.12.)

6.12. (Functoriality of residue homomorphisms) LetK ⊆ K ′ be an inclusion
of fields. Suppose that v : K � Z ∪ {∞} and v′ : K ′ � Z ∪ {∞} are
discrete valuations such that v′|K = ev for some e ∈ Z≥1 (called the
ramification index). Let R be the valuation ring in K, and let k be



Un
offi
cia
l v
ers
ion

for
inc
ide
nta

l o
nli
ne
use

204 6. Étale and fppf cohomology

the residue field. Let R′ be the valuation ring in K ′, and let k′ be
the residue field. The inclusion k ↪→ k′ induces a homomorphism
i : H1(k,Q/Z)→ H1(k′,Q/Z). Then the diagram

0 // BrR //

��

BrK
res //

��

H1(k,Q/Z)

ei
��

0 // BrR′ // BrK ′
res // H1(k′,Q/Z)

(6.9.16)

commutes. (This result may be viewed as a generalization of Theo-
rem 1.5.34(ii).)
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Chapter 7

The Weil conjectures

(References: [Har77, Appendix C], [FK88])

The Weil conjectures give information about the number of points on
varieties over finite fields. All of them have been proved.

7.1. Statements

Fix an algebraic closure Q of Q. Let Z be the integral closure of Z in Q.

Theorem 7.1.1 (Weil conjectures).

(i) Let X be a scheme of finite type over Fq. Then there exist α1, . . . , αr,
β1, . . . , βs ∈ Z such that

#X(Fqn) = αn1 + · · ·+ αnr − βn1 − · · · − βns
for all n ≥ 1.

(ii) If X is a smooth proper variety of dimension d over Fq, then the plus
and minus terms can be grouped as follows in alternating batches ac-
cording to the absolute value of the terms:

#X(Fqn) =

b0∑
j=1

αn0j −
b1∑
j=1

αn1j +

b2∑
j=1

αn2j − · · ·+
b2d∑
j=1

αn2d,j ,

where
• the bi ∈ N are the `-adic Betti numbers, and they satisfy b2d−i = bi
for i = 0, . . . , 2d (the terminology will be explained in Section 7.5);
• the αij ∈ Z are such that the α2d−i,∗ in the (2d− i)-th batch equal
the values qd/αi,∗ in some order;

205
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• |αij | = qi/2 for all i and j, for any archimedean absolute value | |
on the number field Q(αij) (this is called the Riemann hypothesis
for X because of an analogy to be explained in Remark 7.4.4).

If moreover X is geometrically irreducible, then

b0 = 1 b2d = 1

α01 = 1 α2d,1 = qd.

(iii) Let X be a smooth proper scheme over a finitely generated subring
R of C. Let m be a maximal ideal of R, so R/m is a finite field
by Remark 2.4.5, and the reduction XR/m is a smooth proper scheme
over R/m. Then for i = 0, . . . , 2d, the bi in (ii) for XR/m equals
rk Hi(X(C),Z), the Z-rank of the singular cohomology group.

A typical choice of R in (iii) is the ring of S-integers of a number field
embedded in C. Part (iii) is especially intriguing, in that it hints at a con-
nection between singular cohomology and varieties over finite fields. This
will be explained in Section 7.5.

7.2. The case of curves

If X is a nice genus g curve over C, then
H0(X(C),Z) ' Z,

H1(X(C),Z) ' Z2g,

H2(X(C),Z) ' Z.

Analogously, if X is a nice genus g curve over Fq, then it turns out that
the `-adic Betti numbers of X are

b0 = 1,

b1 = 2g,

b2 = 1.

The Weil conjectures in this case say that there exist λ1, . . . , λ2g ∈ Z with
|λj | = q1/2 and λg+i = q/λi for i = 1, . . . , g, such that for all n ≥ 1,

#X(Fqn) = 1− (λn1 + · · ·+ λn2g) + qn.

Corollary 7.2.1 (Hasse–Weil bound). Let X be a nice genus g curve over
Fq. Then

#X(Fq) = q + 1− ε,
where the “error” ε is an integer satisfying |ε| ≤ 2g

√
q.
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7.3. Zeta functions

(References: [Ser65,Tat65,Tat94])

7.3.1. The prototype: the Riemann zeta function.

(Reference: [Ahl78, Chapter 5, §4])

Definition 7.3.1. The Riemann zeta function is the meromorphic contin-
uation of the holomorphic function defined for s ∈ C with Re s > 1 by

ζ(s) :=
∑
n≥1

n−s.

For future comparison to zeta functions of schemes, we recall some basic
properties of ζ(s).

Proposition 7.3.2.

(i) The function ζ(s) is holomorphic on C except for a simple pole at s = 1.

(ii) There is a functional equation relating ζ(s) to ζ(1−s). More precisely,
if Γ denotes the gamma function [Ahl78, Chapter 5, §2.4], then the
function ξ(s) := π−s/2Γ(s/2)ζ(s) is entire and satisfies ξ(s) = ξ(1−s).

(iii) The function ζ(s) vanishes at every negative even integer. The negative
even integers are called the trivial zeros.

(iv) All other zeros of ζ(s) lie in the interior of the critical strip defined by
0 ≤ Re(s) ≤ 1. The (unproven) Riemann hypothesis is the statement
that these nontrivial zeros lie on the critical line defined by Re(s) = 1/2.

Proof.

(i) See [Ahl78, Chapter 5, §4.2].

(ii) See [Ahl78, Chapter 5, §4.3].

(iii) See [Ahl78, Chapter 5, end of §4.2].

(iv) See [Ahl78, Chapter 5, §4.4]. �

For s ∈ C with Re s > 1, the unique factorization of positive integers
and the formula for an infinite geometric series allow us to rewrite ζ(s) as
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an Euler product:

ζ(s) :=
∑
n≥1

n−s

=
∏

primes p

(
1− p−s

)−1

=
∏

maximal ideals m ⊆ Z

(
1− (#(Z/m))−s

)−1

=
∏

closed points P ∈ SpecZ

(
1− (#k(P ))−s

)−1
.

Remark 7.3.3. The factor π−s/2Γ(s/2) appearing in Proposition 7.3.2(ii)
should be viewed as the analogue for the infinite place of Q of the Euler
factor (1− p−s)−1 for a finite prime p.

7.3.2. Schemes of finite type over Z.

Definition 7.3.4. If X is a scheme of finite type over Z, one defines the
zeta function of X as

ζX(s) :=
∏

closed P ∈ X

(
1− (#k(P ))−s

)−1
.

Remark 7.3.5. It is easy to show that ζX(s) converges in the half-plane
{s ∈ C : Re(s) > r} for some r ∈ R depending on X (see Exercise 7.2), but
it is less easy to find the smallest such r.

The Riemann zeta function ζ(s) is then ζSpecZ(s). More generally, if k
is a number field and Ok is its ring of integers, then ζSpecOk(s) is called the
Dedekind zeta function of k.

7.3.3. Schemes of finite type over a finite field. For schemes over a
finite type over a finite field, there is a closely related definition.

Definition 7.3.6. Let X be a scheme of finite type over Fq. Define

ZX(T ) := exp

∑
n≥1

#X(Fqn)
Tn

n

 ∈ Q[[T ]].

Equivalently, ZX(T ) is characterized by the equations

(7.3.7) ZX(0) = 1, T
d

dT
logZX(T ) =

∑
n≥1

#X(Fqn)Tn.

Because of the following proposition, ZX(T ) too is called the zeta func-
tion of X.
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Proposition 7.3.8. If X is a scheme of finite type over Fq, then X is also
of finite type over Z, and we have ζX(s) = ZX(q−s).

Proof. See Exercise 7.3. �

7.4. The Weil conjectures in terms of zeta functions

We can reformulate the Weil conjectures in terms of ZX(T ), and in fact this
is how they were originally expressed [Wei49, p. 507]:

Theorem 7.4.1 (Restatement of Weil conjectures).

(i) Let X be a scheme of finite type over Fq. Then the power series ZX(T )
is (the Taylor series of) a rational function in Q(T ). The rational
function will be of the form

(1− β1T ) · · · (1− βsT )

(1− α1T ) · · · (1− αrT )

for some α1, . . . , αr, β1, . . . , βs ∈ Z.
(ii) If X is a smooth proper variety of dimension d over Fq, then

ZX(T ) =
P1(T )P3(T ) · · ·P2d−1(T )

P0(T )P2(T )P4(T ) · · ·P2d(T )
,

where Pi ∈ 1 + TZ[T ] factors over C as
∏bi
j=1(1 − αijT ), with |αij | =

qi/2 for any archimedean absolute value | | on the number field Q(αij)
(“Riemann hypothesis”). Also, we have the functional equation

(7.4.2) ZX

(
1

qdT

)
= ±qdχ/2TχZX(T ),

where χ := b0− b1 + b2−· · ·+ b2d ∈ Z is the Euler characteristic of X.
(Equation (7.4.2) can be equivalently expressed as a functional equa-
tion relating ζX(s) to ζX(d− s), in analogy with Proposition 7.3.2(ii).
The sign is specified in Exercise 7.4.) If in addition X is geometrically
irreducible, then P0(T ) = 1− T and P2d(T ) = 1− qdT .

(iii) Same as in Theorem 7.1.1.

Remark 7.4.3. The Euler characteristic χ can also be defined geometrically,
without reference to Betti numbers: it equals the self-intersection number
∆.∆ where ∆ ⊆ X ×X is the diagonal (the graph of the identity morphism
X → X).

Remark 7.4.4 (Riemann hypothesis for a curve over a finite field). If X
is a smooth proper curve, then the zeros of ZX(T ) satisfy |T | = q−1/2,
so Proposition 7.3.8 implies that the zeros of ζX(s) satisfy Re(s) = 1/2, in
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analogy with Proposition 7.3.2(iv).) This explains the use of the terminology
“Riemann hypothesis” for varieties over finite fields.

7.5. Cohomological explanation

(Reference: [Del74, §1 and §2])

7.5.1. History.

(References: [Die75], [Roq02,Roq04,Roq06])

Before Weil’s work, the Weil conjectures were known for curves over finite
fields, by work of E. Artin, Hasse, and Schmidt, except that the Riemann
hypothesis was known only for curves of genus ≤ 1. Weil was led to his
conjectures by this work, and by his own proof of the Riemann hypothesis
for curves of arbitrary genus [Wei48a] and for certain varieties of higher
dimension such as diagonal hypersurfaces [Wei49].

Weil’s proof for curves proceeded by adapting the theory of correspon-
dences to varieties in characteristic p. As Hasse observed in 1936, the prob-
lem of determining #X(Fqn) can be converted into a purely geometric prob-
lem; namely, if F is the relative q-power Frobenius morphism on XFq , then
#X(Fqn) equals the number of fixed points of Fn. Weil reinterpreted this
number as the intersection number of two curves in X × X, namely, the
graphs of the identity and Fn.

On the other hand, Lefschetz and Hopf had given a topological “trace
formula” for the number of fixed points of a map from a compact manifold
to itself, in terms of the action of the map on the associated singular co-
homology spaces; this showed that the number of fixed points of powers of
an endomorphism of a complex projective variety (assuming nondegeneracy)
would be given by a formula such as that in Theorem 7.1.1(i). Weil’s hope
was that the theory of correspondences would serve in characteristic p as
a substitute for the singular cohomology theory, given that correspondences
had served him so well in the case of curves. Such a “motivic” approach (to
use anachronistic terminology), however, has never been completed.

Instead, others, starting with Serre and Grothendieck in the 1950s, sought
to develop an algebraic analogue of singular cohomology rich enough to ac-
commodate a trace formula that would explain the Weil conjectures. It
was this thinking that motivated the development of étale cohomology by
Grothendieck, M. Artin, Verdier, and Deligne. Étale cohomology eventually
proved the conjectures in full, even though the first of the conjectures, the
rationality, was originally proved by a different method without cohomology,
by Dwork [Dwo60].
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7.5.2. The Lefschetz trace formula in topology. Let X be a compact
differentiable real manifold of dimension d. Let f : X → X be a differentiable
map. A fixed point of f is a point x ∈ X such that f(x) = x. At such a
point, the derivative dfx is an endomorphism of the tangent space TxX. Call
a fixed point x ∈ X nondegenerate if 1 − dfx is invertible, where 1 is the
identity endomorphism; this condition should be thought of as saying that
the fixed point is of “multiplicity 1”.

For i ≥ 0, the singular cohomology group Hi(X,Z) is a finitely generated
abelian group, and tensoring with Q yields a finite-dimensional Q-vector
space isomorphic to Hi(X,Q). Its dimension bi is called the ith Betti number
of X. Then f induces a Q-linear endomorphism f∗ of each Hi(X,Q), and its
trace is an integer because the endomorphism comes from an endomorphism
of Hi(X,Z).

Theorem 7.5.1 (Lefschetz trace formula). With notation as above, if all
fixed points of f are nondegenerate, then

#{fixed points of f} =
∑
i≥0

(−1)i tr
(
f∗|Hi(X,Q)

)
.

The alternating sum of traces is actually a finite sum since Hi(X,Q) = 0
for i > d = dimX.

Definition 7.5.2. From now on, in this and similar situations, we use the
abbreviations

tr(f |H∗(X,Q)) :=
∑
i≥0

(−1)i tr
(
f∗|Hi(X,Q)

)
,

det(1− Tf |H∗(X,Q)) :=
∏
i≥0

det
(
1− Tf∗|Hi(X,Q)

)(−1)i
,

where T is an indeterminate.

The following is a simplified version of Poincaré duality, stated in a form
suitable for adaptation to the étale setting.

Theorem 7.5.3 (Poincaré duality). If X is an oriented connected compact
real differentiable manifold of dimension d, then Hd(X,Q) ' Q, and there
are cup-product pairings

Hi(X,Q)×Hd−i(X,Q) −→ Hd(X,Q) ' Q
that are perfect pairings for each i. In particular, bi = bd−i for each i.

If X is a connected compact complex manifold of complex dimension d,
then X is automatically oriented, and its dimension as a real manifold is 2d.
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7.5.3. Some `-adic cohomology. If n ∈ Z, we write 1/n ∈ OX to mean
that the image of n in Γ(X,OX) is a unit, or equivalently, that each point
of X has residue field of characteristic not dividing n.

Definition 7.5.4. Let X be a scheme. Fix a prime ` with 1/` ∈ OX . For
i ∈ N, define

Hi(X,Z`) := lim←−
n

Hi
et(X,Z/`nZ).

(To simplify notation, we omit the subscript et.) When equipped with the
profinite topology, this is a continuous Z`-module. Also define a Q`-vector
space

Hi(X,Q`) := Hi(X,Z`) ⊗
Z`

Q`.

These definitions will be applied especially when X is a variety over
a separably closed field, since it is this case that most closely models the
singular cohomology of a complex variety. If X is a variety over a smaller
field, typically one forms the base extension XK for some separably closed
field K ⊇ k before taking its cohomology. One can show that the resulting
cohomology is unchanged upon passing from one separably closed field to a
larger one, so it does not matter much which K is chosen.

Example 7.5.5. Let A be a g-dimensional abelian variety over a field k.
Let ` be a prime not equal to char k. The Tate module of A is defined by

T`A := HomZ(Q`/Z`, A(ks)) = lim←−
n

A(ks)[`
n],

where each homomorphism A(ks)[`
n+1] → A(ks)[`

n] in the inverse system
is multiplication-by-`. It turns out that T`A is a free Z`-module of rank
2g equipped with a continuous action of Gk. It acts as if it were an “étale
homology group Het

1 (Aks ,Z`)” in the sense that its Z`-dual HomZ`(T`A,Z`)
is canonically isomorphic to H1(Aks ,Z`), as it turns out. See Exercise 7.5 for
another way in which T`A acts like homology. One also defines a Q`-vector
space V`A := (T`A)⊗Z` Q`.

Remark 7.5.6. More generally, it turns out that for any smooth proper
variety X over a separably closed field k, for any prime ` 6= char k, and any
i ≥ 0, the Z`-module Hi(X,Z`) is finitely generated. Its rank, which by
definition equals dimQ` Hi(X,Q`), is called the ith `-adic Betti number bi
of X. This is in analogy with Section 7.5.2.

If k is not separably closed, one generally base-extends X to ks or k
before defining its Betti numbers.

Remark 7.5.7. There is another approach to defining étale cohomology
with Z` or Q` coefficients, via the pro-étale topology; see [BS15].
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7.5.4. Tate twists. There is a “twisted” variant of `-adic cohomology:

Definition 7.5.8. Let X be a scheme, and let n ∈ Z>0 be such that 1/n ∈
OX . For m ∈ Z, the Tate twist (Z/nZ)(m) is a sheaf on Xet defined as
follows:

(Z/nZ)(m) :=


Z/nZ if m = 0,

(µn)⊗m if m > 0,

Hom((µn)⊗(−m),Z/nZ) if m < 0.

Again fix a prime ` with 1/` ∈ OX . Also fix m ∈ Z. For each n ≥ 0, there
is a natural surjection (Z/`n+1Z)(m) → (Z/`nZ)(m). (For example, when
m = 1, it is the `th-power homomorphism µ`n+1 → µ`n .) For i ∈ N and
m ∈ Z, define

Hi(X,Z`(m)) := lim←−
n

Hi
et(X, (Z/`nZ)(m)),

Hi(X,Q`(m)) := Hi(X,Z`(m)) ⊗
Z`

Q`.

When X = Spec k, one can also view (Z/nZ)(m), Z`(m), and Q`(m) as
continuous Gk-modules. In particular, Q`(m) is a 1-dimensional continuous
character of Gk, and Q`(1) is called the cyclotomic character.

Suppose that k is separably closed. Then k contains all `-power roots
of unity. If we choose generators ζ`n of the abelian group µ`n for all n ≥ 1
compatibly (i.e., such that ζ``n+1 = ζ`n), then we obtain compatible isomor-
phisms Z/`nZ→ µ`n and Z` → Z`(1) and Q` → Q`(1). Thus the Tate twists
do nothing.

Now let k be an arbitrary field. The previous paragraph shows that
Hi(Xks ,Q`(m)) and Hi(Xks ,Q`) are isomorphic as abelian groups. But they
may differ when the action of Gk is taken into account. The precise relation-
ship is as follows:

Proposition 7.5.9. There is an isomorphism of Q`-representations of Gk

Hi(Xks ,Q`(m)) ' Hi(Xks ,Q`)⊗Q` Q`(m).

Proof. On Xks , we may identify (Z/`nZ)(m) with Z/`nZ by choosing a
generator ζ of the Gk-module (Z/`nZ)(m). Hence we obtain an isomorphism
of abelian groups

Hi(Xks ,Z/`nZ)⊗Z/`nZ (Z/`nZ)(m) −→ Hi(Xks , (Z/`nZ)(m)).

This isomorphism is independent of the choice of ζ, so it is Gk-equivariant.
Take inverse limits and tensor with Q`. �
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7.5.5. The Lefschetz trace formula in étale cohomology. If X is a
scheme of finite type over a separably closed field, and d := dimX, then it
turns out that Hi(X,Q`) = 0 for all i outside the range 0 ≤ i ≤ 2d (this is a
consequence of [SGA 4III, X, Corollaire 4.3]).

Theorem 7.5.10 (Grothendieck–Lefschetz trace formula). Let X be a
smooth proper variety over an algebraically closed field k. Fix a prime
` 6= char k. Let f : X → X be a k-morphism such that each fixed point
in X(k) is nondegenerate (in the same sense as in Section 7.5.2, but using
the Zariski tangent space). Then

#{fixed points of f in X(k)} = tr (f |H∗(X,Q`))

in Q`, where the right-hand side is defined as in Definition 7.5.2.

Proof. See [SGA 41
2 , Cycle, Corollaire 3.7]. �

Remark 7.5.11. More generally, without the nondegeneracy hypothesis,
the formula remains true if we replace the left-hand side by the intersection
number Γ.∆ computed in X × X, where Γ is the graph of f and ∆ is the
diagonal [SGA 41

2 , Cycle, Corollaire 3.7].

Theorem 7.5.12 (Poincaré duality in `-adic cohomology). Let X be a
smooth proper integral variety of dimension d over a separably closed field k.
Fix a prime ` 6= char k.

(a) There is a natural isomorphism H2d(X,Q`(d)) ' Q`.

(b) Cup product defines a perfect pairing

Hr(X,Q`(i))×H2d−r(X,Q`(d− i)) −→ H2d(X,Q`(d)) ' Q`

for each r, i ∈ Z.

Proof. This is a consequence of [Mil80, VI.11.2]. �

Remark 7.5.13. As at the end of Section 7.5.4, the Tate twists do not
change theQ`-vector spaces; they only change the Galois action in the setting
that X comes from a variety defined over a subfield k0 ≤ k. For fixed r,
Proposition 7.5.9 shows that if Theorem 7.5.12 holds for some i, then it
holds for all i.

7.5.6. Arithmetic and geometric Frobenius. Fix a power q of a prime
p. Define the arithmetic Frobenius σ to be the field automorphism of Fq
given by σ(a) = aq. Write σ also for the induced morphism SpecFq →
SpecFq.
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Let X be a smooth proper variety over Fq. Let X = X ×Fq Fq. The field
automorphism σ gives rise to an automorphism

X = X ×
Fq

Fq
1×σ // X ×

Fq
Fq = X.

Let FX : X → X be the absolute q-power Frobenius morphism. Finally,
let F = FX/Fq : X → X be the relative q-power Frobenius morphism (Re-
mark 3.7.6).

The diagram (3.7.1) for X → SpecFq (with q in place of p) is

X
FX

''

��

F

##
X

��

1×σ // X

��
SpecFq

σ // SpecFq.

(7.5.14)

�

Warning 7.5.15. Of the three morphisms F , FX , and 1 × σ, only F is a
morphism of Fq-varieties, and usually only 1× σ is an automorphism.

�

Warning 7.5.16. Diagram (7.5.14) for X → SpecFq is not the same as
the base extension by SpecFq → SpecFq of the corresponding diagram for
X → SpecFq. For example, the absolute Frobenius FX is different from the
base extension of FX .

The Q`-vector space Hi(X,Q`) is finite-dimensional by Remark 7.5.6.
By contravariant functoriality, each morphism of schemes X → X (not nec-
essarily an Fq-morphism) induces a Q`-linear endomorphism of Hi(X,Q`).
We compare these for the three morphisms at the top of (7.5.14).

Proposition 7.5.17. Let X be a smooth proper variety over Fq. With nota-
tion as above, the endomorphism of Hi(X,Q`) induced by the relative Frobe-
nius morphism F is the inverse of the endomorphism induced by 1⊗ σ.

Proof. Lemma 3.7.5 applied to étale morphisms to X implies that FX acts
as the identity on the category of étale X-schemes, and hence as the identity
on Hi(X,Q`). Now the result follows from (7.5.14). �

Because of Proposition 7.5.17, the field automorphism σ−1 ∈ AutFq and
the corresponding automorphism 1 × σ−1 of X are both called geometric
Frobenius (cf. [Del74, 1.15]).
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7.5.7. Deducing the Weil conjectures. Let X be a smooth proper va-
riety of dimension d over Fq. Let X = XFq . Let F : X → X be the relative
q-power Frobenius morphism. Then #X(Fqn) is the number of fixed points
of the nth iterate Fn. Also, the derivative of F is everywhere 0, so fixed
points of F and its powers are automatically nondegenerate. So applying
the Grothendieck–Lefschetz trace formula (Theorem 7.5.10) to X and Fn

yields

(7.5.18) #X(Fqn) = tr
(
Fn|H∗(X,Q`)

)
.

Thus

ZX(T ) = exp

∑
n≥1

#X(Fqn)
Tn

n

 (Definition 7.3.6)

= exp

∑
n≥1

tr
(
Fn|H∗(X,Q`)

) Tn
n


= det

(
1− TF |H∗(X,Q`)

)−1 (by Exercise 7.6)

=
P1(T )P3(T ) · · ·P2d−1(T )

P0(T )P2(T )P4(T ) · · ·P2d(T )
,

where
Pi(t) := det

(
1− TF |Hi(X,Q`)

)
∈ Q`[T ].

In particular, ZX(T ) is a rational function in Q`(T ). But ZX(T ) is also in
1 + TZ[[T ]] by Proposition 7.3.8, so ZX(T ) ∈ Q(T ).

For each i, let bi = dim Hi(X,Q`), and let αi1, . . . , αi,bi be the eigenvalues
of F ∗|Hi(X,Q`) counted with multiplicity; then

Pi(t) =

bi∏
j=1

(1− αijT ).

The αij turn out to be nonzero, so degPi = bi.
The identity 1X : X → X induces the identity on each space Hi(X,Q`),

so Remark 7.5.11 applied to 1X yields

∆.∆ =

2d∑
i=0

(−1)ibi = χ,

as claimed in Remark 7.4.3.
Now suppose in addition that X is integral. Twisting the isomorphism

in Theorem 7.5.12(a) by −d shows that

H2d(X,Q`) ' Q`(−d).
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In particular, b2d = 1. With notation as in Section 7.5.6, Proposition 7.5.17
shows that F ∗ acts on H2d(X,Q`) as σ−1 acts on Q`(−d), i.e., as multi-
plication by qd. The Galois equivariance of the perfect pairing in Theo-
rem 7.5.12(b) shows that the eigenvalues α2d−i,∗ of F ∗ (or σ−1) acting on
the space H2d−i(X,Q`) are the inverses of the eigenvalues of σ−1 acting on
Hi(X,Q`(d)); the latter eigenvalues are αi/qd, because of the twist. This
explains the functional equation.

The relationship between `-adic Betti numbers and classical Betti num-
bers arises from a theorem comparing `-adic and singular cohomology for a
C-variety, and a theorem about how Hi(X,Q`) behaves under specialization.

All that remains is to prove that each eigenvalue αij is an algebraic
integer with |αij | = qi/2. This was shown by Deligne using further properties
of `-adic cohomology; see [Del74, Théorème 1.6] and [Del80, Théorème 2].
See also [Kat76] for an overview of the proof.

7.5.8. Nonproper varieties.

Remark 7.5.19. The cohomological approach generalizes to Fq-varieties
that are not proper. The Grothendieck–Lefschetz trace formula holds for
a variety over a separably closed field once one replaces Hr(X,Q`) with
“cohomology with compact support” Hr

c(X,Q`); cf. [Gro68a] and [Del74,
Théorème 2.8]. And for a smooth integral variety of dimension d over a
separably closed field, Poincaré duality gives a perfect pairing

Hr
c(X,Q`(i))×H2d−r(X,Q`(d− i)) −→ H2d

c (X,Q`(d)) ' Q`

involving both kinds of cohomology; cf. [SGA 4III, XVIII, Théorème 2.14
and (3.2.6.2)].

Lemma 7.5.20. Let X be a d-dimensional variety over a separably closed
field k. If U ⊆ X is a dense open subscheme, then the restriction map
H2d
c (X,Q`(d))→ H2d

c (U,Q`(d)) is an isomorphism.

Proof. This is a consequence of [SGA 4III, XVIII, Lemme 2.1]. �

Corollary 7.5.21. Let X be a d-dimensional variety over a separably closed
field k. Then H2d

c (X,Q`(d)) is naturally the Q`-vector space having as basis
the set of d-dimensional irreducible components of X.

Proof. Lemma 7.5.20 lets us replace X by a dense open subscheme so that
its irreducible components are disjoint. Then the statement reduces to the
irreducible case already mentioned in Remark 7.5.19. �
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7.6. Cycle class homomorphism

In this section, X is a variety that is smooth of dimension d over a field k.
We will occasionally impose more restrictive conditions.

7.6.1. Algebraic cycles.

(Reference: [Ful98, Chapter 1])

The group PicX may be identified with the group of Weil divisors mod-
ulo linear equivalence. And by definition, a Weil divisor is an integer com-
bination of integral closed subschemes of codimension 1. We now generalize
to higher codimension.

For r ∈ N, the group of codimension r cycles, denoted Zr(X), is
defined as the free abelian group on the set of codimension r integral closed
subschemes of X. For instance, Z1(X) is the group of Weil divisors on X.
If r > d, then Zr(X) = 0.

For each codimension r integral closed subscheme Z, let [Z] ∈ Zr(X)
denote the basis element corresponding to Z. More generally, if Y ⊆ X is
any closed subscheme whose irreducible components Yi are of codimension r
in X, let yi be the generic point of Yi, let `i be the length of the artinian
ring OY,yi , and define [Y ] :=

∑
`i[Yi] ∈ Zr(X).

There is a notion of rational equivalence of cycles that for r = 1 becomes
linear equivalence of divisors. The Chow group CHr(X) is the group of
codimension r cycles modulo rational equivalence; see [Ful98, §1.3 and §1.6],
where CHr(X) is denoted by Ar(X). For instance, CH1(X) = PicX.

7.6.2. Changing the base field. Given a field extension L ⊇ k, there is
a base change homomorphism Zr(X)→ Zr(XL) sending each basis element
[Z] to [ZL]. Even though Z is integral, ZL might not be, so [ZL] must be
defined in terms of lengths as in Section 7.6.1.

Proposition 7.6.1. Let L ⊇ k be an extension of fields. Let X be a smooth
k-variety. Let r ∈ N.

(a) The homomorphism Zr(X)→ Zr(XL) is injective.

(b) If L is Galois over k with Galois group G, then the homomorphism
Zr(X)→ Zr(XL)G is an isomorphism.

Proof.

(a) For Z varying over codimension r integral closed subschemes of X, the
subschemes ZL are nonempty and do not share irreducible components,
so the classes [ZL] are linearly independent.
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(b) Consider a G-orbit of codimension r integral closed subscheme of XL,
and let Y be their union, a closed subscheme of XL. Although descent of
schemes is not effective in general, in the present setting we can descend
the ideal sheaf of Y to show that Y = ZL for some closed subscheme
Z ⊆ X. If Z were not reduced, then Y would not be reduced either. If
Z were not irreducible, then Y would not consist of exactly one G-orbit.
Thus Z is integral, and [Z] maps to [Y ]. Such classes [Y ] form a basis
of Zr(XL)G, so Zr(X)→ Zr(XL)G is an isomorphism. �

7.6.3. Cohomology classes of divisors. Taking cohomology of the Kum-
mer sequence

1 −→ µ`n −→ Gm
`n−→ Gm −→ 1

of sheaves on Xet yields a connecting homomorphism

PicX = H1(X,Gm) −→ H2(X, (Z/`nZ)(1)).

These are compatible as n varies, so we obtain homomorphisms

(7.6.2) PicX −→ H2(X,Z`(1)) −→ H2(X,Q`(1)),

whose composition will be denoted clet.

7.6.4. Cohomology classes of higher-codimension cycles. In this sec-
tion, k is algebraically closed. Let Z ⊆ X be an integral closed subscheme
of codimension r, so dimZ = d− r. Our goal is to define a cohomology class
clet(Z) ∈ H2r(X,Q`(r)).
Case 1: X and Z are nice. The inclusion Z ↪→ X induces

(7.6.3) H2d−2r(X,Q`(d− r)) −→ H2d−2r(Z,Q`(d− r)) ' Q`,

by Theorem 7.5.12(a) for Z. By Theorem 7.5.12(b) for X, this linear func-
tional corresponds to an element of H2r(X,Q`(r)) denoted clet(Z).
Case 2: X and Z are smooth and integral. Replace (7.6.3) by

H2d−2r
c (X,Q`(d− r)) −→ H2d−2r

c (Z,Q`(d− r)) ' Q`,

which again by Poincaré duality (Remark 7.5.19) defines an element clet(Z) ∈
H2r(X,Q`(r)). (In fact, Case 1 was unnecessary since it is subsumed by
Case 2.)
Case 3: X is smooth and integral, and Z is integral. Let X ′ = X−Zsing and
Z ′ = Z−Zsing. Case 2 defines clet(Z

′) ∈ H2r(X ′,Q`(r)). Using the fact that
X ′ differs from X only in a subset of codimension > r, one can show that
the map H2r(X,Q`(r)) → H2r(X ′,Q`(r)) is an isomorphism (cf. [SGA 41

2 ,
Cycle, 2.2.10]). Let clet(Z) be the element of H2r(X,Q`(r)) corresponding
to clet(Z

′) ∈ H2r(X ′,Q`(r)).
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Case 4: X is smooth, and Z is integral (the general case). Extending
Z-linearly, and taking direct sums over the components of X if X is not
integral, we obtain a cycle class homomorphism

clet : Zr(X) −→ H2r(X,Q`(r)).

Rationally equivalent cycles have the same image under clet; in other
words, clet factors through the quotient CHr(X). Even better, algebraically
equivalent cycles have the same image under clet [SGA 41

2 , Cycle, Remar-
que 2.3.10].

The homomorphism CH1(X) → H2(X,Q`(1)) is the same as the homo-
morphism (7.6.2).

7.6.5. The Tate conjecture.

(Reference: [Tat94])

Which cohomology classes in H2r(X,Q`(r)) are in the image of clet, or at
least in the Q`-span of the image? The Tate conjecture attempts to answer
this question. It is analogous to the Hodge conjecture, which, for a smooth
projective C-variety, attempts to describe the Q-span of the image of the
analogous cycle class homomorphism from Zr(X) to the singular cohomology
group H2r(X(C),Q).

Let X be a nice variety over a field k that is not necessarily algebraically
closed. Let G = Gal(ks/k) = Aut(k/k). Fix r ≥ 0. The homomorphisms

Zr(Xks) −→ Zr(Xk)
clet−→ H2r(Xk,Q`(r)) ' H2r(Xks ,Q`(r))

are G-equivariant, and taking G-invariants yields a homomorphism

Zr(X) −→ H2r(Xks ,Q`(r))
G,

by Proposition 7.6.1(b). Extending Q`-linearly yields a Q`-linear cycle class
homomorphism

(7.6.4) Zr(X)⊗Q`
clet−→ H2r(Xks ,Q`(r))

G.

Conjecture 7.6.5 (Tate conjecture). Let k be a finitely generated field (i.e.,
finitely generated as a field over Fp or Q). Let X be a nice variety over k.
Then the cycle class homomorphism (7.6.4) is surjective.

Conjecture 7.6.5 implies a variant for Xks instead of X, as we explain in
the rest of this section.

Definition 7.6.6. The space of algebraic classes is the image of

Zr(Xks)⊗Q`
clet−→ H2r(Xks ,Q`(r)).
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The space of Tate classes is⋃
open H ≤ G

H2r(Xks ,Q`(r))
H ,

where the union is over all (finite-index) open subgroups H of the Galois
group G.

Every algebraic class is a Tate class. If Conjecture 7.6.5 holds for XL

for every finite separable extension L ⊇ k contained in ks, then the converse
holds.

Remark 7.6.7. Like the Hodge conjecture, the Tate conjecture is interesting
because it predicts the existence of algebraic cycles in situations where there
is no known way to construct them.

7.6.6. The Tate conjecture and the Birch and Swinnerton-Dyer
conjecture.

(References: [Tat95a], [KT03])

Theorem 7.6.8. The following statements are equivalent:

(i) The Tate conjecture for divisors (the r = 1 case) on nice surfaces over
finite fields holds.

(ii) For every nice surface X over a finite field, BrX is finite.
(iii) For every abelian variety A over a global function field, X(A) is finite.
(iv) The rank part of the Birch and Swinnerton-Dyer conjecture (the for-

mula ords=1 L(A, s) = rkA(K)) holds for abelian varieties over global
function fields.

(v) The full Birch and Swinnerton-Dyer conjecture (Remark 5.7.34) holds
for abelian varieties over global function fields.

Sketch of proof. Artin and Tate proved the equivalence of these state-
ments in the 1960s, except that they required additional assumptions and
needed to exclude the p-parts of some groups, where p is the characteristic
[Tat95a]. Since then the work of many people [Gro68d,Mil75,Mil81,
Sch82,Bau92,KT03] proved the equivalence in full generality, as we now
sketch.

(i)⇔(ii): For each nice surface X over a finite field k and for each prime
` 6= char k, the truth of the Tate conjecture for divisors on X in `-adic
cohomology is equivalent to the finiteness of (BrX)[`∞] [Tat95a, Theo-
rem 5.2(i)⇔(ii)], and the finiteness of (BrX)[`∞] implies the finiteness of
the whole group BrX (see [Mil75, Theorem 4.1] and [LLR05, p. 674, foot-
note]).
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(iii)⇒(ii): Let X be a nice surface over a finite field k. There exists a
nice curve B over k and a rational map f : X 99K B whose generic fiber Xη

(a variety over the global function field k(B)) is nice. In proving finiteness
of BrX, Remark 6.8.8 lets us replace X by a blowup, so we may assume
that f is a morphism. Let J be the Jacobian of Xη. In this context, BrX is
finite if and only if X(J) is finite [Gro68d, §4].

(ii)⇒(iii): Suppose that A is an abelian variety over a global function
field K. By [Gab01, Proposition 2.4], A is a quotient of the Jacobian J
of some nice curve C over K. Spread out C to show that C = Xη for
some X 99K B as in the previous paragraph. Then finiteness of BrX implies
finiteness of X(J), which implies finiteness of X(A) (because J is isogenous
to A×A′ for some A′, and finiteness of X is invariant under isogeny).

(iii)⇔(iv) and (iv)⇔(v): See [KT03, 1.8, Theorem]. �

7.7. Applications to varieties over global fields

7.7.1. Uniform estimates for the number of points over finite fields.
The following application of the Weil conjectures is a variant of [LW54,
Theorem 1].

Theorem 7.7.1 (Lang–Weil). Let π :X→Y be a morphism between schemes
of finite type over Z. For what follows, let q be a prime power, let y ∈ Y (Fq),
let Xy be the fiber π−1(y) (i.e., the Fq-scheme obtained by pulling back π by
SpecFq

y→ Y ), and let d = dimXy. All implied constants below depend on
π : X → Y but not on q, y, or d. Then

(i) We have #Xy(Fq) = O(qd).

(ii) If the Fq-scheme Xy is geometrically irreducible, then

#Xy(Fq) = qd +O(qd−1/2).

(iii) If q is sufficiently large and Xy is geometrically irreducible, then Xy

has an Fq-point.
(iv) If q is sufficiently large and Xy is geometrically integral, then Xy has a

smooth Fq-point.

Sketch of proof.

(i) We may assume that X and Y are affine; then in particular each Xy

is separated. We may also assume that a prime ` is invertible on X
and Y , because in each, the open subschemes where two different ` are
invertible cover the whole scheme. The result now follows from
• the generalized Lefschetz trace formula of Remark 7.5.19,
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• a uniform bound on dim Hi
c(Xy,Q`) as y varies [Kat01, Theo-

rem 1], and
• the bound qi/2 on the absolute values of the eigenvalues of the
relative q-power Frobenius morphism on the space Hi

c(Xy,Q`)
[Del80, Théorème 1].

Alternatively, by fibering a variety into curves and using induction on
the dimension, one can reduce to the case in whichX → Y is a family of
curves, in which case one does not need the ingredients above, but just
the Weil conjectures for curves; this is the original argument of [LW54].

(ii) Combine the proof of (i) with the isomorphism H2d
c (V ,Q`(d)) ' Q`

of Corollary 7.5.21 for a d-dimensional geometrically irreducible finite-
type Fq-scheme V . (Alternatively, one can again follow [LW54] and
reduce to the case of curves.)

(iii) If q is sufficiently large, then qd +O(qd−1/2) > 0.
(iv) Let U be the smooth locus of X → Y . If Xy is geometrically integral,

then so is its smooth locus Uy, by Proposition 3.5.64. So (iv) follows
from (iii) for U → Y . �

7.7.2. Existence of local points. Recall the notation for global fields
introduced in Section 1.1.3.

Theorem 7.7.2. Let k be a global field. Let X be a geometrically integral
k-variety. Then X(kv) is nonempty for all but finitely many v ∈ Ωk.

Proof. There exists a finite subset S ⊆ Ωk containing all archimedean places
such that X spreads out to a separated finite-type Ok,S-scheme X with geo-
metrically integral fibers. By Theorem 7.7.1(iv), for almost all v ∈ SpecOk,S ,
there is a point in X (Fv) at which the morphism X → SpecOk,S is smooth.
By Hensel’s lemma (Theorem 3.5.63(a)), this point lifts to an element of
X (Ov) ⊆ X (kv) = X(kv). �

Remark 7.7.3. Given X as in Theorem 7.7.2, one can algorithmically de-
termine a finite subset S ⊆ Ωk such that X(kv) is nonempty for all v /∈ S
(in practice, it might be easiest to begin by replacing X by a geometrically
integral curve in X). If k is a number field, then in principle one can also
determine whether X(kv) is nonempty for each of the finitely many v ∈ S;
this was mentioned already in Remark 2.6.4.

7.7.3. Embedding finitely generated algebras into local fields.

(Reference: [Cas86, Chapter 5])

Theorem 7.7.4. Let A be an integral domain of characteristic 0 that is
finitely generated as a Z-algebra. Let k be the constant field of FracA, so k
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is a finite extension of Q (see Section 2.2.4). Then for all but finitely many
v ∈ Ωk, there exists an embedding A ↪→ Ov.

Proof. Let X = SpecA. Let X = Spec(QA), which is a geometrically
integral k-variety by Propositions 2.2.19 and 2.2.20. We may replace A by
A[f−1] for some nonzero f ∈ A to assume that X is as in the proof of
Theorem 7.7.2, so X smooth has an Ov-point for all but finitely many v. For
any such v, Remark 3.5.76 yields a point in the open subset X (Ov) of X(kv)
lying outside the countably many subvarieties g = 0 defined by nonzero
g ∈ A. Any such Ov-point is a homomorphism A → Ov killing no nonzero
g ∈ A. �

Corollary 7.7.5. Let A be an integral domain of characteristic 0 that is
finitely generated as a Z-algebra. Then there are infinitely many primes p
such that A embeds in Zp.

Proof. With notation as in Theorem 7.7.4, there are infinitely many places
v of k that are unramified of degree 1 over Q; then Ov ' Zp. There are only
finitely many v above each p, so infinitely many primes p occur. �

In the context of Corollary 7.7.5, for some applications one would like to
force particular nonzero elements a1, . . . , an ∈ A to map to units in Zp. To
arrange this, apply Corollary 7.7.5 to A[a−1

1 , . . . , a−1
n ].

Corollary 7.7.6. Let B be an integral domain that is also a finitely generated
Q-algebra. Then there are infinitely many primes p such that B embeds in
Qp.

Proof. Choose Q-algebra generators of B, and let A be the Z-subalgebra
they generate. Apply Corollary 7.7.5 to A. If A embeds in Zp, then its
localization B = QA embeds in QZp = Qp. �

Corollaries 7.7.5 and 7.7.6 make it possible to reduce many questions over
characteristic 0 fields to questions over Zp or Qp. See Exercises 7.9 and 7.10
for examples.
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Exercises

7.1. Find the smallest g ≥ 0 such that there exists a finite field Fq and a
nice curve X of genus g over Fq such that X(Fq) is empty.

7.2. (Convergence of zeta functions) Let X be a scheme of finite type over
Z.
(a) Prove that there is a polynomial f(x) such that for every q ≥ 1,

the number of closed points P ∈ X with #k(P ) = q is less than
or equal to f(q).

(b) Deduce that there exists r ∈ R such that the product defining
ζX(s) converges for all s ∈ C with Re(s) > r.

7.3. Use Exercise 2.13 to prove Proposition 7.3.8.

7.4. Let notation be as in Theorem 7.4.1(ii). Let µ be the multiplicity of
−qd/2 as a zero of Pd(T ). Assuming Theorem 7.1.1(ii), prove that

ZX

(
1

qdT

)
= (−1)χ+µ qdχ/2 Tχ ZX(T ).

7.5. Let A be an abelian variety over C. Then A(C) ' Cg/Λ for some
rank 2g discrete Z-submodule Λ in Cg, and Λ ' H1(A(C),Z). Let `
be any prime. Prove that there is a natural Z`-module isomorphism
T`A ' Λ ⊗ Z`. (“Natural” means that it should be functorial with
respect to abelian variety homomorphisms A→ B.)

7.6. Let V be a finite-dimensional vector space over a field k of character-
istic 0. Let F : V → V be an endomorphism. Then

exp

∑
n≥1

tr(Fn)
Tn

n

 = det(1− TF )−1

in k[[T ]].

7.7. Prove that given n ≥ 1, if p is sufficiently large (relative to n), then
for any ε1, . . . , εn ∈ {1,−1}, there exists x ∈ Z such that for all
i ∈ {1, 2, . . . , n}, the Legendre symbol

(
x+i
p

)
equals εi.

7.8. Generalize Theorem 7.7.1(ii): Show that if the hypothesis that Xy is
geometrically irreducible is dropped, then

#Xy(Fq) = Cqd +O(qd−1/2),

where C is the number of d-dimensional irreducible components of Xy

that are geometrically irreducible.
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7.9. (a) Let p be an odd prime, and let n ≥ 1. Let N ∈ Mn(Zp). For each
r ≥ 1, prove that (1 + prN)p ≡ 1 + pr+1N (mod pr+2).

(b) Prove that the group 1+pMn(Zp) of GLn(Zp) is torsion-free; that
is, its only element of finite order is the identity.

(c) (Selberg) Let k be a field of characteristic 0. Prove that any
finitely generated subgroup G of GLn(k) has a torsion-free finite-
index subgroup.

(d) Does the previous statement hold for all fields of all characteris-
tics?

7.10. (a) Let p be an odd prime. Let b ∈ 1 + pZp. Prove that there is a
p-adic power series f ∈ Zp[[n]] with radius of convergence greater
than 1 such that f(n) = bn for all n ∈ Z. (Hint : Use properties
of the p-adic logarithm and exponential maps in [Kob84, IV.1].)

(b) Let b ∈ Z×p . Prove that there are p-adic power series f0, . . . , fp−2 ∈
Zp[[n]] such that fc(n) = b(p−1)n+c for all c ∈ {0, . . . , p − 2} and
n ∈ Z.

(c) A sequence (an)n≥0 in a field k is called a linear recursive se-
quence if there exist r ≥ 1 and cr−1, . . . , c0 ∈ k such that

an+r = cr−1an+r−1 + · · ·+ c0an

for all n ≥ 0. Prove that if char k = 0, then there exist a non-
negative integer s, polynomials p1, . . . , ps ∈ k[n], and elements
b1, . . . , bs ∈ k× such that

an = p1(n) bn1 + · · ·+ ps(n) bns

for all sufficiently large n.
(d) The Skolem–Mahler–Lech theorem states that for any linear

recursive sequence (an) in a field k of characteristic 0, the set
{n : an = 0} is a finite union of arithmetic progressions and sin-
gletons. Prove it. (Hint : A p-adic power series with radius of
convergence greater than 1 is either identically zero or has only
finitely many zeros in Zp.)

(e) Give an algorithm that takes as input the specification (r, c0, . . . ,
cr−1, a0, . . . , ar−1) of a linear recursive sequence (an)n≥0 of inte-
gers, and outputs YES if there exists n such that an = 0 and NO
otherwise. (Warning : This is an unsolved problem! No such algo-
rithm is known, and it may be that no such algorithm exists—that
is, it could be undecidable.)
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Chapter 8

Cohomological
obstructions to rational
points

In 1970, Manin [Man71] explained how, for a variety X over a global field
k, elements of BrX could produce obstructions to the local-global principle.
Meanwhile, Fermat’s method of infinite descent was generalized to show how
a torsor under an algebraic group G over X could give rise to an obstruc-
tion, by Chevalley and Weil [CW30] for finite G, by Colliot-Thélène and
Sansuc [CTS77,CTS80,CTS87] for commutative G, and by Harari and
Skorobogatov [HS02] for general G. In this chapter, we will explain these
and related obstructions.

8.1. Obstructions from functors

8.1.1. The F -obstruction to the local-global principle. Let k be a
global field, and let A be its adèle ring. Let F : Schemesopp

k → Sets be a
functor. For a k-algebra L, write F (L) for F (SpecL). Let X be a k-variety.

Suppose that A ∈ F (X). For each k-algebra L, define evA : X(L) →
F (L) as follows: Given x ∈ X(L), the corresponding morphism SpecL

x→ X
induces a map F (X) → F (L), sending A to some element of F (L) called

227
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228 8. Cohomological obstructions to rational points

evA(x) or A(x). Then the diagram

X(k) �
� //

evA
��

X(A)

evA
��

F (k) // F (A)

(8.1.1)

commutes. Let X(A)A be the subset of X(A) consisting of elements whose
image in F (A) lies in the image of F (k) → F (A). Then (8.1.1) shows that
X(k) ⊆ X(A)A. In other words, A puts constraints on the locus in X(A)
where k-points can lie.

Imposing the constraints for all A ∈ F (X) yields the subset

X(A)F = X(A)F (X) :=
⋂

A∈F (X)

X(A)A,

again containing X(k).

Definition 8.1.2. If X(A) 6= ∅ but X(A)F = ∅, then we say that there is
an F -obstruction to the local-global principle; in this case X(k) = ∅.

8.1.2. The F -obstruction to weak approximation. We have X(A) ⊆
X(
∏
kv) =

∏
X(kv); cf. Exercise 3.4. (If X is proper, then all three sets are

equal.) There is a variant of Definition 8.1.2 in which X(A) is replaced by
X(
∏
kv) =

∏
X(kv) and F (A) is replaced by

∏
F (kv) in (8.1.1); call the

resulting set X(
∏
kv)

F .

Definition 8.1.3. If X(
∏
kv)

F 6= X(
∏
kv), then we say that there is an

F -obstruction to weak approximation. Usually this terminology is used in
a context where X(

∏
kv)

F is known to be closed in X(
∏
kv), in which case

such an F -obstruction would imply that X(k) is not dense in X(
∏
kv).

8.1.3. Examples. In order for the F -obstruction to be nontrivial, F must
be such that F (k)→ F (A) is not surjective. In order for the F -obstruction
to be useful, the image of F (k) → F (A) must be describable in some way.
This is so in the following two examples, as will be explained in subsequent
sections.

Example 8.1.4. Taking F = Br defines the Brauer set X(A)Br.

Example 8.1.5. Taking F = H1(−, G) for an affine algebraic group G over
k defines a set X(A)H1(X,G).

Remark 8.1.6. To avoid having to understand the Brauer group of a non-
noetherian ring like A, in Section 8.2 we will replace BrA in (8.1.1) by⊕

v Br kv when defining X(A)Br; in fact, the Brauer–Manin obstruction
was originally defined using

⊕
v Br kv. It turns out that the natural ho-

momorphism BrA → ⊕
v Br kv is an isomorphism [Čes15, Theorem 2.13],
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so the resulting set X(A)Br is the same. Similarly, we replace H1(A, G) by∏
v H1(kv, G) in Section 8.4; the natural map H1(A, G) → ∏

v H1(kv, G) is
an injection (a consequence of [Čes15, Theorem 2.18]), so again the resulting
set X(A)H1(X,G) is the same.

Question 8.1.7. Are there other functors that one could use to obtain
obstructions?

8.1.4. Functoriality. The proofs of the following three statements are left
to the reader as Exercise 8.1.

Proposition 8.1.8. Let π : X ′ → X be a morphism of k-varieties. Let
x′ ∈ X ′(L) for some k-algebra L, and let A ∈ F (X). Then the two ways of
evaluating A on x′ yield the same result: If we define x := π(x) ∈ X(L) and
A′ := π∗A ∈ F (X ′), then A′(x′) = A(x) in F (L).

Corollary 8.1.9. The assignment X 7→ X(A)F is functorial in X.

Corollary 8.1.10. Let π : X ′ → X be a morphism of k-varieties. If the map
F (X) → F (X ′) is surjective, then X ′(A)F is the inverse image of X(A)F

under X ′(A)→ X(A).

8.2. The Brauer–Manin obstruction

Throughout this section, k is a field, and X is a k-variety.

8.2.1. Evaluation. Let A ∈ BrX. If L is a k-algebra and x ∈ X(L), then
SpecL

x→ X induces a homomorphism BrX → BrL, which maps A to an
element of BrL that we call A(x); cf. Section 8.1.1.

8.2.2. The Brauer set.

(Reference: [Sko01, §5.2])

Now suppose that k is a global field. Fix A ∈ BrX.

Proposition 8.2.1. If (xv) ∈ X(A), then A(xv) = 0 for almost all v.

Proof. By Corollary 6.6.11, for some finite set of places S (containing all
the archimedean places), we can spread out X to a finite-type Ok,S-scheme
X and spread out A to an element A ∈ BrX . Enlarging S if necessary, we
may also assume that xv ∈ X (Ov) for all v /∈ S. Then A(xv) comes from an
element A(xv) ∈ BrOv. But BrOv = 0 by Corollary 6.9.3. �

Thus A determines a map

X(A) −→ Q/Z

(xv) 7−→ (A, (xv)) :=
∑
v

invv(A(xv)).



Un
offi
cia
l v
ers
ion

for
inc
ide
nta

l o
nli
ne
use

230 8. Cohomological obstructions to rational points

Proposition 8.2.2. If x ∈ X(k) ⊆ X(A), then (A, x) = 0.

Proof. Use the commutativity of

(8.2.3)

X(k) �
� //

��

X(A)

��

0 // Br k //
⊕

v
Br kv

∑
invv // Q/Z // 0. �

Remark 8.2.4. Compare (8.2.3) with (8.1.1).

Definition 8.2.5. For A ∈ BrX, define

X(A)A := { (xv) ∈ X(A) : (A, (xv)) = 0 } .

Also define

X(A)Br :=
⋂

A∈BrX

X(A)A.

This agrees with the definition in Example 8.1.4, because of Remark 8.1.6.

Corollary 8.2.6. We have X(k) ⊆ X(A)Br.

Proof. This is a restatement of Proposition 8.2.2. �

8.2.3. The Brauer–Manin obstruction to the local-global principle.

Definition 8.2.7. One says that there is a Brauer–Manin obstruction to
the local-global principle for X if X(A) 6= ∅, but X(A)Br = ∅.
Definition 8.2.8. For a class of nice varieties X over global fields, one says
that the Brauer–Manin obstruction to the local-global principle is the
only one if the implication

X(A)Br 6= ∅ =⇒ X(k) 6= ∅
holds.

See Conjecture 9.2.27 for a setting in which it is conjectured that the
Brauer–Manin obstruction to the local-global principle is the only one.

8.2.4. Brauer evaluation is locally constant.

Proposition 8.2.9. Let k be a local field, and let X be a k-variety. Let
A ∈ BrX.

(a) The map X(k)→ Br k sending x to A(x) is locally constant with respect
to the analytic topology on X(k).

(b) If k = R, the map X(R) → BrR is constant on each connected compo-
nent of X(R).
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Proof.

(a) Given α ∈ Br k, we need to show that {x ∈ X(k) : A(x) = α} is open in
X(k). The structure morphism X → Spec k induces a homomorphism
Br k → BrX, which sends α to a “constant” element αX ∈ BrX. Re-
placing A by A−αX subtracts α from all the values A(x). Thus we may
reduce to showing that {x ∈ X(k) : A(x) = 0} is open in X(k).

Let x0 ∈ X(k). Consider pairs (Y, y) where Y is an étale X-scheme,
Y is affine, and y ∈ Y (k) maps to x0 ∈ X(k). Let R be the direct limit of
O(Y ) over the system of such (Y, y). Then R is the henselization of the
local ring OX,x0 , so R is a henselian local ring with residue field k (see
Section B.3). For each (Y, y), we have morphisms Spec k → SpecR →
Y → X, inducing homomorphisms BrX → BrY → BrR → Br k, the
composition of which sends A to A(x0) = 0. By Remark 6.9.2, the
homomorphism BrR→ Br k is an isomorphism, so A maps to 0 already
in BrR. By Theorem 6.4.3, A maps to 0 in BrY for some (Y, y). Let
π : Y → X be the structure morphism, which is étale. By functoriality as
in Proposition 8.1.8, A(π(y)) = 0 for every y ∈ Y (k). Since π : Y → X
is étale, Proposition 3.5.73 shows that π(Y (k)) is open in X(k), and it
contains x0.

(b) A locally constant map is constant on connected components. �

Remark 8.2.10. The proof of (b) works for every local field k. But if k is
nonarchimedean, then each connected component of X(k) is a point. And if
k = C, then Br k = 0. So only the case k = R is interesting.

Corollary 8.2.11. Let k be a global field. Let X be a k-variety.

(a) For any A ∈ BrX, the map X(A) → Q/Z sending (xv) to (A, (xv)) is
locally constant.

(b) For any A ∈ BrX, the set X(A)A is open and closed in X(A).
(c) The set X(A)Br is closed in X(A).

(d) Let X(k) be the closure of X(k) in X(A). Then X(k) ⊆ X(A)Br.
(e) If X is proper and X(A)Br 6= X(A), then weak approximation for X

fails. In this case, one says that there is a Brauer–Manin obstruction
to weak approximation for X.

Proof.

(a) Combine Propositions 8.2.1 and 8.2.9.
(b) A fiber of a locally constant map is open and closed.
(c) The set X(A)Br is the intersection of the closed sets X(A)A as A varies.
(d) This follows from (c) and Corollary 8.2.6.
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(e) If X(k) ⊆ X(A)Br ( X(A), then X(k) 6= X(A), while X(A) =∏
vX(kv) if X is proper. Thus weak approximation for X fails. �

Remark 8.2.12. Suppose that X is a proper variety over a global field k.
For a place v of k, what does a locally constant function f on X(kv) look
like?

• Suppose that v is archimedean. Then f is constant on each connected
component of X(kv).
• Suppose that v is nonarchimedean. Let Ov be the valuation ring, and
let πv ∈ Ov be a uniformizer. Then X(kv) = X(Ov) = lim←−nX(Ov/πnv ),
which is compact, and f factors through the finite set X(Ov/πnv ) for
some n.

Now suppose that A ∈ BrX. Then the remarks above apply to the eval-
uation map X(kv) → Br kv given by A for each v, and this map is 0 for
all but finitely many v, by Proposition 8.2.1. Thus the map X(A) → Q/Z
sending (xv) to (A, (xv)) admits a finite explicit description, in principle. In
Section 8.2.5, we will see an example of this.

8.2.5. Example: Iskovskikh’s conic bundle with 4 singular fibers.

(References: [Isk71], [Sko01, Chapter 7])

Let U be the smooth, affine, geometrically integral surface

y2 + z2 = (3− x2)(x2 − 2)

over Q. We will construct a nice Q-surface X containing U as an open
subscheme, and then we will show that there is a Brauer–Manin obstruction
to the local-global principle for X.
8.2.5.1. Conic bundles. The X above will be a conic bundle. Before con-
structing it, let us discuss conic bundles more generally.

A (possibly degenerate) conic over a field k is the zero locus in P2 of a
nonzero degree 2 homogeneous polynomial s in k[x0, x1, x2]. It is a diagonal
conic if s is ax2

0 + bx2
1 + cx2

2 for some a, b, c ∈ k not all zero.
The generalization to conic bundles will be easier if we first re-express

the situation over k in a coordinate-free way. If E is the k-vector space
with basis x0, x1, x2, then P2 = Proj k[x0, x1, x2] = Proj SymE =: PE, and
a degree 2 homogeneous polynomial s is an element of Sym2E. We have
E = L0 ⊕ L1 ⊕ L2, where Li = kxi. To say that s = 0 is a diagonal conic is
to say that s = s0 + s1 + s2 for some si ∈ kx2

i = L⊗2
i not all zero.

If B is a k-scheme, then a conic bundle over B is the zero locus of
s in PE := ProjSym E , where E is a rank 3 vector bundle on B, and
s ∈ Γ(B, Sym2 E ) is a section vanishing nowhere on B. In the special case
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where E = L0 ⊕L1 ⊕L2 for some line bundles Li on B, and s = s0+s1+s2

for some si ∈ Γ(B,L ⊗2
i ) such that s0, s1, s2 do not simultaneously vanish

anywhere on B, the zero locus of s is called a diagonal conic bundle.
8.2.5.2. Châtelet surfaces. We now specialize further to the following setting:

k : field of characteristic not 2,

B := P1
k,

L0 := O, s0 := 1,

L1 := O, s1 := −a,
L2 := O(2), s2 := −F (w, x),

where a ∈ k×, and F (w, x) ∈ Γ(P1
k,O(4)) is a separable homogeneous poly-

nomial of degree 4 in the homogeneous coordinates w, x on B = P1. The
result is a nice k-surface X containing the affine surface

y2 − az2 = f(x)

as an open subscheme, where f(x) is the dehomogenization F (1, x). Such a
surface X is called a Châtelet surface. It has a map to B = P1, and the
fibers of X → P1 are conics. In fact, all the fibers of X → P1 above points
in P1(k) are nice conics, except above four points (the zeros of F ) where the
fiber degenerates to the union of two intersecting lines in P2.
8.2.5.3. Iskovskikh’s example. Iskovskikh’s surface is the Châtelet surface X
over Q given by the choices a := −1 and f(x) := (3− x2)(x2 − 2) ∈ Q[x].

Remark 8.2.13. One could choose other nice compactifications X ′ of the
affine surface

U : y2 + z2 = (3− x2)(x2 − 2).

For instance, one could let X ′ be the blowup of X at a closed point of X−U .
But the question of whether such a compactification has a rational point is
independent of the choice, by Corollary 3.6.16.

Let K = k(X). As explained in Section 1.5.7.4, given two elements
a, b ∈ K×, one can define a quaternion algebra with class (a, b) ∈ (BrK)[2].
Let A = (3− x2,−1) ∈ BrK. By Proposition 6.6.7(i), we may view BrX as
a subgroup of BrK.

Proposition 8.2.14. The element A ∈ BrK lies in the subgroup BrX.

Proof. By Theorem 6.8.3, we need only check that A has no residue along
any integral divisor on X. Therefore it will suffice to find a Zariski open
covering {Ui} of X such that A extends to an element of BrUi for each i.

To accomplish this, we rewrite A in other ways. Define B := (x2−2,−1)
and C := (3/x2 − 1,−1) in BrK. Then A + B = (y2 + z2,−1) = 0 by
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Proposition 1.5.23 since y2 + z2 = NK(
√
−1)/K(y + z

√
−1). Also, A − C =

(x2,−1) = 0 since x2 is a square in K. But A,B,C are all killed by 2, so
A = B = C.

Let P3−x2 and Px2−2 be the closed points of P1
Q given by 3 − x2 = 0

and x2 − 2 = 0, respectively. Now A = (3− x2,−1) represents a quaternion
Azumaya algebra on all of X except along integral divisors where 3− x2 or
−1 has a zero or pole. Thus A comes from BrUA, where

UA := X − (fiber above ∞)− (fiber above P3−x2).

Similarly, B ∈ BrUB, where

UB := X − (fiber above ∞)− (fiber above Px2−2),

and C ∈ BrUC , where

UC := X − (fiber above 0)− (fiber above P3−x2).

Since UA∪UB ∪UC = X (in fact, UB ∪UC = X), the element A = B = C ∈
BrK belongs to BrX. �

From now on, we consider A as an element of BrX. To evaluate A at a
point P ∈ X(k) for any field k ⊃ Q, choose one of

(3− x2,−1), (x2 − 2,−1), (3/x2 − 1,−1)

such that the rational function of x is defined and nonzero at P , so that A
extends to an element of the Brauer group of an open subset UA, UB, or
UC containing P , and replace the rational function by its value at P . For
example, if P ∈ UA(Qp) for some p ≤ ∞, then

invpA(P ) = invp(3− x(P )2,−1)

=

{
0 if 3− x(P )2 ∈ NQp(

√
−1)/Qp(Qp(

√
−1)×),

1/2 otherwise,

by Proposition 1.5.23.

Proposition 8.2.15. We have X(A) 6= ∅, but X(A)A = ∅. In particu-
lar, X(Q) = ∅, and there is a Brauer–Manin obstruction to the local-global
principle for X.

Proof. A computation involving Hensel’s lemma (Theorem 3.5.63(a)) shows
that X(A) 6= ∅.

Suppose that P ∈ X(Qp) for some p ≤ ∞. If p 6= ∞, let vp : Qp →
Z ∪ {∞} denote the p-adic valuation. Let x = x(P ) ∈ Qp ∪ {∞}.
Case I: p /∈ {2,∞}. If vp(x) < 0 (or x = ∞), then 3/x2 − 1 ∈ Z×p . If
vp(x) ≥ 0, then either 3 − x2 or x2 − 2 is in Z×p because their sum is 1. In
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either case, A(P ) has the form (u1, u2) with u1, u2 ∈ Z×p , so A(P ) ∈ BrZp
(this uses p 6= 2). But BrZp = 0 by Corollary 6.9.3, so invpA(P ) = 0.
Case II: p = ∞. The leading coefficient of (3 − x2)(x2 − 2) is not a sum
of squares in R, so any P ∈ X(R) satisfies x(P ) 6= ∞. Then x(P )2 < 3
or x(P )2 > 2, so 3 − x(P )2 or x(P )2 − 2 is in R>0 = NC/R(C×). Thus
inv∞A(P ) = 0.
Case III: p = 2. Let P ∈ X(Q2). Let x = x(P ). Then

v2(x) > 0 =⇒ 3− x2 ≡ 3 ≡ −1 (mod 4)

v2(x) = 0 =⇒ x2 − 2 ≡ −1 (mod 4)

v2(x) < 0 =⇒ 3/x2 − 1 ≡ −1 (mod 4).

But an element of Z2 that is −1 mod 4 is not of the form a2 + b2 with
a, b ∈ Q2, so it is not a norm from Q2(

√
−1)/Q2. Thus inv2A(P ) = 1/2.

Cases I, II, III imply that if (Pp) ∈ X(A), then (A, (Pp)) = 1/2 6= 0.
Thus X(A)A = ∅. �

Remark 8.2.16. Iskovskikh’s original proof thatX(Q) = ∅ used only ad hoc
methods based on quadratic reciprocity. Ironically, according to [CTPS16,
§1], Iskovskikh’s intention was to produce an example that the Brauer–Manin
obstruction could not explain! It was only a few years later that it was
realized that the Brauer–Manin obstruction could explain it, as above.

Remark 8.2.17. Theorem B of [CTSSD87a,CTSSD87b] shows that for
any Châtelet surface over a number field, the Brauer–Manin obstruction
to the local-global principle is the only one, and even better, the Brauer–
Manin obstruction to weak approximation is the only one; that is, X(k) is
dense in X(A)Br. These results were generalized in [Sal90,CT90,SS91] to
conic bundle surfaces over P1 with at most five degenerate fibers. Moreover,
Schinzel’s hypothesis on prime values of polynomials would imply the same
when the number of degenerate fibers is arbitrary, and more generally for
“generalized Severi–Brauer bundles over P1” [CTSD94, Theorem 4.2]. A
key ingredient in these works is the fibration method ; for an introduction,
see [CT92, §3] and [CT98, §2], and for examples of the further development
of this method, see [Har94,Har97,Lia14,HW16].

8.2.6. Effectivity. Let X be a nice variety over a global field k. One can
imagine the following procedure for attempting to decide whether X has a
k-point:

• by day, search for k-points;

• by night, search for a finite set of Azumaya OX -algebras that obstructs
k-points.
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If the Brauer–Manin obstruction to the local-global principle is the only one
for X, then this procedure terminates successfully. See [Poo06, Remark 5.3]
for more details.

Under additional assumptions on X, one can give more reasonable al-
gorithms and even compute a kind of finite description of X(A)Br; see
[KT08,KT11].

8.3. An example of descent

Suppose (as in [Fly00, §6]) that we want to find the rational solutions to

(8.3.1) y2 = (x2 + 1)(x4 + 1).

Write x = X/Z, where X,Z are integers with gcd 1. Then y = Y/Z3 for
some integer Y with gcd(Y, Z) = 1. We get

Y 2 = (X2 + Z2)(X4 + Z4).

If a prime p divides both X2 + Z2 and X4 + Z4, then

Z2 ≡ −X2 (mod p),

Z4 ≡ −X4 (mod p),

so

2Z4 = (Z2)2 + Z4 ≡ (−X2)2 + (−X4) = 0 (mod p),

and similarly

2X4 = (X2)2 +X4 ≡ (−Z2)2 + (−Z4) = 0 (mod p).

But gcd(X,Z) = 1, so this forces p = 2. (Alternatively, the resultant of the
homogeneous forms X2 + Z2 and X4 + Z4 is 4, so the only prime p modulo
which these forms have a common nontrivial zero is p = 2.)

Each odd prime p divides at most one of X2 +Z2 and X4 +Z4, but the
product (X2 +Z2)(X4 +Z4) is a square, so the exponent of p in each must
be even. In other words,

X4 + Z4 = cW 2

for some c ∈ {±1,±2}. Since X,Z are not both zero, the left-hand side is
positive, so c > 0. Thus c ∈ {1, 2}.

Dividing by Z4 and setting w = W/Z2, we obtain a rational point on
one of the following smooth curves:

Y1 : w2 = x4 + 1,

Y2 : 2w2 = x4 + 1.
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Each curve Yc is of geometric genus g where 2g + 2 = 4; i.e., g = 1. The
point (x,w) = (0, 1) belongs to Y1(Q), and (1, 1) belongs to Y2(Q), so both
Y1 and Y2 are open subsets of elliptic curves.

One can show that Y1 and Y2 are birational to the curves

32A2 : y2 = x3 − x,
64A1 : y2 = x3 − 4x,

where the labels are as in [Cre97]. A “2-descent” (or a glance at [Cre97,
Table 1]!) shows that both elliptic curves have rank 0. One also can compute
that their torsion subgroups are isomorphic to Z/2Z× Z/2Z. Thus the nice
models of Y1 and Y2 have four rational points each. It follows that rational
points on Y1 satisfy x = 0 (there are two more rational points at infinity),
and rational points on Y2 satisfy x ∈ {±1}. So (8.3.1) has six solutions,
namely,

(0, 1), (0,−1), (1, 2), (1,−2), (−1, 2), (−1,−2).

8.3.1. Explanation. We are asked to find U(Q), where U is the smooth
affine curve

y2 = (x2 + 1)(x4 + 1)

in A2
Q. Let X be the nice genus 2 curve over Q containing U as an open

subscheme; explicitly, X = Proj k[x, y, z]/(y2 − (x2 + z2)(x4 + z4)), where
deg x = deg z = 1 and deg y = 3. This description shows also that X − U
consists of two rational points. In particular, finding U(Q) is equivalent to
finding X(Q), and the latter is finite by Faltings’s theorem (Theorem 2.6.8).

Let Z be the nice curve over Q birational to the curve in (x, y, w)-space
defined by the system

y2 = (x2 + 1)(x4 + 1),

w2 = x4 + 1,

so k(Z) = Q(x,
√
x2 + 1,

√
x4 + 1). For c ∈ Q×, let Zc be the twist of Z that

is birational to the curve

y2 = (x2 + 1)(x4 + 1),

cw2 = x4 + 1.

For each c, there is a degree 2 morphism

Zc −→ X

(x, y, w) 7−→ (x, y).

The argument of the previous section can be reinterpreted as follows:

• Each point in X(Q) is the image of fc : Zc(Q)→ X(Q) for some c ∈ Q×.
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• Up to multiplying c by Q×2, there are only finitely many c ∈ Q× for
which Zc has Qp-points for all p ≤ ∞. Moreover, such a finite set of c’s
can be computed effectively.

The finite set of c’s turned out to be {1, 2}. Thus the problem of determining
X(Q) was reduced to the problem of determining Zc(Q) for c ∈ {1, 2}.

If Yc is the nice genus 1 curve birational to

cy2 = x4 + 1,

then we have a morphism

πc : Zc −→ Yc

(x, y, w) 7−→ (x,w).

Fortunately, for c ∈ {1, 2}, the curve Yc is an elliptic curve of rank 0, so
Yc(Q) = Yc(Q)tors is a computable finite set. We determine the Q-points in
the 0-dimensional preimage π−1

c (Yc(Q)) ⊂ Zc; this gives Zc(Q). Finally we
compute X(Q) =

⋃
c∈{1,2} fc(Zc(Q)).

Remark 8.3.2. The elliptic curve

E : y2 = (t+ 1)(t2 + 1)

is dominated by X, by the morphism

φ : X −→ E

(x, y) 7−→ (x2, y).

Unfortunately, the approach of computing E(Q) and then computing φ−1(P )
for each P ∈ E(Q) cannot be carried out directly, since E(Q) is infinite, of
rank 1. Moreover, one can show that the Jacobian J of X is isogenous to
E × E, so rk J(Q) = 2 is not less than g(X) = 2, so Chabauty’s method
(see [Ser97, §5.1] or [MP12]) cannot be applied directly to X. On the
other hand, X has two independent maps to E, so the Demyanenko–Manin
method [Ser97, §5.2] could be applied to determine X(Q).

8.3.2. Galois covering. One of the key points is the argument was that
there are only finitely many c such that Zc has Qp-points for all p ≤ ∞.
What makes this work is the fact that Z → X is a Galois covering.

Let us first explain why f : Z → X is étale. Over the affine open subset
V1 of U ⊆ X where x4 + 1 is nonvanishing, the open subset f−1V1 ⊆ Z
is obtained by adjoining

√
x4 + 1 to the affine coordinate ring; this is an

étale extension. Similarly, over the affine open subset V2 of U where x2 + 1
is nonvanishing, f−1V2 is obtained by adjoining

√
x2 + 1. Since V1 and V2

cover U , it follows that f is étale above U . A similar argument shows that f
is étale above the other affine open piece U ′ of X. Thus f : Z → X is étale.
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Remark 8.3.3. The argument that f is étale is a special case of the proof
of Abhyankar’s lemma [SGA 1, X.3.6]. It is analogous to the proof that
the field Q(

√
15,
√

3) = Q(
√

15,
√

5) is an everywhere unramified extension
of Q(

√
15).

In fact, the following shows that Z → X is a Galois covering with Galois
group Z/2Z:

Proposition 8.3.4. Let Z → X be an étale morphism between nice k-curves.
If k(Z)/k(X) is a Galois extension of field with Galois group G, then Z → X
is a Galois covering with Galois group G.

Proof. By the equivalence of categories between curves and function fields,
the left G-action on k(Z) induces a right G-action on Z considered as an
X-scheme. Since k(Z)/k(X) is Galois, the X-morphism

ψ : Z ×G −→ Z ×X Z

is an isomorphism above the generic point of X. By spreading out (The-
orem 3.2.1(iv)), ψ gives an isomorphism from an open dense subscheme of
Z ×G to an open dense subscheme of Z ×X Z. Both Z ×G and Z ×X Z are
smooth, proper, and 1-dimensional over k, so any birational maps between
their components are isomorphisms. �

8.4. Descent

(Reference: [Sko01, §5.3])

In our example, Z was a Z/2Z-torsor over X. We now generalize by
replacing Z/2Z by an arbitrary smooth affine algebraic group G over k.
When we speak of a G-torsor over X, we mean a right fppf GX -torsor over
X, where GX is the base extension. Throughout the rest of Chapter 8, all
cohomology is fppf cohomology, and we use H1(X,G) as an abbreviation
for the pointed set Ȟ

1
fppf(X,G) (which is a group if G is commutative). By

Theorem 6.5.10(i), isomorphism classes of G-torsors over X are in bijection
with H1(X,G).

8.4.1. Evaluation. Let k be a field. Let X be a k-variety. Let G be a
smooth algebraic group over k. Let Z f→ X be an G-torsor over X, and
let ζ be its class in H1(X,G). If x ∈ X(k), then the fiber Zx → {x} is a
G-torsor over k, and its class in H1(k,G) will be denoted ζ(x). Equivalently,
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x determines a morphism in cohomology mapping ζ to ζ(x):

x : Spec k −→ X

H1(k,G)←− H1(X,G)

ζ(x)←− [ ζ.

Thus the torsor Z → X gives rise to an “evaluation” map

X(k) −→ H1(k,G)

x 7−→ ζ(x).

In other words, Z → X can be thought of as a family of torsors param-
eterized by X, and ζ(x) gives the class of the fiber above x.

8.4.2. The fibers of the evaluation map. We may partition X(k) ac-
cording to the class of the fiber above each rational point:

X(k) =
∐

τ∈H1(k,G)

{x ∈ X(k) : ζ(x) = τ }.

The following key theorem reinterprets the right-hand side.

Theorem 8.4.1. Let k be a field. Let X be a k-variety. Let G be a smooth
affine algebraic group. Suppose that f : Z → X is a G-torsor over X, and
let ζ ∈ H1(X,G) be its class. For each τ ∈ H1(k,G), let f τ : Zτ → X be the
twisted torsor constructed in Example 6.5.12. Then

{x ∈ X(k) : ζ(x) = τ } = f τ (Zτ (k)).

In particular,
X(k) =

∐
τ∈H1(k,G)

f τ (Zτ (k)).

Proof. For each x ∈ X(k), we have the following equivalences:

x ∈ f τ (Zτ (k))

⇐⇒ the fiber Zτx is a trivial Gτ -torsor over k (Proposition 5.12.14)

⇐⇒ Zx
G
× T−1 is a trivial Gτ -torsor over k

⇐⇒ Zx ' T as G-torsor
(by taking the contracted product with T on the right)

⇐⇒ ζ(x) = τ. �

8.4.3. The evaluation map over a local field.

Proposition 8.4.2. Let k be a local field. Let X be a proper k-variety. Let
F be a finite étale algebraic group over k. Let f : Z → X be an F -torsor
over X. Then the image of X(k)→ H1(k, F ) is finite.
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Proof. For each x ∈ X(k), the fiber f−1(x) is SpecL for some étale k-
algebra L. By Krasner’s lemma (Proposition 3.5.74), there exists an open
neighborhood U of x in X(k) such that for u ∈ U , the fiber f−1(u) is
isomorphic to f−1(x) as a k-scheme. In other words, if H1(k, F ) is given the
discrete topology, then the evaluation map X(k)→ H1(k, F ) is continuous.

On the other hand, X is proper, so Proposition 2.6.1(i) shows that X(k)
is compact. Thus the image of X(k) → H1(k, F ) is compact and hence
finite. �

Remark 8.4.3. If char k = 0, then the whole set H1(k, F ) is finite, by
Theorem 5.12.24(a).

8.4.4. The Selmer set. Return to the notation of Theorem 8.4.1, but as-
sume moreover that k is a global field. For each place v of k, the inclusion
k ↪→ kv induces a homomorphism of fppf cohomology groups H1(k,G) →
H1(kv, G). (Equivalently, it is the restriction homomorphism of Galois co-
homology associated with the inclusion of Gal(ksv/kv) as a decomposition
group in Gal(ks/k).) If τ ∈ H1(k,G), let τv ∈ H1(kv, G) be its image.

Definition 8.4.4. The Selmer set is the following subset of H1(k,G):

SelZ(k,G) :=
{
τ ∈ H1(k,G) : τv ∈ im

(
X(kv)→ H1(kv, G)

)
for all v ∈ Ωk

}
.

Remark 8.4.5. This terminology and notation is compatible with the no-
tion of the Selmer group, in the case where f : Z → X is an isogeny between
abelian varieties, viewed as a torsor under G := ker f . For instance, if
f : E → E is the multiplication-by-2 map on an elliptic curve over a num-
ber field, then SelE(k,E[2]) ⊆ H1(k,E[2]) is the 2-Selmer group defined in
[Sil92, X.§4].

By Theorem 8.4.1 applied over each kv, we have

SelZ(k,G) = { τ ∈ H1(k,G) : Zτ (kv) 6= ∅ for all v ∈ Ωk }
⊇ { τ ∈ H1(k,G) : Zτ (k) 6= ∅ }.

In particular,
X(k) =

∐
τ∈SelZ(k,G)

f τ (Zτ (k)).

Theorem 8.4.6. If X is a proper variety over a global field k, then SelZ(k,G)
is finite.

Proof. Let F be the component group of G. For a suitable finite nonempty
subset S ⊆ Ωk containing the archimedean places, Theorem 3.2.1 lets us
spread out G to a smooth finite-type separated group scheme G over Ok,S ,
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spread outX to a proper scheme X over Ok,S , and spread out Z to a G-torsor
over X . Let τ ∈ H1(k,G). For v /∈ S, the commutative diagram

H1(k,G)

��

τ_

��
X(kv) //

valuative criterion
for properness

H1(kv, G) τv

X (Ov) // H1(Ov,G)

OO

shows that if τv comes from X(kv), then τv also comes from H1(Ov,G). Thus
SelZ(k,G) is contained in H1

S(k,G). Moreover, for each v ∈ S, the image of
X(kv)→ H1(kv, F ) is finite by Proposition 8.4.2, so the image of SelZ(k,G)
in
∏
v∈S H1(kv, F ) is finite. The preceding two sentences combined with

Theorem 6.5.13(a) show that SelZ(k,G) is finite. �

Remark 8.4.7. One can show that SelZ(k,G) is not only finite, but also
effectively computable, even if one does not know X(k). This makes it
potentially useful for the determination of X(k).

Corollary 8.4.8. There exists a finite separable extension k′ of k such that
X(k) ⊆ f(Z(k′)).

Proof. For each τ ∈ H1(k,G), there exists a finite separable extension k′

such that the image of τ in H1(k′, G) is trivial. By taking a compositum, one
can find a k′ that works simultaneously for all τ ∈ SelZ(k,G). Extending
the base from k to k′ makes Zτ fτ→ X isomorphic to Z f→ X. �

8.4.5. The weak Mordell–Weil theorem. The Mordell–Weil theorem
states that for any abelian variety A over a global field k, the abelian group
A(k) is finitely generated. The following weaker statement is proved along
the way to proving the Mordell–Weil theorem:

Theorem 8.4.9 (Weak Mordell–Weil theorem). Let A be an abelian variety
over a global field k, and let m be a positive integer not divisible by char k.
Then A(k)/mA(k) is finite.

Proof of Theorem 8.4.9. By Proposition 5.7.4, the multiplication-by-m
map A m→ A is étale, so it is locally surjective in the étale topology. Thus
we get an exact sequence of sheaves on (Spec k)et

0→ A[m]→ A
m→ A→ 0
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(or equivalently of Gk-modules), where A[m] is the kernel of A m→ A. Taking
cohomology gives

A(k)
m−→ A(k) −→ H1(k,A[m]).

On the other hand, we may view [m] : A → A as a torsor under the
smooth affine algebraic group A[m], and hence we get an evaluation map

A(k) −→ H1(k,A[m])

a 7−→ class of the torsor [m]−1(a).

Its image is contained in the Selmer set, which is finite by Theorem 8.4.6.
One checks that the two maps A(k)→ H1(k,A[m]) coincide. Comparing

images shows that A(k)/mA(k) is isomorphic to the image of the evaluation
map, and we proved already that the latter image is finite. �

8.4.6. Application of descent to failure of strong approximation.
We will use an integral point analogue of descent to prove a theorem of Min-
chev [Min89, Theorem 1] on the failure of strong approximation. Minchev
worked over number fields, but with a little more work we can generalize to
global fields.

Theorem 8.4.10. Let k be a global field. Let S be a finite set of places
of k. Let f : Y → X be a finite étale morphism of geometrically integral
k-varieties. If X(AS) 6= ∅ and f is not an isomorphism, then the image of
the inclusion X(k)→ X(AS) is not dense; that is, X does not satisfy strong
approximation with respect to S.

Proof. Let n = dimX = dimY . Let d = deg f > 1. Use Theorem 3.2.1
to enlarge S so that f spreads out to a finite étale morphism F : Y → X
of separated Ok,S-schemes such that X → SpecOk,S and Y → SpecOk,S
have geometrically integral fibers and X (Ov) 6= ∅ for v /∈ S. For any nonar-
chimedean v ∈ S, as xv varies over the compact set X (Ov), there are only
finitely many possibilities for the finite étale Ov-scheme F−1(xv), by Kras-
ner’s lemma (Proposition 3.5.74). Therefore, as x varies over X (Ok,S), the
finite étale Ok,S-scheme F−1(x) has bounded degree and bounded ramifi-
cation over S, so there are only finitely many possibilities for F−1(x). In
particular, there exists an infinite set T of nonarchimedean v /∈ S such that
v splits in F−1(x) for every x ∈ X (Ok,S).

Let X ′ be the smooth locus of X → SpecOk,S , and let Y ′ = F−1X ′. For
v /∈ S, let Fv be the residue field, and let qv = #Fv. By Theorem 7.7.1(ii),
#X ′(Fv) and #Y ′(Fv) are both qnv + O(q

n−1/2
v ) as qv → ∞. In particular,

we may choose w ∈ T such that #Y ′(Fw) < d · #X ′(Fw). Thus there
exists a point āw ∈ X ′(Fw) that does not split in Y ′. By Hensel’s lemma
(Theorem 3.5.63(a)), āw lifts to some aw ∈ X ′(Ow). By Krasner’s lemma
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(Proposition 3.5.74), the set Uw := {uw ∈ X ′(Ow) : F−1(uw) ' F−1(aw)}
is an open neighborhood of aw in X(kw). Let U be the nonempty open set
Uw ×

∏
v/∈S∪{w}X (Ok,S) of X(AS). If x ∈ X(k) ∩ U , then x ∈ X ′(Ok,S), so

the definition of T implies that w splits in F−1(x), but the definition of Uw
implies that w does not split in F−1(x). Thus X(k)∩U = ∅, so X(k) is not
dense in X(AS). �

Corollary 8.4.11 (cf. [Min89, Theorem 1]). Let k be a global field. Let
S be a finite set of places of k. Let X be a normal geometrically integral
k-variety. If X(AS) 6= ∅ and Xks is not algebraically simply connected, then
X does not satisfy strong approximation with respect to S.

Proof. If X(k) is empty, strong approximation fails by definition. If X(k) is
nonempty, apply Lemma 3.5.57 to obtain a nontrivial geometrically integral
finite étale cover Y → X, and apply Theorem 8.4.10. �

Remark 8.4.12. Corollary 8.4.11 can fail if X is not normal. For example,
if X is a nodal cubic curve in P2 over a global field such that the tangent lines
to the branches at the node have irrational slope, then X is not algebraically
simply connected, but X satisfies strong approximation with respect to any
finite S, because there is a dominant morphism P1 � X.

8.4.7. The descent obstruction to the local-global principle. Let k
be a global field. Let X be a k-variety. One can show that there is an
injection X(A) ↪→ ∏

vX(kv), so an element of X(A) will be written as a
sequence (xv) indexed by the places v of k. The set X(k) embeds diagonally
into X(A).

A torsor Z f→ X under a smooth affine algebraic group G over k re-
stricts the locations in X(A) where rational points can lie. Namely, the
commutativity of

X(k) �
� //

��

X(A)

��
H1(k,G) //

∏
v H1(kv, G)

(8.4.13)

(cf. (8.1.1)) shows that X(k) is contained in the subset X(A)f ⊆ X(A) con-
sisting of points of X(A) whose image in

∏
v H1(kv, G) comes from H1(k,G).

One can show also that

X(A)f =
⋃

τ∈H1(k,G)

f τ (Zτ (A)),

and that X(A)f is closed in X(A) if X is proper; see Exercise 8.7. More-
over, one can replace H1(k,G) by its subset SelZ(k,G) in either of the two
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descriptions of X(A)f above. The condition X(A)f = ∅ is equivalent to
SelZ(k,G) = ∅.

One can constrain the possible locations of rational points further by
using many torsors:

X(A)H1(X,G) :=
⋂

all G-torsors f : Z → X

X(A)f ,

X(A)descent :=
⋂

all smooth affine G

X(A)H1(X,G).

Then
X(k) ⊆ X(A)descent ⊆ X(A).

Recall that one says that the local-global principle holds for X if and
only if the implication

X(A) 6= ∅ =⇒ X(k) 6= ∅
holds.

Definition 8.4.14. One says that there is a descent obstruction to the
local-global principle if X(A) 6= ∅ but X(A)descent = ∅.

Sometimes we wish to study the adelic subset cut out by torsors under
a subset of the possible smooth affine algebraic groups. In particular, we
define

X(A)et :=
⋂

finite étale G

X(A)H1(X,G),

X(A)conn :=
⋂

smooth connected affine G

X(A)H1(X,G),

X(A)PGL :=
⋂
n≥1

X(A)H1(X,PGLn).

8.5. Comparing the descent and Brauer–Manin obstructions

8.5.1. Descent is stronger than Brauer–Manin.

(Reference: [Sko01, Proposition 5.3.4])

Proposition 8.5.3 below shows that the Brauer–Manin obstruction is
equivalent to the special case of the descent obstruction using only PGLn-
torsors for all n.

Recall from Section 6.6.4 that for any scheme X, we have a map of sets

(8.5.1) H1(X,PGLn) −→ (BrX)[n].

(We used Theorem 6.6.17(ii) to know that the image is killed by n.)
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Lemma 8.5.2. Let k be a global field. Let X be a k-variety. Let Z f→ X be a
PGLn-torsor for some n ≥ 1. Its class in H1(X,PGLn) is mapped by (8.5.1)
to some A ∈ BrX. Then X(A)f = X(A)A.

Proof. Let (xv) ∈ X(A). Then we have a commutative diagram

H1(X,PGLn) //

(xv)
��

(BrX)[n]

(xv)

��∏
v H1(kv,PGLn)

∼ //
∏
v(Br kv)[n]

H1(k,PGLn)
∼ //

res1

OO

(Br k)[n]

res2

OO

in which the downward maps are evaluation at (xv), the upward maps
res1, res2 are restriction maps induced by k → kv, and the horizontal maps
are given by (8.5.1). The lower two horizontal maps are bijections by Re-
mark 1.5.18.

The middle horizontal bijection identifies im(res1) with im(res2), so the
class of f in H1(X,PGLn) maps down into im(res1) if and only if the element
A ∈ (BrX)[n] maps down into im(res2). In other words, (xv) ∈ X(A)f if
and only if (xv) ∈ X(A)A. �

Proposition 8.5.3. Let k be a global field. Let X be a regular quasi-projec-
tive k-variety. Then

X(A)descent ⊆ X(A)PGL = X(A)Br.

Proof. By Corollary 6.6.19, every A ∈ BrX is in the image of (8.5.1) for
some n. So intersecting the equality of Lemma 8.5.2 over all PGLn-torsors
over X yields X(A)PGL = X(A)Br. The inclusion X(A)descent ⊆ X(A)PGL

holds by definition since each PGLn is a smooth affine algebraic group. �

8.5.2. The étale-Brauer set.

(References: [Poo10,Dem09,Sko09])

Let k be a global field. Let X be a k-variety. Let G be a smooth affine
algebraic group. Recall that if Z f→ X is a G-torsor, the determination of
X(k) can be reduced to the determination of Zτ (k) for various twists Zτ of
Z:

X(k) =
∐

τ∈H1(k,G)

f τ (Zτ (k)) ⊆
⋃

τ∈H1(k,G)

f τ (Zτ (A)).

We can produce a possibly better “upper bound” onX(k) by replacing Zτ (A)
by Zτ (A)Br. If we do so for every G-torsor for every finite étale group scheme



Un
offi
cia
l v
ers
ion

for
inc
ide
nta

l o
nli
ne
use

8.5. Comparing the descent and Brauer–Manin obstructions 247

G, we are led to define the étale-Brauer set

X(A)et,Br :=
⋂

finite étale G
all G-torsors f : Z → X

⋃
τ∈H1(k,G)

f τ (Zτ (A)Br),

which is the upper bound onX(k) obtained from applying the Brauer–Manin
obstruction to étale covers. A priori, the subset

X(A)et,descent :=
⋂

finite étale G
all G-torsors f : Z → X

⋃
τ∈H1(k,G)

f τ (Zτ (A)descent)

could be even smaller.

8.5.3. Étale-Brauer equals descent.

(References: [Dem09,Sko09])

The proof of the following theorem combines work of Demarche, Harari,
Skorobogatov, and Stoll.

Theorem 8.5.4. Let k be a number field. Let X be a nice k-variety. Then

X(A)et,Br = X(A)et,descent = X(A)descent.

Sketch of proof. It suffices to prove

X(A)descent ⊆ X(A)et,descent ⊆ X(A)et,Br ⊆ X(A)descent.

The first inclusion is [Sko09, Theorem 1.1], which generalizes [Sto07,
Proposition 5.17] (a statement that we would write as X(A)et = X(A)et,et).
The idea in both results is, roughly speaking, to show that if Y → X is an
torsor under a finite étale group scheme, and Z → Y is a torsor under a
smooth affine algebraic group, then Z → X is dominated by some torsor
under an even larger smooth affine algebraic group over X; this is analogous
to the fact that a Galois extension of a Galois extension of a field k is
contained in some even larger Galois extension of k.

The second inclusion is deduced by applying Proposition 8.5.3 to the
étale covers of X.

The third inclusion is the main result of [Dem09], which generalizes the
equality X(A)conn = X(A)Br of [Har02, Théorème 2, 2., and Remarque 4].
(The latter already is striking in that it implies that the torsors under all
smooth connected affine algebraic groups give no more information than the
torsors under all the groups PGLn.) �
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8.5.4. Iterated descent obstruction. In the hope of obtaining an ob-
struction beyond the descent obstruction one might define

X(A)descent,descent :=
⋂

all smooth affine G
all G-torsors f : Z → X

⋃
τ∈H1(k,G)

f τ (Zτ (A)descent)

and similarly X(A)descent,descent,descent, and so on. But Cao, answering a
question of the author, proved the following:

Theorem 8.5.5 ([Cao17, Corollaire 1.2]). For any smooth quasi-projective
geometrically integral variety X over a number field,

X(A)descent,descent = X(A)descent.

Corollary 8.5.6. For any smooth quasi-projective geometrically integral va-
riety X over a number field,

X(A)descent = X(A)descent,descent = X(A)descent,descent,descent = · · · .

Proof. Use induction on the number of descents! Apply the inductive hy-
pothesis to all the torsors Zτ over X. �

8.6. Insufficiency of the obstructions

8.6.1. A bielliptic surface.

(Reference: [Sko99])

Skorobogatov proved that the Brauer–Manin obstruction is insufficient
to explain all counterexamples to the local-global principle:

Theorem 8.6.1 ([Sko99]). There exists a nice Q-variety X such that
X(A)Br 6= ∅ but X(Q) = ∅.

The proof is involved, so we only outline it. First, we describe the kind
of variety used.

Definition 8.6.2. A bielliptic surface over an algebraically closed field k
is a surface isomorphic to (E1 × E2)/G for some elliptic curves E1 and E2

and some finite group scheme G such that G is a subgroup scheme of E1

acting by translations on E1 and G acts on E2 so that the quotient E2/G is
isomorphic to P1. (Since G acts freely on E1, it acts freely on E1 ×E2; i.e.,
E1 × E2 → (E1 × E2)/G is G-torsor.) A surface over an arbitrary field k is
called bielliptic if Xk is bielliptic.

�

Warning 8.6.3. Some authors use the term hyperelliptic surface to mean
bielliptic surface, but these surfaces have nothing to do with hyperelliptic
curves.
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Skorobogatov’s example was a bielliptic surface X := Y/G, where Y
was a product of two genus 1 curves over Q, and G was a group generated
by a fixed-point free automorphism of order 2 of Y . Explicitly, his X was
birational to the affine surface defined by

(x2 + 1)y2 = (x2 + 2)z2 = 3(t4 − 54t2 − 117t− 243).

To show that X(Q) = ∅, Skorobogatov proved X(A)et,Br = ∅, by applying
the Brauer–Manin obstruction to the étale cover Y → X and its twists.

Remark 8.6.4. Because X(A)et,Br = X(A)descent, the nonexistence of ra-
tional points must also be explained by a descent obstruction. In fact, it can
be explained by the obstruction from a single torsor under a noncommutative
finite étale group scheme [HS02, §5.1].

8.6.2. A quadric bundle over a curve.

(References: [Poo10], [CTPS16])

We next construct an “even worse” example:

Theorem 8.6.5 ([Poo10]). There exists a nice Q-variety X such that
X(A)et,Br 6= ∅ but X(Q) = ∅.

Combined with Theorem 8.5.4, this shows that even the descent ob-
struction is not enough to explain all counterexamples to the local-global
principle. In the original proof of Theorem 8.6.5, X was a Châtelet surface
bundle over a curve of positive genus. We will present a simpler variant,
based on [CTPS16, §3.1], using quadrics instead of Châtelet surfaces. In
this section, all varieties are over Q.

Start with a nice curve C such that C(Q) consists of a single point c.
(For example, C could be the elliptic curve y2 = x3 − 3, named 972B1
in [Cre97].) Let f : C → P1 be a morphism that is étale at c (for instance,
take f corresponding to a uniformizing parameter at c). Compose with
an automorphism of P1 to assume that f(c) = ∞. Let U be a connected
open neighborhood of c in C(R). By the implicit function theorem, f(U)
contains an open neighborhood of∞ in P1(R). Compose f with a translation
automorphism of P1 to assume that 1 ∈ f(U) and that f is étale above
0, 1 ∈ P1.

Next we construct a quadric bundle Y → P1. View P1 as the result of
gluing A1

t := SpecQ[t] and A1
T := SpecQ[T ] using t = 1/T . In P4 × A1

t ,
define the closed subscheme

Y (t) : t(t− 1)x2
0 + x2

1 + x2
2 + x2

3 + x2
4 = 0.

Similarly, in P4 × A1
T , define the closed subscheme

Y (T ) : (1− T )X2
0 + x2

1 + x2
2 + x2

3 + x2
4 = 0.
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P1

0 1 ∞

Y

yR
yp

c

cR
U

C

Figure 6. Real points of the varieties C and Y over P1 are shown in
solid black and gray. The open subset U of C(R) is shown as a thicker
curve. The dotted lines indicate some fibers of Y → P1 with imaginary
points.

Glue Y (t) → A1
t and Y (T ) → A1

T using t = 1/T and x0 = T/X0 to obtain
Y → P1. Alternatively, if E denotes the rank 5 vector bundle O(1)⊕O⊕4 on
P1, then Y is the zero locus in PE := ProjSym E of a section of Sym2 E ; in
particular, Y is projective over Q. A calculation shows that Y (t) and Y (T )

are smooth over Q, so Y is smooth over Q. Thus Y is a family of 3-dimen-
sional quadrics over the base P1, with two degenerate fibers, above 0 and 1.
For each t ∈ P1, let Yt denote the fiber above t. In particular, the locus in
Y (T ) above T = 0 is the fiber

Y∞ : X2
0 + x2

1 + x2
2 + x2

3 + x2
4 = 0,

a smooth quadric in P4. See Figure 6.
Let π : X → C be the base extension of Y → P1 by f :

X //

π
��

Y

��
C

f // P1.

Proposition 8.6.6. The Q-variety X is nice.
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Proof. Since Y → P1 is projective with geometrically integral fibers, the
same is true of X → C; in particular, X is a projective and geometrically
integral Q-variety. The morphism Y → P1 is smooth above all points except
0, 1, so X → C is smooth above all points of C outside those above 0, 1 ∈ P1;
since C is smooth over Q, this implies that X is smooth over Q outside the
points above 0, 1 ∈ P1. Similarly, C → P1 is smooth above 0, 1, so X → Y is
smooth at the points above 0, 1; since Y is smooth over Q, this implies that
X is smooth over Q also at the points above 0, 1 ∈ P1. Thus X is nice. �

Proposition 8.6.7. We have X(Q) = ∅.

Proof. The sole point of C(Q) maps to∞ ∈ P1, but Y∞ has noQ-points. �

As a warm-up to proving that X(A)et,Br 6= ∅, we prove thatX(A)Br 6= ∅.
For each finite prime p, any quadratic form over Qp of rank ≥ 5 has a

nontrivial zero [Ser73, IV.2.2, Theorem 6], so we may choose yp ∈ Y∞(Qp)
and let xp = (yp, c) ∈ X(Qp). Let yR be the unique point in Y1(R), let cR ∈
U ⊆ C(R) be such that f(cR) = 1 ∈ P1(R), and let xR = (yR, cR) ∈ X(R)
(we use the subscript R for the archimedean place to avoid confusion with
the point ∞ ∈ P1). Together, these define x = (xv) ∈ X(A).

Proposition 8.6.8. We have x ∈ X(A)Br.

Proof. The adeles π(x) and c agree except for their archimedean parts cR
and c, which lie in the same connected component of C(R). By this and
Proposition 8.2.9, any A ∈ BrC takes the same value at π(x) as at c ∈ C(Q);
by Proposition 8.2.2, that value is 0. Thus π(x) ∈ C(A)Br. Also, the homo-
morphism BrC → BrX is surjective by Proposition 6.9.15. Corollary 8.1.10
then implies x ∈ X(A)Br. �

To generalize Proposition 8.6.8 to prove that x ∈ X(A)et,Br, we must
understand the category FEt(X) of finite étale covers of X.

Lemma 8.6.9. The morphism X → C induces an equivalence of categories
FEt(C)→ FEt(X).

Proof. This follows (by [SGA 1, IX.6.8]) from the fact that each geometric
fiber of X → C (a smooth 3-dimensional quadric or a cone over a smooth
2-dimensional quadric) is algebraically simply connected. �

Proposition 8.6.10. We have x ∈ X(A)et,Br.

Proof. Suppose that G is a finite étale group scheme over Q, and X ′ → X
is a G-torsor. We must show that one of the twists of X ′ → X has an adelic
point not obstructed by the Brauer group. By Lemma 8.6.9, X ′ → X is
the base extension of a G-torsor C ′ → C. We may replace C ′ by a twist to
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assume that c lifts to some c′′ ∈ C ′(Q). Let C ′′ be the irreducible component
of C ′ containing c′′. The fiber product X ′′ := X ×C C ′′ fits in a diagram

X ′′ �
� //

π′′

��

X ′
G-torsor //

π′

��

X //

π
��

Y

��
C ′′ �
� // C ′

G-torsor // C
f // P1.

Since C ′′ → C is finite étale, C ′′ is smooth and projective; moreover, C ′′ is
integral and has a Q-point, so C ′′ is a nice curve. Similarly, X ′′ is smooth
and projective, and X ′′ → C ′′ has geometrically integral fibers (just like
Y → P1), so X ′′ is nice too.

We claim that x lifts to a point x′′ ∈ X ′′(A). For each finite prime p,
let x′′p = (xp, c

′′) ∈ X ′′(Qp). Since U is algebraically simply connected, the
inverse image of U in C ′′(R) is a disjoint union of copies of U ; let U ′′ be the
copy containing c′′, let c′′R ∈ U ′′ be the point mapping to cR ∈ U , and let
x′′R = (xR, c

′′
R) ∈ X ′′(R). Thus we have x′′ ∈ X ′′(A) mapping to x ∈ X(A).

The same proof as for Proposition 8.6.8 shows that x′′ ∈ X ′′(A)Br, so
X ′(A)Br is nonempty. This argument applies to all finite étale torsors over
X, so X(A)et,Br is nonempty. �

This completes the proof of Theorem 8.6.5.

8.6.3. Hypersurfaces and complete intersections.

(Reference: [PV04])

Definition 8.6.11. A scheme-theoretic intersection X = H1 ∩ · · · ∩ Hr of
hypersurfaces Hi ⊂ Pn is called a complete intersection if dimX = n− r.

In particular, any hypersurface in Pn is a complete intersection.

Theorem 8.6.12. Let k be a number field. If X is a smooth complete
intersection in some Pnk and dimX ≥ 3, then the descent obstruction and
Brauer–Manin obstruction for X are vacuous; that is,

X(A)descent = X(A)Br = X(A).

Sketch of proof. By Theorem 8.5.4, it suffices to proveX(A)et,Br = X(A).
This follows immediately from the following two claims:

(i) The variety Xk is algebraically simply connected (Definition 3.5.45).
(ii) The homomorphism Br k → BrX is an isomorphism.

Part (i) follows from the weak Lefschetz theorem, which says that the homo-
morphism of fundamental groups π1(X(C), x)→ π1(Pn(C), x) is an isomor-
phism (here an embedding k ↪→ C is chosen and x ∈ X(C)) [Mil63, Theo-
rem 7.4]. For the proof of (ii), see [PV04, Proposition A.1]. �
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Heuristics suggest that most smooth hypersurfaces X ⊆ PnQ of degree
d > n + 1 = dimX + 2 have no rational points. On the other hand, a
positive fraction of such hypersurfaces have Qp-points for all p ≤ ∞ [PV04,
Theorem 3.6]. Thus one expects many counterexamples to the local-global
principle among such hypersurfaces. But there is no smooth hypersurface
of dimension ≥ 3 for which the local-global principle has been proved to
fail! The reason we are unable to prove anything in this setting is that our
only available tools, the descent and Brauer–Manin obstructions, give no
information.

We need some new obstructions!

Remark 8.6.13. The Brauer–Manin obstruction does yield counterexam-
ples to the local-global principle for some 2-dimensional hypersurfaces, such
as some cubic surfaces; see Section 9.4.9.

Remark 8.6.14. There are some conditional counterexamples among hyper-
surfaces of higher dimension. For instance, Lang’s conjecture [Lan74, (1.3)]
that V (Q) is finite for every nice hyperbolic Q-variety V implies the ex-
istence of nice hypersurfaces in P4 that violate the local-global principle;
see [SW95,Poo01]. (A smooth variety V over a subfield of C is (Brody)
hyperbolic if every holomorphic map C→ V (C) is constant.)

Exercises

8.1. Prove Proposition 8.1.8, Corollary 8.1.9, and Corollary 8.1.10.
8.2. Let k be a global field. Let X be a proper k-variety such that

X(A) 6= ∅. Let A ∈ BrX. Suppose that there exists a place w such
that the evaluation map X(kw) → Br kw given by A is not constant.
Prove that weak approximation for X fails.

8.3. (Brauer–Manin obstruction for a degree 4 del Pezzo surface) Let X
be the smooth surface defined by

uv = x2 − 5y2,

(u+ v)(u+ 2v) = x2 − 5z2

in P4
Q. (This example is from [BSD75, §4].) Let K = k(X).

(a) Prove that X(A) 6= ∅. (Suggestion: Let Y be the smooth genus 1
curve obtained by intersecting X with the hyperplane x = 0.
Spread out Y to a smooth proper scheme over Z[S−1] for some
finite set of places S. For p /∈ S, use the Hasse–Weil bound or
Lang’s theorem on H1 over finite fields to show that Y has an
Fp-point, and deduce that Y has a Qp-point.)
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(b) Let A be the class of the quaternion algebra
(
5, u+v

u

)
in BrK.

Find other representations of A to show that A ∈ BrX. (Hint :
Why does it suffice to find representations on open subsets that
cover the codimension 1 points of X?)

(c) Prove that if P = (u : v : x : y : z) ∈ X(Qp) for some p ≤ ∞, then

invpA(P ) =

{
0 if p 6= 5,
1/2 if p = 5.

(Hint : If 5 ∈ Q×2
p , what can be said about the image of A in

BrXQp?)
(d) Deduce that X(A)Br = ∅, so X(Q) = ∅.

8.4. Let S be a finite set of places of a number field k, containing all the
archimedean places. Let Ok,S be the ring of S-integers. Let G be a
finite étale group scheme over Ok,S . Prove that H1(Ok,S ,G) is finite.

8.5. (Integral descent) Let Ok,S and G be as above. Let X be a finite-
type separated Ok,S-scheme, and let Z → X be a G-torsor. For each
τ ∈ H1(Ok,S ,G), define a twisted torsor f τ : Zτ → X such that

X(Ok,S) =
∐

τ∈H1(Ok,S ,G)

f τ (Zτ (Ok,S)).

8.6. Let Ok,S be as above. Let U be an “affine curve of genus 1 over Ok,S”,
by which we mean a smooth, separated, finite-type Ok,S-scheme whose
generic fiber is an affine open subset U of a nice k-curve E of genus 1.
Show that Faltings’s theorem implies that U(Ok,S) is finite. (Hints:
Show that you may enlarge S and/or extend k as needed. Find a
sequence of Galois coverings U ′′ → U ′ → U , where U ′ = X ′ − F ′

with X ′ a nice genus 1 curve and F ′ ⊆ X ′ a closed subscheme with
#F (k) ≥ 4, and U ′′ is an affine open subset of a ramified covering
X ′′ → X ′ branched only over F ′.)

8.7. Let k be a number field. Let X be a k-variety. Let G be a smooth
affine algebraic group over k. Let Z f→ X be a G-torsor.
(a) Prove that for each place v, the set f(Z(kv)) is open in X(kv).

(Hint : Proposition 3.5.73(ii).)
(b) Prove that for each place v, the evaluation map

X(kv)→ H1(kv, G)

associated to f is continuous (for the v-adic topology on X(kv)
and the discrete topology on H1(kv, G)).

(c) Prove that for each place v, the set f(Z(kv)) is closed in X(kv).
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(d) Use results from the proof of Theorem 6.5.13 to prove that

f(Z(A)) = X(A) ∩
∏
v

f(Z(kv))

as subsets of
∏
vX(kv).

(e) Prove that f(Z(A)) is closed in X(A).
(f) Prove that for each τ ∈ H1(k,G),{

(xv) ∈ X(A) : xv maps to τv ∈ H1(kv, G) for all v
}

= f τ (Zτ (A)),

where τv denotes the image of τ in H1(kv, G).
(g) Prove that X(A)f =

⋃
τ∈H1(k,G) f

τ (Zτ (A)).
(h) Prove that if X is proper, then X(A)f is closed in X(A).
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Chapter 9

Surfaces

Curves can be divided into those of genus 0, those of genus 1, and those of
genus > 1. In these three cases, the canonical sheaf ωX is anti-ample, trivial
(OX), and ample, respectively.

Similarly, one can classify higher-dimensional varieties according to how
ample ωX is. At one extreme lie the Fano varieties, for which ω

⊗(−1)
X is

ample; at the other lie the varieties of general type.

9.1. Kodaira dimension

(Reference: [Iit82, §10.5])

Let X be a nice variety over a field k. We will associate to X an element

κ = κ(X) ∈ {−∞, 0, 1, . . . ,dimX}
called the Kodaira dimension of X.

Let ωX be the canonical sheaf.
Case 1: We have H0(X,ω⊗mX ) = 0 for all m ∈ Z≥1. Then define κ := −∞.
Case 2: We have H0(X,ω⊗mX ) 6= 0 for some m ∈ Z≥1. If m is such that
H0(X,ω⊗mX ) 6= 0, then a choice of basis defines a rational map

φm : X 99K PN(m)

(defined on the open subscheme Um of points at which the global sections
generate ω⊗mX ). In this case, let φm(X) denote the Zariski closure of φm(Um)

in PN(m). Then for m > 1 sufficiently large and divisible, φm(X) is indepen-
dent of m up to birational equivalence (cf. [Iit82, §10.1]), and we let κ be
its dimension. In fact, in Case 2 the following definitions are equivalent:

257
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(i) κ := maxm dimφm(X).
(ii) κ is the integer such that there exist c1, c2 ∈ R>0 such that

c1m
κ < dimk H0(X,ω⊗mX ) < c2m

κ

for all m > 0 such that H0(X,ω⊗mX ) 6= 0.
(iii) κ := (tr degk FracR)− 1, where R is the canonical ring⊕

m≥0

H0(X,ω⊗mX ).

The equivalence of (i) and (ii) is [Iit82, Theorem 10.2]. The equivalence of
(i) and (iii) follows since the function field of φm(X) for sufficiently large
and divisible m is the degree 0 homogeneous part of FracR (and for other
m it is smaller).

Proposition 9.1.1. Let X be a nice curve of genus g. Then

g = 0 =⇒ κ(X) = −∞,
g = 1 =⇒ κ(X) = 0,

g ≥ 2 =⇒ κ(X) = 1.

Proof. We leave this as Exercise 9.1. �

Proposition 9.1.2.

(a) If X and Y are birationally equivalent nice k-varieties, then κ(X) =
κ(Y ).

(b) If X is a nice k-variety and L ⊇ k is a field extension, then κ(XL) =
κ(X).

Proof.

(a) The proof of [Har77, Theorem II.8.19] generalizes to prove that the
birational map X 99K Y induces a natural isomorphism

H0(Y, ω⊗mY )→ H0(X,ω⊗mX )

for any m ≥ 0, so these vector spaces have the same dimension.
(b) The formation of H0(X,ω⊗mX ) commutes with field extension. �

Definition 9.1.3. If X is a geometrically integral k-variety that is birational
to a nice k-variety Y , define κ(X) = κ(Y ).

Proposition 9.1.2 shows that the definition is independent of the choice
of Y . Resolution of singularities is known if char k = 0, so then a Y exists
and κ(X) is automatically defined. (The paper [Luo87] contains a definition
of κ(X) that does not rely on resolution of singularities, and hence works in
every characteristic.)
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Definition 9.1.4. If κ(X) = dimX (the maximum possible), then X is said
to be of general type, or pseudo-canonical. For a nice variety of general
type, one can show that for m sufficiently large, φm is birational onto its
image [Iit82, §10.2a, §10.6b]. For instance, if X is a nice curve of general
type, then the Riemann–Roch theorem shows that m ≥ 3 suffices (more
specifically, this follows from [Har77, Corollary IV.3.2(b)], since for g ≥ 2,
we have 3(2g − 2) ≥ 2g + 1). If X is a nice surface of general type, then
m ≥ 5 suffices [Bom73], [Eke88].

Example 9.1.5. Let X be a nice variety. If ωX is ample, then X is of
general type.

�

Warning 9.1.6. The converse need not hold. Suppose that Y is a nice
surface of degree 5 in P3

C, so ωY ' O(1) by [Har77, Example II.8.20.3].
Let X → Y be the blowup of Y at a point P ∈ Y (C). By the proof
of Proposition 9.1.2, the rational map fm determined by ω⊗mX equals the
composition

X −→ Y
m-uple−→ PN(m).

Thus X is of general type, but fm is not a closed immersion for any m ≥ 1,
so ωX is not ample.

9.2. Varieties that are close to being rational

(Reference: [Kol96])

9.2.1. Rational, stably rational, and unirational varieties.

Definition 9.2.1. Let X be an n-dimensional integral variety over an al-
gebraically closed field k. Call X rational if it is birational to Pn. Call X
stably rational if there exists m ∈ N such that X × Pm is rational. Call
X unirational if there exists a dominant rational map PN 99K X for some
N ≥ 0.

Remark 9.2.2. Suppose that X is unirational, so there exists a dominant
rational map φ : PN 99K X for some N ≥ 0. Then there exists also a
dominant rational map Pn 99K X with n = dimX; in fact, one can show
that there exists a rational map Pn 99K PN such that the composition Pn 99K
PN 99K X is dominant.

Example 9.2.3. Fix integers 0 ≤ m ≤ n and an n-dimensional k-vector
space V . The Grassmannian Gr(m,n) = Gr(m,V ) is the moduli space of
m-dimensional subspaces of V . It is birational to Pm(n−m)

k (even if k is not
algebraically closed), since if we identify V with km × kn−m, then Gr(m,n)

has a Zariski open subspace U ' Am(n−m) parameterizing the graphs of
linear maps km → kn−m.
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Example 9.2.4. Consider PE → P1, where E is a rank 2 vector bundle on
P1. By [Har77, Corollary V.2.14], E ' O(m) ⊕ O(n) for some m,n ∈ Z.
Tensoring E with a line bundle does not change PE , so we may assume
that E ' O ⊕ O(n) for some n ≥ 0; the corresponding PE is called the
Hirzebruch surface Fn. Since E is locally free of rank 2, there exists a dense
open subscheme U of P1 such that the part of PE above U is isomorphic to
P1 × U ; thus Fn is a rational surface for each n.

Remark 9.2.5 (Rationality in a family). In a family of varieties X f→ B,
rationality of one fiber Xb := f−1(b) does not imply rationality of the
other fibers. In fact, there exists a smooth projective morphism X → B
of C-varieties such that {b ∈ B(C) : Xb is rational} and {b ∈ B(C) :
Xb is not rational} are both dense in B(C) for the analytic topology; see
[HPT16, Theorem 1.1]. In the example constructed, for b ∈ B(C) outside a
countable union of lower-dimensional closed subvarieties, the fiber Xb is not
even stably rational.

Remark 9.2.5 is one of the reasons for introducing rational connectedness,
which is weaker than rationality and stable rationality; see Theorem 9.2.18.

Proposition 9.2.6 (Cohomology of a rational surface). Let X be a nice
rational surface over a separably closed field k. Then PicX is a free finite-
rank abelian group, and for any prime ` 6= char k,

H0
et(X,Q`) ' Q`,

H1
et(X,Q`) = 0,

H2
et(X,Q`) ' (PicX)⊗Q`(−1),

H3
et(X,Q`) = 0,

H4
et(X,Q`) ' Q`(−2).

Sketch of proof. The middle isomorphism is induced by (7.6.2). The state-
ments are true for P2, and one can show that their truth is unaffected by
blowing up a point. �

Remark 9.2.7. Here we explain a variant of unirationality. A dominant
rational map Y 99K X is called separably dominant if k(Y ) is a finite sepa-
rable extension of k(X). Call an n-dimensional integral variety X separably
unirational if there exists a separably dominant rational map Pn 99K X. In
characteristic 0 there is no difference between unirational and separably uni-
rational. But in characteristic p, the property of being separably unirational
is better behaved in many regards.
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9.2.2. Ruled and uniruled varieties.

Definition 9.2.8. Let X be an n-dimensional integral variety over an alge-
braically closed field k. Call X ruled if it is birational to Y × P1 for some
integral k-variety Y . Call X uniruled if there exists a dominant rational map
Y × P1 99K X for some integral k-variety Y of dimension n− 1. (A point is
not uniruled.)

Proposition 9.2.9. If X is uniruled, there is a rational curve through a
general point of X, i.e., there is a dense open subset U ⊂ X such that for
every x ∈ U(k), there is a nonconstant rational map P1 99K X whose image
contains x. The converse holds if k is uncountable.

Proof. Suppose thatX is uniruled, say via Y ×P1 99K X. We may replace Y
by the dense open set consisting of y ∈ Y such that {y}×P1 99K X is defined
and nonconstant. The image of the dominant rational map Y × P1 99K X
contains a dense open subset U of X; this proves the first part.

Now let us prove the converse. Let n = dimX. Replace X by a bira-
tionally equivalent variety to assume that X is projective. The theory of the
Hilbert scheme shows that the nonconstant rational maps P1 99K X fall into
countably many algebraic families B × P1 99K X. If any of these rational
maps B × P1 99K X is dominant, then for a general linear (n − 1)-dimen-
sional section Y of a nonempty affine open subscheme of B, the rational map
Y × P1 99K X is dominant, so X is uniruled. Otherwise, each rational map
B × P1 99K X has image contained in a positive-codimensional subvariety
of X. Since k is uncountable, the union of these images cannot cover the
k-points of any dense open subset U of X. �

Remark 9.2.10. As in Remark 9.2.7, one can also define separably unir-
uled.

There is also a criterion for being separably uniruled in terms of the
existence of a single rational curve satisfying a condition that guarantees
that it moves in a family, as we now explain. Let X be a nice variety
of dimension d over an algebraically closed field. Let TX be the tangent
bundle of X, defined as the OX -dual of the sheaf of 1-forms ΩX ; it is a
rank d vector bundle. Given a rational curve f : P1 → X, we obtain a rank d
vector bundle f∗TX on P1. Every vector bundle on P1 is a direct sum of line
bundles, so f∗TX ' O(a1) ⊕ · · · ⊕ O(ad) for some a1, . . . , ad ∈ Z. Call the
rational curve free if ai ≥ 0 for all i, and very free if ai ≥ 1 for all i.

Theorem 9.2.11. Let X be a nice variety over an algebraically closed field.
Then X is separably uniruled if and only if X contains a free rational curve.

Proof. See [Kol96, Theorem IV.1.9]. �
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9.2.3. Rationally connected varieties. Suppose that X is a nice variety
over an algebraically closed field k. Roughly, X is called rationally connected
if there is an algebraic family of rational curves such that for almost every
pair of points (x, x′), there is a rational curve in the family joining them.

Let us make this precise. In this section, by a rational curve in X
we mean a (possibly constant) rational map f : P1 99K X; by Proposi-
tion 3.6.5(b), it would be equivalent to require f to be a morphism. Say that
two points x, x′ ∈ X(k) can be joined by a rational curve if there is a ratio-
nal curve f such that x, x′ ∈ f(P1). An algebraic family of rational curves,
parameterized by a base variety B, is a rational map F : B × P1 99K X; this
is a family in the sense that for (almost every) b ∈ B(k), the restriction of F
to {b} × P1 defines a rational map P1 99K X. Given such a family, the pairs
of points that it joins are the pairs of the form (F (b, t), F (b, t′)) for some
b ∈ B(k) and t, t′ ∈ P1(k).

Definition 9.2.12. The variety X is rationally connected if there is a
variety B and a rational map F : B × P1 99K X such that the rational map

B × P1 × P1 99K X ×X
(b, t, t′) 7−→ (F (b, t), F (b, t′))

is dominant.

Proposition 9.2.13. If X is rationally connected, then any general pair of
points can be joined by a rational curve; i.e., there is a dense open subset U
of X×X such that any pair (x, x′) ∈ U(k) can be joined by a rational curve.
The converse holds if k is uncountable.

Proof. The proof is the same as that of Proposition 9.2.9. �

We define separably rationally connected by replacing “dominant” by
“separably dominant” in the definition of rationally connected. Here is the
analogue of Theorem 9.2.11.

Theorem 9.2.14. Let X be a nice variety over an algebraically closed field.
Then X is separably rationally connected if and only if X contains a very
free rational curve.

Proof. See [Kol96, Theorem IV.3.7]. �

Moreover, it turns out that if X is separably rationally connected, then
any finite subset of X(k) is contained in a very free rational curve.

Rational connectedness also has a topological implication:

Theorem 9.2.15. If X is a rationally connected variety over C, then the
manifold X(C) is simply connected.
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Proof. See [Cam91, Theorem 3.5] or [KMM92b, 2.5.3]. �

9.2.4. Rationally chain connected varieties.

Definition 9.2.16. A variety X over an algebraically closed field k is ra-
tionally chain connected if there exists a variety B, a proper morphism
C → B whose fibers are connected unions of rational curves, and a rational
map C 99K X such that the induced rational map C ×B C 99K X × X is
dominant.

If X is rationally chain connected, then a general pair (x, x′) of points
on X can be joined by a chain of rational curves, i.e., there exist points
x0, . . . , xn with x0 = x and xn = x′ such that for i = 0, 1, . . . , n − 1, the
points xi and xi+1 can be joined by a rational curve.

Although rational chain connectedness seems weaker than rational con-
nectedness, the definitions turn out to be equivalent under mild hypotheses:

Theorem 9.2.17 ([KMM92b, (2.1)] and [Kol96, Theorem IV.3.10.3]). A
smooth variety X over a field of characteristic 0 is rationally chain connected
if and only if it is rationally connected.

Theorem 9.2.17 implies that rational connectedness behaves well in fam-
ilies:

Theorem 9.2.18 (Deformation invariance of rational connectedness
[KMM92b, 2.4]). Let k be an algebraically closed field of characteristic 0.
Let S be a connected k-variety. Let π : X → S be a smooth proper morphism
with geometrically integral fibers. If one fiber is rationally connected, then
all fibers are rationally connected.

Sketch of proof. One shows that

• the set of s ∈ S such that the fiber π−1(s) has a very free rational curve
is open; and
• the set of s ∈ S such that the fiber π−1(s) is rationally chain connected
is closed.

By Theorems 9.2.14 and 9.2.17, both sets equal the set of s ∈ S such that
π−1(s) is rationally connected. A nonempty open and closed subset of a
connected space is the whole space. �

9.2.5. Fano varieties.

Definition 9.2.19. Let X be a nice variety over a field k, and let ωX be its
canonical sheaf. Call X Fano if ω⊗(−1)

X is ample.
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Example 9.2.20. If X = Pn, then ω
⊗(−1)
X ' O(n + 1) [Har77, Exam-

ple II.8.20.1], so X is Fano.

Example 9.2.21. Let X be a nice curve. A line bundle L on X is ample if
and only if deg L > 0; applying this to ω⊗(−1)

X shows that X is Fano if and
only if 2− 2g > 0, which holds if and only if g = 0.

Example 9.2.22. A nice hypersurface of degree d in Pn is Fano if and only
if d ≤ n.

Proposition 9.2.23. Let L ⊇ k be an extension of fields, and let X be a
k-variety. Then X is Fano if and only XL is Fano.

Proof. The formation of ωX commutes with base change, so the same is
true of ω⊗(−1)

X . Also, the property that a line bundle has global sections
determining a closed immersion is unaffected by field extension, so ampleness
is unaffected by field extension; see [EGA IV2, 2.7.2] for a more general
statement. �

Let X be a Fano variety. Let m = dimX. Let K be a canonical divisor
on X. If −K is very ample, then the complete linear system |−K| embeds X
as a subvariety of some Pn, and the degree of this subvariety is the number of
points (counted with multiplicity) resulting from cutting it with m general
hyperplanes in Pn; equivalently, this degree equals the self-intersection num-
ber (−K)m on X. In general, −K is only ample, but some positive integer
multiple of −K is very ample, so again (−K)m is positive. We define the
degree of X as (−K)m.

�

Warning 9.2.24. The property of being Fano is not invariant under bira-
tional maps between nice varieties. See Remark 9.4.6.

9.2.6. Implications. Throughout this section, X is a nice variety of dimen-
sion d ≥ 1 over C. The following diagram summarizes the known implications
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between the properties we have been discussing:

rational

6=

��
stably rational

6=
��

unirational

��

Fano
6=

px
rationally chain connected ks +3 rationally connected

6=

��

+3 H0(X,Ω⊗mX ) = 0 ∀m ≥ 1

uniruled

��
κ = −∞.

The symbol 6= means that the properties are not equivalent, i.e., that there
is a known counterexample to the converse of the implication.

Some remarks:

• Unirational varieties of dimension 1 are rational. Separably unirational
varieties of dimension 2 are rational. In higher dimensions, unirational
does not imply rational, even over C. In fact, there are several invariants
that can be used to prove nonrationality:
– Intermediate Jacobian: Every smooth cubic 3-fold X in P4 is unira-

tional, but Clemens and Griffiths proved that X is never rational.
They proved that the intermediate Jacobian J3(Y ) of a rational
3-fold Y is a product of Jacobians of nice curves, but J3(X) does
not have this form [CG72, (0.12)]. Beauville, Colliot-Thélène, San-
suc, and Swinnerton-Dyer constructed a nice 3-foldX that is stably
rational but not rational [BCTSSD85]; their nonrationality proof
again relied on the intermediate Jacobian.

– Birational automorphism group: Some (and maybe all) smooth
quartic 3-folds X in P4 are unirational [Seg60, V.19], but Iskov-
skikh and Manin proved that such X are never rational [IM71].
In fact, they showed that BirX is isomorphic to AutX, which is
finite [MM63, Theorem 2], while BirP3 is enormous.

– Torsion in H3(X,Z): Artin and Mumford gave the example of a
double cover X of P3 branched along a quartic surface [AM72, §2].
They showed that X is not rational by showing that H3(X,Z)tors

is a birational invariant of 3-folds that distinguishes X from P3

[AM72, Proposition 1]. In fact, for the same reason, X is not even
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stably rational. The group H3(X,Z)tors can also be interpreted as
the unramified cohomology group H2

nr(X,Q/Z).
– Higher unramified cohomology : Colliot-Thélène and Ojanguren con-

structed a nice 6-foldX such that the unramified cohomology group
H3

nr(X,Q/Z) is nonzero even though H2
nr(X,Q/Z) = 0; the former

implies that X is not stably rational [CTO89]. For rationally con-
nected varieties, the group H3

nr(X,Q/Z) also measures the failure
of the integral Hodge conjecture [CTV12, Théorème 1.1].

• The theorem that Fano varieties in characteristic 0 are rationally
connected was proved independently in [Cam92, Corollaire 3.2] and
[KMM92a, Theorem 0.1].
• It is expected that there exist Fano varieties (and hence rationally con-
nected varieties) that are not unirational. For instance, smooth hyper-
surfaces of degree n in Pn are Fano, but maybe for large n they are not
unirational.
• It is easy to construct rationally connected varieties that are not Fano,
or even rational varieties that are not Fano. See Remark 9.4.6, for
example.
• Mumford conjectured that X is rationally connected if and only if

H0(X,Ω⊗mX ) = 0 for all m ≥ 1 [Kol96, Conjecture IV.3.8.1]. This
is known for d ≤ 3 [KMM92b, Theorem 3.2]. (Here ΩX is the sheaf
of 1-forms, not the canonical sheaf, so Ω⊗mX is a vector bundle of rank
dm.)
• If C is a curve of positive genus, then C × P1 is uniruled, but not
rationally connected, because any rational curve in C × P1 maps to a
point under the projection to C.
• It is conjectured that uniruled is equivalent to κ = −∞.

Remark 9.2.25. It is not known whether there exists a single nice hyper-
surface of degree at least 4 that is rational.

9.2.7. Non-algebraically closed ground fields.

Definition 9.2.26. Let X be a nice variety over an arbitrary field k. Call
X rational, unirational, separably unirational, ruled, uniruled, separably
uniruled, rationally connected, separably rationally connected, or ratio-
nally chain connected, if Xk is.

If we want to say that the property truly holds over k, we use the prefix
k-. For instance, X is k-unirational if there exists a dominant rational map
PNk 99K X for some N ≥ 0.
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Conjecture 9.2.27 (Colliot-Thélène). Let X be a nice variety over a num-
ber field k. Suppose that X is rationally connected. Then the Brauer–Manin
obstruction to the local-global principle is the only obstruction.

See [PV04, Remark 3.3] for the history of Conjecture 9.2.27.

9.3. Classification of surfaces

9.3.1. Proper birational morphisms.

(References: [Lic68], [Lip69, §27], [Mor82, Chapter 2, Section 3])

9.3.1.1. Terminology. Throughout Section 9.3.1, we use the following termi-
nology. A regular surface is a regular integral separated noetherian scheme
X of dimension 2. A curve in X is an integral codimension 1 subscheme
C ⊂ X such that C is proper over some field k (the latter condition is au-
tomatic if X itself is proper over k). The properness assumption is there
so that for any divisor D on X we may define C.D := degk OX(D)|C
(cf. [Lic68, I.§1]); since there may be more than one possibility for k given
C, we write (C.D)k when necessary. Curves are called skew if they do not
intersect. Call a curve C contractible if there is a proper birational mor-
phism f : X → Y to another regular surface such that f(C) is a closed point
P ∈ Y and f restricts to an isomorphism from X − C to Y − {P}. (Some
authors relax the regularity requirement on Y and allow Y to be only normal
at P ; see [Lip69, §27].) If C is contractible, then Y , P , and f are uniquely
determined up to isomorphism: the key point is that normality forces OY,P

to equal
⋂
x∈C OX,x ⊆ k(X). Call a curve C a (−1)-curve if C ' P1

L and
(C.C)L = −1 for some field L; then call L = H0(C,OC) the constant field
of C.
9.3.1.2. Blowing up a regular surface at a closed point. The blowup of a
regular surface Y at a closed point P is another regular surface X with
a proper birational morphism X → Y [Lic68, II.A.1.5]. In this case, the
fiber above P is a contractible curve C ⊆ X called the exceptional divisor.
Moreover, C is a (−1)-curve with constant field k(P ) [Lic68, Propositions
II.A.2.9 and II.A.2.8].
9.3.1.3. Factorization of birational maps. Any finite composition of blowups
as above is a birational morphism. Part (a) of the following is a converse.

Theorem 9.3.1 (Factorization of birational morphisms). Let f : X → Y be
a proper birational morphism between regular surfaces.

(a) The morphism f factors as a sequence of blowups at closed points.
(b) If moreover X is smooth over a field k and f is a k-morphism, then

(i) Y is smooth over k, and
(ii) each point P blown up in (a) is such that k(P )/k is separable.
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Proof.

(a) See [Lic68, Theorem 1.15].
(b) (This proof is loosely inspired by [Coo88].) By working our way down

the sequence of blowups, it suffices to handle the case in which X =
BlP Y for some regular surface Y and closed point P ∈ Y .
(ii) Factor [k(P ) : k] as si, where s is the separable degree and i is

the inseparable degree. By Section 9.3.1.2, the exceptional divisor
C ⊂ X is isomorphic to P1

k(P ) and satisfies

C.C = [k(P ) : k] (C.C)k(P ) = −[k(P ) : k] = −si.
On the other hand, since k(P ) ⊗k k is a product of s local rings
each of length i over itself, the pullback of C to a divisor on Xk
equals

∑s
j=1 iDj for some skew integral divisorsDj ⊂ Xk conjugate

to each other; thus C.C =
∑s

j=1(iDj).(iDj) = si2D1.D1. So si2

divides −si. Hence i = 1; i.e., k(P )/k is separable.
(i) By Proposition 3.5.22(iii), Y is smooth at P . On the other hand,

Y −{P} is isomorphic to an open subscheme of the smooth scheme
BlP Y , so Y − {P} is smooth. Hence Y is smooth. �

Theorem 9.3.2 (Factorization of birational maps). Let φ : X 99K Y be a
birational map between regular proper surfaces over a field k.

(a) There exists a regular surface Z with proper birational morphisms f and
g forming a commutative diagram of rational maps

Z
f

~~

g

  
X

φ // Y.

(b) The rational map φ factors into blowups at closed points and inverses of
such blowups.

Proof.

(a) This is a consequence of [Lip69, Theorem 26.1].
(b) Combine (a) with Theorem 9.3.1(a). �

9.3.1.4. Criteria for contractibility. One would like an intrinsic criterion for
contractibility of a curve C ⊂ X, instead of a criterion involving an unspec-
ified proper birational morphism to some unspecified Y . For smooth pro-
jective varieties X over an algebraically closed field, Castelnuovo gave the
following criterion: C is contractible if and only if C ' P1

k and C.C = −1
[Har77, Theorem V.5.7]. Here is the generalization to regular surfaces.
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Theorem 9.3.3 (Criteria for contractibility). Let X be a regular surface
that is proper over a noetherian ring A. For a curve C ⊂ X mapping to a
point in SpecA, the following are equivalent.

(i) C is contractible.
(ii) There is a regular surface Y proper over A, a closed point P ∈ Y , and

an A-isomorphism X ' BlP Y sending C to the exceptional divisor.
(iii) C is a (−1)-curve.

If X is a nice surface over a field A = k, then additional equivalent criteria
may be given (in these, K denotes a canonical divisor on X):

(iv) C.C < 0 and C.K < 0.
(v) Cks =

⋃n
i=1Ei for some Gk-orbit {E1, . . . , En} of skew (−1)-curves on

Xks with constant field ks. In this case, C.C = −n, C.K = −n, and C
is geometrically reduced.

Proof.
(i)⇒(ii): The proper birational morphism contracting C factors into

blowup morphisms, by Theorem 9.3.1. Since C is integral, there can be only
one blowup.

(ii)⇒(iii): This was mentioned already in Section 9.3.1.2.
(iii)⇒(i): (This is the difficult part.) The morphism X → SpecA is

projective ([Lip69, Corollary 27.2]), so this is a special case of [Lip69, The-
orem 27.1].

From now on, X is a nice surface over a field k.
(ii)⇒(v): By Theorem 9.3.1, X ' BlP Y for some nice Y and closed

point P ∈ Y with k(P )/k separable. Then Xks is the blowup of Yks along the
subscheme Pks , which consists of a Gk-orbit in Y (ks), so Cks is as described.
We can compute C.C and C.K after base extension to ks: since Ei.Ej = 0
for i 6= j, all the quantities are the sum of the quantities for the individual
Ei. We have Ei.Ei = −1 and Ei.K = −1 (see Exercise 9.4), so the results
follow. Finally, Ck is a disjoint union of copies of P1

k
, so C is geometrically

reduced.
(v)⇒(iv): We have −n < 0.
(iv)⇒(i): See the proof of [Mor82, Theorem 2.7]. �

Corollary 9.3.4. Let X be a nice surface over a field k. Every (−1)-curve
on Xk is definable over ks, i.e., is the base extension of a (−1)-curve on Xks

with constant field ks.

Proof. We may assume that k is separably closed. Let D be a (−1)-curve
on Xk. Let C be its image under Xk → Xks . As divisors on Xk, we have
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Ck = qD for some q ≥ 1. Thus C.C < 0 and C.K < 0. By (iv)⇒(v) in The-
orem 9.3.3, C is a (−1)-curve with constant field ks and C is geometrically
reduced. Thus Ck = D. �

For more general contractibility criteria, including the case of blowing
down entire configurations of curves at once, see [Art62, Theorems 2.3, 2.7,
and 2.9], [Art66, Corollary 7], and [Lip69, Theorem 27.1].
9.3.1.5. Minimal surfaces.

Definition 9.3.5. Let X be a regular surface. Call X relatively minimal
if every proper birational morphism from X to another regular surface is an
isomorphism. If in addition, every birational map from a regular surface Y
to X is a morphism, call X minimal.

Proposition 9.3.6. A regular surface X is relatively minimal if and only
if it does not contain a curve C satisfying one of the equivalent conditions
of Theorem 9.3.3. In particular, a nice surface X over a field k is relatively
minimal if and only if Xks does not contain a Gk-orbit of skew (−1)-curves
with constant field ks.

Corollary 9.3.7. Relative minimality is unchanged by inseparable extension
of the base field.

�

Warning 9.3.8. Relative minimality can be lost under separable extension
of the base field. It can happen that Xks contains (−1)-curves but that each
such curve intersects one of its other Galois conjugates.

Theorem 9.3.9 (Existence of relatively minimal models). Let X be a nice
surface over a field k. Then there exists a proper birational morphism from
X to some relatively minimal surface.

Proof. If not, then one could iteratively blow down orbits of (−1)-curves on
Xks as in Theorem 9.3.3(v) forever. But then one could do the same over k,
which is impossible by the proof of [Har77, Theorem V.5.8]. �

�

Warning 9.3.10. There can exist more than one relatively minimal surface
in a birational equivalence class, as the following example shows.

Example 9.3.11. The obvious isomorphism A1 × A1 → A2 defines a bi-
rational map P1 × P1 99K P2 indeterminate only at P := (∞,∞). The
indeterminacy can be resolved by blowing up P on P1 × P1 to produce a
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surface X fitting in a diagram

X

{{

��

P1 × P1

(( P2.

More explicitly, the strict transforms of P1 × {∞} and {∞} × P1 are skew
(−1)-curves in X, and blowing them down produces P2. Both P1 × P1 and
P2 are relatively minimal, but not minimal.

On the other hand, we have the following.

Proposition 9.3.12 (Uniqueness of minimal models). If X1 and X2 are
minimal regular surfaces in the same birational equivalence class, then they
are isomorphic.

Proof. The inverse rational maps X1 99K X2 and X2 99K X1 extend to
morphisms whose composition in either order is the identity. �

9.3.1.6. Fibered surfaces. There is a variant of the theory of minimal surfaces
in which everything is fibered over a noetherian scheme S. To obtain this
variant, change “regular surface” to “regular surface equipped with a proper
morphism to S”, and change “proper birational morphism” to “proper bira-
tional S-morphism” everywhere; this also changes the notions of relatively
minimal and minimal. Then in Theorem 9.3.3, consider only curves C that
map to a closed point in S.

A key setting is the one in which S is the spectrum of a discrete valuation
ring, or more generally an integral separated Dedekind scheme. If Z is
a nice curve of genus g ≥ 1 (or more generally, a regular proper integral
curve of positive arithmetic genus) over the function field of such an S, then
among regular surfaces proper over S with generic fiber Z, there exists a
minimal one: this is a consequence of [Lic68, Theorem 4.4]. It is unique by
Proposition 9.3.12, and is called the minimal regular proper model of Z.
See also [Chi86].

9.3.2. Surfaces over algebraically closed fields.

(Reference: [Mor82, Chapter 2])

Definition 9.3.13. Let X be a nice variety over a field. Let D be a divisor
on X. Then
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(i) D is numerically equivalent to 0 if D.C = 0 for all closed integral
curves C on X.

(ii) D is nef (numerically effective) if D.C ≥ 0 for all closed integral curves
C on X.

The same terminology applies to the line bundle associated to D.

Theorem 9.3.14 (Minimal models of surfaces). Let k be an algebraically
closed field. Let X be a relatively minimal nice surface over k, with canonical
divisor K. Then exactly one of the following holds:

(i) X is rational or ruled (in which case κ(X) = −∞), or
(ii) K is nef (in which case κ(X) ∈ {0, 1, 2} and X is minimal).

Proof. See [Mor82, Corollary 2.2 and Lemma 2.4]. �

A more refined classification is possible. For the rest of Section 9.3.2,
we assume that k is algebraically closed and X is a relatively minimal nice
surface over k. First, one can subdivide according to the Kodaira dimension
κ := κ(X):
9.3.2.1. κ = −∞.

Rational surfaces. The only Hirzebruch surface Fn that contains a (−1)-
curve is F1, which is isomorphic to the blowup of P2 at a point. Therefore
the rational surfaces

F0,P2, F2, F3, . . .

are all relatively minimal. One can show that every rational relatively min-
imal surface is isomorphic to one of these. We have F0 ' P1 × P1.

Ruled surfaces. Given a nice curve C and a rank 2 vector bundle E on
C, the ruled surface PE → C is relatively minimal. Every ruled relatively
minimal surface is isomorphic to one of these.
9.3.2.2. κ = 0. In this section, we assume that char k 6= 2; see [BM76]
for the full details in characteristic 2. The minimal surfaces of Kodaira
dimension 0 are the abelian surfaces (2-dimensional abelian varieties), K3
surfaces (nice surfaces X with H1(X,OX) = 0 and K = 0), and quotients
of these by a finite group scheme acting freely. A quotient so obtained that
is not an abelian surface or a K3 surface is either

• a bielliptic surface (see Definition 8.6.2), or
• an Enriques surface (a quotient of a K3 surface by an étale group scheme
of order 2).

Example 9.3.15. If G is a finite subgroup scheme of an abelian surface A
acting by translation on A, then A/G is another abelian surface, with an
isogeny A→ A/G.
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Example 9.3.16 (Bielliptic surface). Let E1 and E2 be elliptic curves. Let
t ∈ E1(k) be of order exactly 2. Let G = Z/2Z act on E1 × E2 so that the
nontrivial element acts as (x, y) 7→ (x+ t,−y) for some nontrivial t ∈ E2(k)
of order 2. Let X be the quotient of E1 × E2 by the action of G. Then
X is a bielliptic surface. If X were an abelian surface, then the morphism
E1×E2 → X would be a homomorphism up to translation, so its geometric
fibers, the G-orbits in (E1 × E2)(k), would all be cosets of one subgroup,
but they are not. If X were a K3 surface, it would be algebraically simply
connected, but X has E1 × E2 as a nontrivial connected finite étale cover.

9.3.2.3. κ = 1. All surfaces with κ = 1 are elliptic surfaces, surfaces fibered
over a curve C such that all but finitely many fibers are of genus 1, except
that if k is of characteristic 2 or 3, there are also quasi-elliptic surfaces,
which are fibered into singular curves of arithmetic genus 1. But not all
elliptic (or quasi-elliptic) surfaces X have κ = 1; in general all one can say
is κ ∈ {−∞, 0, 1}. If the base curve C is of genus at least 2, then κ = 1 is
guaranteed, but if C has genus 0 or 1, then one needs to know more about
X to determine κ.
9.3.2.4. κ = 2. These are, by definition, surfaces of general type. As a
warmup, recall that curves of general type can be classified by their genus
g ∈ {2, 3, . . .}, and for each g, there is a quasi-projective variety Mg whose
k-points correspond to the isomorphism classes of genus g curves. There is
an analogue for surfaces, in which g is replaced by a pair of integers (e,K2).
Here e is the topological Euler characteristic, defined by

e :=
4∑
i=0

(−1)i dim Hi
Betti(X,Q)

if k = C, or by

e :=
4∑
i=0

(−1)i dim Hi
et(X,Q`)

if k is an arbitrary algebraically closed field, where ` is a prime chosen so that
` 6= char k. And K2 is the self-intersection of a canonical divisor. It is not
known what the range of possibilities for (e,K2) is, but for fixed (e,K2), the
general type minimal surfaces over C are parameterized by a coarse moduli
space that is a quasi-projective variety [Gie77].

Definition 9.3.17. Let k be an algebraically closed field. A nice k-variety
X of arbitrary dimension is called a minimal model if K is nef. When X
is a surface, this notion coincides with the notion of minimal surface given
in Definition 9.3.5, because of Theorem 9.3.14 and the multiple examples of
relatively minimal rational and ruled surfaces.

9.3.3. Surfaces over arbitrary fields.
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(Reference: [Mor82, Chapter 2, Section 3])

Definition 9.3.18. LetX be a nice surface over a field k. The group NumX
is the quotient of PicX by the subgroup of classes of line bundles numerically
equivalent to 0. We have NumX ' Zρ for some ρ ≥ 1 called the Picard
number of X.

�

Warning 9.3.19. The Picard number is unchanged by inseparable extension
of the base field, but it can grow under separable extension. For example, let
X = ResC/R P1. Then XC ' P1

C×P1
C, so PicXC ' Z2, but complex conjuga-

tion interchanges the coordinates, so by Exercise 6.10b, PicX is isomorphic
to the diagonal copy of Z in Z2. Thus ρ(X) = 1 and ρ(XC) = 2.

The following builds on the work of many people, including Castelnuovo,
Enriques, Manin, Iskovskikh, and Mori.

Theorem 9.3.20. Let k be a field. Let X be a nice k-surface, and let K be
a canonical divisor. Then at least one of the following properties holds:

(i) X is not relatively minimal (see Proposition 9.3.6).
(ii) ρ = 1 and −K is ample.
(iii) ρ = 2 and X is a conic bundle over a nice k-curve Y such that for every

y ∈ Y , the fiber Xy is isomorphic to an irreducible and geometrically
reduced k(y)-curve of degree 2 in P2

k(y) (i.e., each geometric fiber is
either a smooth conic or a union of two intersecting lines defined over
a separable quadratic extension, each a Galois conjugate of the other).

(iv) K is nef.

Moreover, these four classes of varieties are pairwise disjoint, except that
some surfaces satisfy both (i) and (iii).

Proof. See [Mor82, Theorem 2.7]. For the classification of surfaces satis-
fying both (i) and (iii), see [Isk79, Theorem 4]. �

Corollary 9.3.21.

(a) A rational surface over k is birational (over k) to either a del Pezzo
surface (see Section 9.4) or a conic bundle over a conic.

(b) A ruled surface over k is birational to a conic bundle over a nice k-curve.

Remark 9.3.22. The arithmetic of del Pezzo surfaces will be discussed
in detail in Section 9.4. For the arithmetic of conic bundles, see [Sko01,
Chapter 7].

Corollary 9.3.23. Let k be a separably closed field.

(a) The relatively minimal rational surfaces over k are P2 and the Hirzebruch
surfaces Fn for n ∈ {0} ∪ {2, 3, . . .}.
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(b) The relatively minimal ruled surfaces over k with base of positive genus
are the surfaces PE → Y , where Y is a nice k-curve of positive genus
and E is a rank 2 vector bundle on Y .

Proof. In Theorem 9.3.20, we are in case (ii) or (iii). If (ii), then Xk ' P2
k
,

so X ' P2 by Remark 4.5.9.
If (iii), then the conic bundle X corresponds to an element of

H1(Y,PGL2) ↪→ H2(Y,Gm) = BrY,

but the latter is trivial by Theorem 6.9.7. Thus X ' PE for some rank 2
vector bundle E on Y . Finally, if Y itself is a conic, then Y ' P1 (Re-
mark 4.5.9 again), and the classification of vector bundles on P1 shows that
E ' O ⊕O(n) for some n ≥ 0. Finally, PE is relatively minimal if and only
if (PE )k is relatively minimal, which holds if and only n 6= 1. �

Proposition 9.3.24 ([Wei56]). Let k be a finite field Fq. Let X be a nice
rational surface over k. Then

#X(k) = q2 + (tr Frobq |PicXk)q + 1,

and X has a k-point.

Proof. Apply Proposition 9.2.6 to Xk and then use the Lefschetz trace for-
mula (7.5.18) to obtain the formula. Since tr Frobq |PicXk ∈ Z, we obtain
#X(k) ≡ 1 (mod q), so X(k) 6= ∅. �

Remark 9.3.25. As mentioned in (3) in Section 1.2.4, the final conclusion
of Proposition 9.3.24 generalizes to rationally chain connected nice varieties
[Esn03, Corollary 1.3].

9.4. Del Pezzo surfaces

(Reference: [Kol96, III.3])

Recall from Section 9.2.5 that a Fano variety is a nice variety for which
−K (an anticanonical divisor) is ample.

Definition 9.4.1. A del Pezzo surface is a (nice) Fano variety of dimension
2.

Let X be a del Pezzo surface. According to the general definition for
Fano varieties in Section 9.2.5, the degree of X is the positive integer d :=
(−K).(−K) = K.K. It then turns out that dim H0(X,−K) = d + 1
[Kol96, Corollary III.2.3.5.2], and that −K is very ample when d ≥ 3
[Kol96, Proposition III.3.4.3]. Thus, if d ≥ 3, then |−K| embeds X as
a degree d surface in Pd.
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9.4.1. Del Pezzo surfaces over a separably closed field.

Lemma 9.4.2. Let k be a separably closed field. Let X be a del Pezzo
surface over k. If C is a closed integral curve on X with C.C < 0, then C
is a (−1)-curve with constant field k.

Proof. Since −K is ample, C.(−K) > 0. Theorem 9.3.3(iv)⇒(v) implies
that C is a (−1)-curve with constant field k. �

Definition 9.4.3. Let 0 ≤ r ≤ 8. Points P1, . . . , Pr ∈ P2(k) are in general
position if they are distinct and none of the following hold:

(i) Three of the Pi lie on a line.
(ii) Six of the Pi lie on a conic.
(iii) Eight of the Pi lie on a singular cubic, with one of these eight points at

the singularity.

Theorem 9.4.4 (Classification of del Pezzo surfaces). Let k be a separably
closed field. Let X be a del Pezzo surface over k. Then exactly one of the
following holds:

• X ' P1 × P1; then degX = 8.
• There exists r with 0 ≤ r ≤ 8 such that X is the blowup of P2 at r
k-points in general position; then degX = 9− r ∈ {1, 2, . . . , 9}.

Proof. Let X → Y be a proper birational morphism to a relatively minimal
surface Y . By Corollary 9.3.23, Y ' P2 or Y ' Fn for some n ∈ {0} ∪ Z≥2.
A section of Fn → P1 has self-intersection −n [Har77, Proposition V.2.9],
and its strict transform in X would have self-intersection at least as negative,
which contradicts Lemma 9.4.2 if n ≥ 2. Thus Y ' P2 or Y ' P1 × P1. By
Theorem 9.3.1(b), X is obtained from Y by iteratively blowing up k-points.
The blowup of P1×P1 at a k-point is isomorphic to the blowup of P2 at two
k-points (Example 9.3.11), so we need only consider blowups of P2. If we
ever blow up a point on an exceptional curve from a previous blowup, the
strict transform C of that exceptional curve in X would satisfy C.C < −1,
contradicting Lemma 9.4.2. Thus X is the blowup of P2 at a finite subset
{P1, . . . , Pr} of X(k). Since −K is ample, 0 < (−K).(−K) = K.K = 9− r
(the last equality follows from [Har77, Proposition V.3.3]), so r ≤ 8. If three
of the Pi were on a line, the strict transform C of that line would satisfy
C.C ≤ 1 − 3 ≤ −2, contradicting Lemma 9.4.2. The other restrictions on
the Pi are similarly derived; see [Dem80, Théorème 1(i)⇔(iii)]. �

Remark 9.4.5. If X is as in Theorem 9.4.4, then PicX ' Z10−d: this is
true when X is P2 or P1×P1, and blowing up a k-point adds a new factor of
Z [Har77, Proposition V.3.2]. One can also describe the canonical class and
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the intersection pairing on PicX explicitly with respect to a suitable basis
[Man86, Theorem 23.8].

Remark 9.4.6. If r ≥ 9 and X is the blowup of P2 at any r points, then
K.K = 9− r ≤ 0, so X cannot be a del Pezzo surface. This shows that the
property of being a del Pezzo surface is not invariant under birational maps.

Proposition 9.4.7 (Exceptional curves on a del Pezzo surface). Let k be
a separably closed field. Let X → P2 be the blowup of points x1, . . . , xr in
general position, where 0 ≤ r ≤ 8. Then the exceptional curves are the fibers
above the xi together with the strict transforms of the following curves in P2:

(i) a line through 2 of the xi;
(ii) a conic through 5 of the xi;
(iii) a cubic passing through 7 of the xi, such that one of them is a double

point (on the cubic);
(iv) a quartic passing through 8 of the xi, such that three of them are double

points;
(v) a quintic passing through 8 of the xi, such that six of them are double

points; and
(vi) a sextic passing through 8 of the xi, such that seven of them are double

points and one of them is a triple point.

Proof. See [Man86, Theorem 26.2]. �

9.4.2. Del Pezzo surfaces over an arbitrary field. The proof of the
following will be scattered over the next few subsections within Section 9.4.

Theorem 9.4.8. Let k be a field. Let X be a del Pezzo surface over k of
degree d ≥ 5.

(i) If d = 7 or 5, then X has a k-point.
(ii) If dim k ≤ 1, then X has a k-point.
(iii) If X has a k-point, then X is birational to P2

k.
(iv) If X has a k-point and k is infinite, then X(k) is Zariski dense in X.
(v) The homomorphism Br k → BrX is surjective.
(vi) If k is a global field, then X satisfies the local-global principle.
(vii) If k is a global field, then X satisfies weak approximation.

Part (iii) implies (iv). To prove (v), list all finite groups G acting on
Z10−d that could be the image of the Gk-action on PicXks respecting the
intersection pairing, check that H1(Gk,PicXks) = 0 in each case, and apply
Corollaries 6.7.8 and 6.9.11. Parts (vi) and (iii) imply (vii).
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Remark 9.4.9. In the case where k is finite, Proposition 9.3.24 proves (ii)
even without the restriction d ≥ 5.

Remark 9.4.10. When d ≤ 4, most parts of Theorem 9.4.8 can fail. Part (i)
holds for d = 1 but can fail for d = 2, 3, 4. Part (ii) can fail for d = 2, 3, 4
[CTM04]. The birational invariant H1(Gk,PicXks) (see Exercise 9.6) is 0
for P2

k, but it can be nonzero for a degree d del Pezzo surface over a global field
if d ≤ 4; thus (iii) can fail for each d ≤ 4. For such an example, Corollaries
6.7.8 and 6.9.11 shows that Br k → BrX will fail to be surjective; that is, (v)
fails. This means that there is potentially a Brauer–Manin obstruction to
the local-global principle and/or weak approximation, and in fact part (vi)
can fail for d = 2, 3, 4 and part (vii) can fail for d = 1, 2, 3, 4, as will be
discussed below.

Remark 9.4.11 (Unirationality of del Pezzo surfaces). It may be that every
del Pezzo surface over k with a k-point is k-unirational . This has already
been proved for all d ≥ 3 [Seg43; Seg51; Man86, Theorems 29.4 and 30.1;
Kol02, Theorem 1.1; Pie12, Proposition 5.19; Kne15, Theorem 2.1], and
also under additional hypotheses for d = 2 and d = 1 [Man86, Theo-
rems 29.4; STVA14, Theorems 1.1 and 3.2; FvL16, Theorem 1.1; KM17,
Corollary 36]. For each surface for which this holds, part (iv) of Theo-
rem 9.4.8 holds too.

9.4.3. Degree 9. Then Xks ' P2
ks
, so X is a Severi–Brauer surface. In

particular:

• If X has a k-point, then X ' P2
k (Proposition 4.5.10).

• If dim k ≤ 1, then X ' P2
k.

• If k is a global field, then X satisfies the local-global principle (Theo-
rem 4.5.11).

9.4.4. Degree 8.

Proposition 9.4.12. Let X be a degree 8 del Pezzo surface over a field k.
Then exactly one of the following holds:

(1) There is a degree 2 étale extension L ⊇ k and a nice conic C over L
such that X is isomorphic to the restriction of scalars ResL/k C. (In the
split case L = k × k, this means simply that X is a product of two nice
conics over k.)

(2) X is the blowup of P2
k at a k-point.

Proof. By Theorem 9.4.4, either Xks ' (P1 × P1)ks or Xks is the blowup of
P2
ks

at a ks-point.
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(1) Suppose that Xks ' (P1 × P1)ks ; i.e., X is a twist of P1 × P1. To under-
stand the twists, we need to compute Aut((P1×P1)ks). First, AutP1

ks
'

PGL2(ks) (see [Har77, Example II.7.1.1]). Let A ≤ Aut((P1×P1)ks) be
the subgroup generated by the action of PGL2(ks) on each factor and
the involution that interchanges the two factors. Let S and I be the
kernel and image of the homomorphism

Aut((P1 × P1)ks)→ Aut(Pic(P1 × P1)ks)

describing the action of automorphisms on the Picard group, which is
Z×Z (see [Har77, Example II.6.6.1 and Corollary II.6.16]). We have a
commutative diagram

1 // PGL2(ks)× PGL2(ks)
� � //

��

A //

��

Z/2Z //

��

1

1 // S // Aut((P1 × P1)ks)
// I // 1

(9.4.13)

with exact rows. Any automorphism in S induces linear automorphisms
of the spaces of global sections of O(1, 0) and O(0, 1), and hence is given
by an element of PGL2(ks)×PGL2(ks). In other words, the left vertical
homomorphism is an isomorphism. On the other hand, an automorphism
of (P1×P1)ks acts on the Picard group Z×Z so as to preserve the ample
cone, which is the first quadrant, so it can only be the identity or the
coordinate-interchanging involution of Z × Z. In other words, the right
vertical homomorphism is an isomorphism. Thus the middle vertical
homomorphism is an isomorphism too.

Taking cohomology of either of the now-identified rows of (9.4.13)
yields a map of pointed sets

H1(k,Aut((P1 × P1)ks) −→ H1(k,Z/2Z).

An element of the latter corresponds to a degree 2 étale extension L ⊇ k,
and its preimage in H1(k,Aut((P1 × P1)ks)) is in bijection with

H1(k, the L/k-twist of PGL2×PGL2) ' H1(L,PGL2),

the isomorphism arising from a nonabelian analogue of Shapiro’s lemma.
The latter set H1(L,PGL2) parameterizes twists of P1 over L, i.e., conics
over L. Thus twists of P1×P1 are parameterized by pairs (L,C) where L
is a degree 2 étale extension of k and C is a nice conic over L. By writing
out explicit 1-cocycles, one can verify that the twist corresponding to
(L,C) is the restriction of scalars ResL/k C.

(2) There is a unique exceptional curve on Xks . It must be Galois invariant,
so it descends to a genus 0 curve E over k. Blow down E to get a
morphism X → Y , where Y is a Severi–Brauer surface over k. The
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image of E is a k-point on Y , so Y ' P2
k. Thus X is the blowup of P2

k

at a k-point. �

Corollary 9.4.14. If dim k ≤ 1, then any degree 8 del Pezzo surface X over
k has a k-point.

Proof. It suffices to consider case (1) of Proposition 9.4.12. Since dim k ≤ 1,
we have BrL = 0. Since C is a 1-dimensional Severi–Brauer variety over L,
it has an L-point. Finally, X(k) = C(L). �

Corollary 9.4.15. Let X be a degree 8 del Pezzo surface over a field k. If
X has a k-point, then X is birational to P2

k.

Proof. In case (2) of Proposition 9.4.12, X is a blowup of P2
k, and hence

birational to P2
k. In case (1), X has the form ResL/k C; if X has a k-point,

then C has an L-point, so C ' P1
L, which is birational to A1

L, so X is
birational to ResL/k A1

L ' A2
k, which is birational to P2

k. �

Corollary 9.4.16. A degree 8 del Pezzo surface over a global field k satisfies
the local-global principle.

Proof. If X = ResL/k C, apply the local-global principle to C over L. If X
is the blowup of P2

k at a k-point, then X has a k-point already. �

9.4.5. Degree 7.

Proposition 9.4.17. A degree 7 del Pezzo surface X is P2
k blown up at

either two k-points or at a closed point whose residue field is separable of
degree 2 over k.

Proof. There are three exceptional curves on Xks , arranged in a chain, say
E1, E2, E3 in order. The middle one E2 is Galois-stable, so E2 descends to
a nice genus 0 curve over k. Blowing down E2 yields a nice surface Y with
a k-point. Blowing down E1 and E3 together instead yields a Severi–Brauer
variety Z over k. Since Z is birational to Y , it has a k-point too, so Z ' P2

k.
The image of E1∪E3 in Z ' P2

k is what must be blown up to recover X. �

9.4.6. Degree 6.

Lemma 9.4.18. Let X be a degree 6 del Pezzo surface over a field k. If
there exist separable extensions K and L with [K : k] = 2 and [L : k] = 3
such that X has a K-point and an L-point, then X has a k-point.

Proof. Consider the anticanonical embedding X ⊆ P6. If the K-point or
L-point is defined over k, we are done. Otherwise the conjugates of the
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two points give five geometric points on X. If these five points are suffi-
ciently generic on X, then the 4-dimensional linear subspace of P6 passing
through them intersects X in a 0-cycle of degree 6, of which five points
are accounted for, and the remaining point is Gk-stable, hence a k-point.
One can remove the genericity hypothesis by invoking the Lang–Nishimura
theorem (Theorem 3.6.11): the construction above defines a rational map
Sym2X × Sym3X 99K X, and the hypothesis supplies a k-point on the
smooth source, so the target has a k-point. �

There are six exceptional curves on Xks , forming a hexagon. Label them
E1, . . . , E6 in order around the hexagon.

Proposition 9.4.19. Let X be a degree 6 del Pezzo surface over a field k. If
either dim k ≤ 1, or k is a global field and X(A) 6= ∅, then X has a k-point.

Proof. (This is based on [CT72].) Since the action of Gk on {E1, . . . , E6}
respects intersections, it preserves the partition {{E1, E3, E5}, {E2, E4, E6}}.
The stabilizer in Gk of {E1, E3, E5} is GK for some separable extension K
of degree 1 or 2. Blowing down E1, E3, E5 simultaneously on XK yields a
degree 9 del Pezzo surface Y . If dim k ≤ 1, then BrK = 0, so Y ' P2

K , so
Y has a K-point. If k is a global field and X(A) 6= ∅, then X(AK) 6= ∅, so
Y (AK) 6= ∅, so Y ' P2

K by Theorem 4.5.11 (the local-global principle for
Severi–Brauer varieties). In either case, Y has aK-point, and X is birational
to Y , so X has a K-point.

The same argument using the partition {{E1, E4}, {E2, E5}, {E3, E6}}
shows that X has an L-point for some separable extension L of degree 1
or 3. If either K or L has degree 1, then X has a k-point already. Otherwise
Lemma 9.4.18 shows that X has a k-point. �

Sketch of alternative proof. Let U = X−⋃6
i=1Ei. Then Uks is P2

ks
with

three lines deleted; in other words Uks ' G2
m. One can prove that in general,

if U is a variety over a field k and Uks ' Gn
m for some n ∈ N, then U is a

torsor under a torus T . If dim k ≤ 1, then Theorem 5.12.19(b) shows that U
has a k-point. Now suppose that k is a global field and X(A) 6= ∅. For every
v, Proposition 3.5.75 shows that X(kv) is Zariski dense in X, so U has a
kv-point. By Theorem 5.12.32, U has a k-point. Hence X has a k-point. �

Proposition 9.4.20. Let X be a degree 6 del Pezzo surface over a field k.
If X has a k-point, then X is birational to P2

k.

Proof. Let x ∈ X(k).
Case 1: The point x lies on a unique exceptional curve Ei. Then Ei is

defined over k and may be blown down, so we reduce to the case of a degree 7
del Pezzo surface.
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Case 2: The point x lies on the intersection of two exceptional curves.
Suppose that x ∈ E1 ∩ E2. Then E3 ∪ E6 is Gk-stable. Blowing down E3

and E6 simultaneously, we reduce to the case of a degree 8 del Pezzo surface.
Case 3: The point x does not lie on any exceptional curve. Make the

variety more complicated by blowing up x! This yields a degree 5 del Pezzo
surface Y . Let D be the exceptional divisor for this blowup. Let P be
the dual graph of the ten exceptional curves, so P has one vertex for each
exceptional curve, and one edge for each intersecting pair of exceptional
curves. Then P turns out to be the Petersen graph; this shows that there
are three exceptional curves on Y meeting D, and they are disjoint. Blowing
them down let us reduce to the case of a degree 8 del Pezzo surface. �

9.4.7. Degree 5. Recall the fine moduli space M0,5 of Example 2.3.9.

Lemma 9.4.21. Let X be the blowup of P2 at the points (1 : 0 : 0), (0 : 1 : 0),
(0 : 0 : 1), and (1 : 1 : 1). Then there is an open immersion M0,5 ↪→ X , and
the S5-action on M0,5 extends to an S5-action on X . Moreover, S5 → AutX
is an isomorphism.

Proof. Let X ′ be the complement in X of the ten exceptional curves, so X ′
is the complement in P2 of the

(
4
2

)
lines through the four blown-up points.

Then X ′ and M0,5 are the same open subvariety of A2! By symmetry, the
transposition (0, 1,∞, x, y) 7→ (0, 1,∞, y, x) of M0,5 extends to an automor-
phism of X . A calculation shows that the 5-cycle

(0, 1,∞, x, y) 7−→ (y, 0, 1,∞, x) ∼
(

0, 1,∞, 1

y
,
x− y
y(x− 1)

)
also extends. These generate S5, so S5 acts faithfully on X . The dual graph
of the set of the exceptional curves is the Petersen graph P . We have

(9.4.22) S5 ↪→ AutX → AutP ' S5.

The homomorphism AutX → AutP is injective since an automorphism
preserving each of the ten exceptional curves would act on the blowdown P2

and would fix the four blown-up points, forcing it to be the identity. Thus
all the homomorphisms in (9.4.22) are isomorphisms. �

Remark 9.4.23. One can show that X ⊃ X ′ is isomorphic to the compact-
ification M0,5 ⊃ M0,5 of Example 2.3.12. This explains why the S5-action
on M0,5 extends to X .
Lemma 9.4.24. Every degree 5 del Pezzo surface over a field k is dominated
by the Grassmannian Gr(2, 5).

Proof. Let X be the degree 5 del Pezzo surface in Lemma 9.4.21. The group
S5 acts on k5 by permuting the coordinates, so it acts on the Grassmannian
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Gr(2, 5) defined in Example 9.2.3. Given a general point [W ] ∈ Gr(2, 5), so
W is a 2-dimensional subspace of k5, the intersections of W with the five
coordinate hyperplanes are five distinct lines in W , and projectivizing yields
a point ofM0,5. This defines the first of the two S5-equivariant rational maps

(9.4.25) Gr(2, 5) 99KM0,5 ↪→ X ,
and the second map is the open immersion of Lemma 9.4.21. The first
map is dominant since given five distinct points in P1, or equivalently five
distinct lines in a 2-dimensional space W , one can choose linear functionals
λ1, . . . , λ5 : W → k cutting out these lines, and the image of the linear map
(λ1, . . . , λ5) : W → k5 represents a preimage in Gr(2, 5).

We now twist. Over a separably closed field, there is only one degree 5
del Pezzo surface; see Exercise 9.8. Thus, over k, any other one is a twist
X of X by a cocycle ξ representing a class in H1(k,AutXks) = H1(k, S5).
Twist k5 and (9.4.25) by ξ to obtain a degree 5 étale k-algebra L and

(9.4.26) Gr(2, L) 99KM (L)
0,5 ↪→ X,

where M (L)
0,5 is as in Example 2.3.11. In Gr(2, L), the space L is just another

5-dimensional vector space, so Gr(2, L) ' Gr(2, 5). Thus Gr(2, 5) dominates
X. �

Remark 9.4.27. Let X be a degree 5 del Pezzo surface. Let X ′ ⊂ X be
the complement of the ten exceptional curves. The proof of Lemma 9.4.24
shows that X ′ ⊂ X is isomorphic to M (L)

0,5 ⊂ M
(L)
0,5 for some degree 5 étale

k-algebra L, where M (L)
0,5 is as in 2.3.12.

Corollary 9.4.28. Every degree 5 del Pezzo surface has a k-point.

Proof. Combine Lemma 9.4.24 with the Lang–Nishimura theorem (Theo-
rem 3.6.11). �

The literature contains several different proofs of Corollary 9.4.28; see
[Enr97] (not quite complete), [SD72], [SB92], [Sko93], [Kol96, Exer-
cise III.3.13], and [Has09, Exercise 3.1.4]. The proof we gave is closest
to that in [Sko93].

Lemma 9.4.24 implies that a degree 5 del Pezzo surface X over k is
k-unirational, but even more is true: X is k-rational—this was first proved by
Manin [Man66, Theorem 3.15] (at least for perfect k), assuming Enriques’s
claim that X(k) 6= ∅).

Theorem 9.4.29. Every degree 5 del Pezzo surface over a field k is birational
to P2

k.
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Proof. Let X be the del Pezzo surface. Let X ′ ⊂ X be the complement of
the exceptional curves in X.

First suppose that X ′ has a k-point x. Then the blowup of X at x is a
degree 4 del Pezzo surface Y . There are 16 exceptional curves on Y (over ks):
the strict transforms of the ten exceptional curves on X, the preimage of x,
and five more. Moreover, those last five curves are skew, as can be checked
over k: if Y is the blowup of P2 at points x1, . . . , x5 in general position,
and X is the blowup of P2 at x1, . . . , x4, then the five curves are the strict
transforms of the conic through x1, . . . , x5 and of the four lines connecting
each of x1, . . . , x4 to x5. Blowing down this Gk-stable set of five skew lines
on Y yields a degree 9 del Pezzo surface Z with a k-point, so Z ' P2

k.
Now suppose that X ′ has no k-points. The pair X ′ ⊂ X is isomorphic

to M (L)
0,5 ⊂ M

(L)
0,5 for some degree 5 étale k-algebra L. Then M

(L)
0,5 has no

k-point, so there is no closed immersion SpecL ↪→ P1
k. Counting the closed

points on P1
k with each residue field shows this is possible only in these cases:

(i) L = k5 with k = F2 or k = F3; or
(ii) L = F2 × F4 × F4 with k = F2.

In case (i), X is the blowup of P2
k at four k-points, so X is birational to P2

k.
In case (ii), L ' L3×L2 for étale algebras L3 of degree 3 and L2 of degree 2.
Fix one closed immersion ι : SpecL3 → P1

k. Then each (AutP1)-orbit of
closed immersions SpecL → P1

k contains a unique representative whose re-
striction to SpecL3 is ι, so X ′ is isomorphic to the space of closed immersions
SpecL2 → U := P1 − ι(SpecL3). Thus we have birational equivalences

X ∼ X ′ ∼ ResL2/k U ∼ ResL2/k A
1
k ' A2

k ∼ P2
k. �

9.4.8. Degree 4. These X are smooth intersections of two quadrics in P4

[Kol96, Theorem III.3.5.4]. If k is a global field, then the local-global prin-
ciple can fail (Exercise 8.3), and weak approximation can fail even if X has
a k-point [CTS77, III, Exemple (a)].

9.4.9. Degree 3. These are nice cubic surfaces in P3 [Kol96, Theorem
III.3.5.3]. Mordell [Mor49] conjectured that nice cubic surfaces over Q sat-
isfy the local-global principle, but this turned out to be false [SD62, §2].
Selmer [Sel53] proved that diagonal cubic surfaces ax3 +by3 +cz3 +dw3 = 0
in P3

Q for nonzero integers a, b, c, d satisfy the local-global principle if ab = cd

or |abcd| ≤ 500, but later Cassels and Guy [CG66] discovered that the sur-
face

5x3 + 9y3 + 10z3 + 12w3 = 0

over Q violates the local-global principle. Also, weak approximation can
fail even if X is minimal and has a rational point [SD62, §3] (we ask for
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X to be minimal since otherwise one could simply blow up a k-point on a
degree 4 counterexample to weak approximation). See [CTKS87] for many
more counterexamples.

9.4.10. Degree 2. The anticanonical map is a degree 2 morphism X → P2

ramified along a nice curve of degree 4 in P2 [Kol96, Theorem III.3.5.2]. In
other words, X is of degree 4 in a weighted projective space P(1, 1, 1, 2). If
k is a global field, then X need not satisfy the local-global principle: Kresch
and Tschinkel [KT04] give many counterexamples, including the surface over
Q defined by the weighted homogeneous equation

w2 = −6x4 − 3y4 + 2z4.

Colliot-Thélène observed that one can obtain a counterexample also by re-
placing z2 by z4 in Iskovskikh’s surface of Section 8.2.5; this results in the
surface

y2 = −z4 + (3w2 − x2)(x2 − 2w2)

over Q.
Weak approximation can fail too, even if X is minimal and has a k-point

[KT04].

Remark 9.4.30. So far, every time a del Pezzo surface has been found to
violate the local-global principle, the violation has been explained by the
Brauer–Manin obstruction, as predicted by Conjecture 9.2.27.

9.4.11. Degree 1. Then X is of degree 6 in a weighted projective space
P(1, 1, 2, 3) [Kol96, Theorem III.3.5.1]. The common zero locus of any basis
s1, s2 of the 2-dimensional space H0(X,−K) is independent of the choice of
basis. This locus consists of a single degree 1 point, since (−K).(−K) = 1.
In other words, the intersection of any two distinct divisors in |−K| is a
canonical k-point! Thus X(k) 6= ∅.

In particular, the local-global principle holds trivially. On the other
hand, there can be a Brauer–Manin obstruction to weak approximation,
even if X is minimal [VA08, Proposition 7.1].

9.4.12. Summary. The results on the arithmetic of del Pezzo surfaces are
summarized in the following table, whose entries answer the following ques-
tions about a del Pezzo surface of specified degree over a field k:

• k-point: Must the surface have a k-point?
• k-rational†: If the surface has a k-point, must it be birational to P2

k?

• k-unirational†: If the surface has a k-point, must it be dominated by
P2
k?
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286 9. Surfaces

• local-global: If k is a global field, must the surface satisfy the local-
global principle?
• weak appr.: If k is a global field, must the surface satisfy weak ap-
proximation?

Degree k-point k-rational† k-unirational† local-global weak appr.
9 NO YES YES YES YES
8 NO YES YES YES YES
7 YES YES YES YES YES
6 NO YES YES YES YES
5 YES YES YES YES YES
4 NO NO YES NO NO
3 NO NO YES NO NO
2 NO NO ? NO NO
1 YES NO ? YES NO

The daggers † warn that those columns presume the existence of a k-point.

9.5. Rational points on varieties of general type

9.5.1. Curves of genus > 1 over number fields.

(References: [HS00], [BG06])

Let X be a nice curve over a field K. In Section 2.6.4.2, we stated the
following result, conjectured by Mordell in 1922 (for K = Q) [Mor22] and
proved by Faltings in 1983.

Theorem 9.5.1 ([Fal83]). Let X be a nice curve of genus > 1 over a number
field K. Then X(K) is finite.

We will not give a proof, since the known proofs are very complicated.
Faltings’s proof uses an idea of Parshin to reduce the problem to proving a
conjecture of Shafarevich that for a fixed number field K, a fixed finite set of
places S ofK, and a fixed d ≥ 0, there are at most finitely many isomorphism
classes of d-dimensional abelian varieties over K with good reduction outside
S [Fal83]. Vojta [Voj91] gave a different proof of Theorem 9.5.1, based
on diophantine approximation, and later Bombieri [Bom90] gave a more
elementary version of Vojta’s proof; Bombieri’s proof is presented also in
[HS00].

Remark 9.5.2. All known proofs of Theorem 2.6.8 are ineffective. In other
words, it is not known whether there exists a Turing machine that takes as
input a number field K and equations for a nice K-curve X of genus > 1,
and outputs the list of K-points on X. See [Poo02] for more about this
problem.
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9.5. Rational points on varieties of general type 287

9.5.2. Curves of genus > 1 over function fields.

(References: [Sam66,Vol97])

The analogue of Theorem 9.5.1 over global function fields can fail because
of Frobenius morphisms, as the following two examples show.

Example 9.5.3. Let X0 be a nice curve of genus > 1 over a finite field
Fq. Let K = k(X0). Let X = (X0)K . By Proposition 3.6.5(b), X(K) =
HomFq(X0, X0), which is infinite since it contains the qn-power Frobenius
morphism for every n ≥ 0.

Example 9.5.4. Let q be an odd prime power, and let K = Fq(t). Let
f ∈ Fq[x] be a separable polynomial of degree ≥ 5. Let X be the nice
K-curve birational to f(t)y2 = f(x), so X has genus > 1. Then for every
n ≥ 0, we have (tq

n
, f(t)(qn−1)/2) ∈ X(K), so X(K) is infinite.

This example can be explained using the nice K-curve Y birational to
the affine curve y2 = f(x): Under the isomorphism XK(f(t)1/2) → YK(f(t)1/2)

sending (x, y) to (x, f(t)1/2y), the points above correspond to (tq
n
, f(t)q

n/2),
which are as constructed in Example 9.5.3.

If we consider function fields over infinite constant fields, then the ana-
logue of Theorem 9.5.1 can fail even in characteristic 0:

Example 9.5.5. Let K = C(t). Let X0 be a curve over C. Let X = (X0)K .
Then X(K) is infinite since it contains X0(C).

Nevertheless, there are positive results. To state them, we introduce a
few definitions.

Definition 9.5.6. A function field with field of constants k is K := k(V ),
where V is an integral k-variety and k is algebraically closed in K.

Remark 9.5.7. By Proposition 2.2.22(i), the requirement that k be alge-
braically closed in K is automatically satisfied if V is geometrically integral.

Definition 9.5.8. Let K be a function field with field of constants k. Let
X be a K-variety.

(i) Call X constant or split if X = YK for some k-variety Y .
(ii) Call X isotrivial if there exists a finite extension K ′ ⊃ K such that

XK′ is constant (with respect to the constant field of K ′).

Example 9.5.9. The curves in Examples 9.5.3 and 9.5.5 are constant. The
curve in Example 9.5.4 is isotrivial but not constant.

Theorem 9.5.10. Let K be a function field with field of constants k. Let
X be a regular, projective, geometrically integral K-curve of genus > 1 such
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that X(K) is infinite. If char k = 0, then X is constant. If char k = p, then
X is isotrivial. Moreover, X is nice, so g(XK) = g(X).

Proof. By induction on tr deg(K/k), we may reduce to the case in which
tr deg(K/k) = 1. For char k = 0, the first complete proof appeared in
[Gra65] (see also [Man63], which was corrected in [Col90]). For char k = p,
we may assume that k is algebraically closed; then [Sam66, Théorème 4]
proves the result when g(XK) > 1, and in particular when g(XK) = g(X)
since we assumed g(X) > 1. If g(XK) < g(X), then X(K) is finite by
[Vol91, Theorem 3]. Finally, by Theorem 2.5.1, the curve X is nice if and
only if g(XK) = g(X). �

See [Miw69] for more detailed results.

9.5.3. Higher-dimensional varieties.

(Reference: [Lan91])

Conjecture 9.5.11 (Bombieri, Lang independently). Let k be a number
field. Let X be a geometrically integral k-variety of general type such that
dimX > 0. Then X(k) is not Zariski dense in X.

There are various stronger forms proposed by Lang, discussed in [Lan91,
I,§3]. Here is one of them:

Conjecture 9.5.12 (Lang). Let k be a number field. Let X be a geomet-
rically integral k-variety of general type such that dimX > 0. Then there
exists a closed subvariety S ( X such that (X − S)(L) is finite for all finite
extensions L ⊇ k.

In fact, Lang predicts what S should be [Lan91, I,§3].
Faltings simplified and generalized Vojta’s methods to prove that Con-

jectures 9.5.11 and 9.5.12 are true when X is a subvariety of an abelian
variety [Fal91].

Exercises

9.1. Use the Riemann–Roch theorem to prove Proposition 9.1.1.
9.2. Given a field k, describe all nice k-varieties that are simultaneously

Fano and of general type.
9.3. Let X be a nice surface over a field k. Let C ⊂ X be a curve. Show

that C is a (−1)-curve with constant field k on X if and only if Ck is
a (−1)-curve on Xk.
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9.4. Let X be a nice surface over a field k. Let K be a canonical divisor on
X. Let C ⊂ X be a curve. Without using Theorem 9.3.3, show that
C is a (−1)-curve on X with constant field k if and only if C.C = −1
and C.K = −1.

9.5. LetX be a nice surface over an algebraically closed field k. For a coher-
ent sheaf F on X and for any i ≥ 0, define hi(F ) := dimk Hi(X,F )
and the Euler characteristic χ(F ) :=

∑
i≥0(−1)ihi(F ). Let C ⊂ X

be a curve. Without using Theorem 9.3.3, show that C is a (−1)-curve
if and only if χ(OC) > 0 and C.C = −h0(OC).

9.6. Let X be a nice surface over a field k. Let P be a closed point of
X. Let L = k(P ); suppose that L is separable over k. Let Y be
the blowup of X at P . Let Z[Gk/GL] be the permutation module
associated to L ⊇ k.
(a) Prove that PicYks ' PicXks ⊕ Z[Gk/GL].
(b) Prove that the natural homomorphism

H1(Gk,PicXks) −→ H1(Gk,PicYks)

is an isomorphism.
(c) Deduce that H1(Gk,PicXks) is a birational invariant of a nice

surface X over a perfect field k.
9.7. Let X ⊆ Pnk be a degree 3 hypersurface over a field k for some n ≥ 2.

(a) Let L be a degree 2 separable field extension of k. Prove that if
X has an L-point, then X has a k-point.

(b) Do the same without the separability hypothesis.
(Cassels and Swinnerton-Dyer conjectured that the same holds for an
extension L of k of any degree d not divisible by 3, but this is unknown
even in the case dimX = 2, k = Q, d = 4; see [Cor76].)

9.8. Let k be a field.
(a) Prove that for 0 ≤ r ≤ 4, the group PGL3(k) = AutP2

k acts
transitively on the set of r-tuples of points in P2(k) in general
position.

(b) Fix a separably closed field k. For 5 ≤ d ≤ 9, determine the
number of isomorphism types of degree d del Pezzo surfaces over
k.

9.9. Let k be a finite field. Prove that there are exactly seven isomorphism
types of degree 5 del Pezzo surfaces over k.
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Appendix A

Universes

(Reference: [SGA 4I, I.Appendice])

The plan is to assume the existence of a very large set, called a universe,
such that almost all the constructions we need can be carried out within it.
Those constructions that cannot be carried out within it can be carried out
in a larger universe.

According to [SGA 4I, I.Appendice], the theory of universes comes from
“the secret papers of N. Bourbaki”. According to [SGA 1, VI, §1], the details
will be given in a book in preparation by Chevalley and Gabriel to appear
in the year 3000.

A.1. Definition of universe

Everything is a set. In particular, elements of a set are themselves sets.
Given a set x, let P(x) be the set of all subsets of x.

Definition A.1.1 ([SGA 4I, I.Appendice, Définition 1]). A universe is a
set U satisfying the following conditions:

(U.I) If y ∈ U and x ∈ y, then x ∈ U .
(U.II) If x, y ∈ U , then {x, y} ∈ U .
(U.III) If x ∈ U , then P(x) ∈ U .
(U.IV) If I ∈ U , and (xi)i∈I is a collection of elements of U , then the union⋃

i∈I xi is an element of U .

A universe U is not a “set of all sets”. In particular, a universe cannot
be a member of itself; see Exercise A.2.

291
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292 A. Universes

A.2. The universe axiom

To the usual ZFC axioms of set theory (the Zermelo-Frenkel axioms with the
axiom of choice), one adds the universe axiom [SGA 4I, I.Appendice.§4]:1

Every set is an element of some universe.

Suppose that ZFC is consistent. Then it turns out that the negation of
the universe axiom is consistent with ZFC: given a model of ZFC, one can
build another model of ZFC in which the universe axiom fails. But it is not
known whether the universe axiom itself is consistent with ZFC.

The universe axiom is so convenient that we are going to assume it despite
its uncertain status relative to ZFC.

Remark A.2.1. The original proof of Fermat’s last theorem made use of
constructions relying on the universe axiom! But the proof can probably be
redone without this axiom; see Section A.5.

A.3. Strongly inaccessible cardinals

Definition A.3.1. A cardinal κ is strongly inaccessible if the following two
conditions hold:

(1) For every λ < κ, we have 2λ < κ.
(2) Whenever (λi)i∈I is a family of cardinals indexed by a set I such that

#I < κ and λi < κ for every i ∈ I, we have
∑

i∈I λi < κ.

The two smallest strongly inaccessible cardinals are 0 and ℵ0. By (1),
any other strongly inaccessible cardinal κ must be larger than all of

i0 := ℵ0

i1 := 2ℵ0

i2 := 22ℵ0

...

By (2), κ must also be larger than the supremum iω of all these. Transfinite
induction continues this sequence of cardinals by defining iα for any ordinal
α. Then κ must be larger than iωω , iωωω , . . . , and even iω1 , where ω1 is
the first uncountable ordinal. Identify each cardinal with the first ordinal of

1In [SGA 4I, I.Appendice.§4] one finds an additional axiom (UB) that is present only because
Bourbaki’s axioms for set theory are different from the usual ZFC axioms. Bourbaki’s set theory
includes a global choice operator τ : for any 1-variable predicate P (x), the expression τxP (x)

represents an element y such that P (y) is true, if such a y exists. Axiom (UB) says that for any
1-variable predicate P (x) and any universe U , if there exists y ∈ U such that P (y) is true, then
τxP (x) is an element of U . So axiom (UB) says that the elements produced by the global choice
operator lie in a given universe whenever possible.
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A.5. Avoiding universes 293

its cardinality. Then ω1 ≤ 2ℵ0 = i1, so iω1 ≤ ii1 . But κ is also larger than
iiω1 , iiiω1

, and so on.

Theorem A.3.2. Within ZFC, the universe axiom is equivalent to the fol-
lowing “large cardinal axiom”:

For every cardinal, there is a strictly larger strongly inaccessible
cardinal.

Proof. One direction is easy, because if U is a universe, then the cardi-
nal sup{#x : x ∈ U} is strongly inaccessible. For the other direction, see
[SGA 4I, I.Appendice.§5], which constructs a universe from a strongly in-
accessible cardinal. �

A.4. Universes and categories

We now assume that an uncountable universe U has been fixed.
Recall that everything is a set. For instance, an ordered pair (x, y) is

{x, {y}}. A group is a 4-tuple (G,m, i, e) such that various conditions hold.
Even a scheme can be described as a set.

Definition A.4.1. A small category is a category in which the collection
of objects is a set (instead of a class).

We want all our categories to be small categories. Thus for example,
Sets will denote not the category of all sets, but the category of sets that
are elements of U . Similarly, Groups will be the category of groups that
are elements of U , and so on.

For categories such as these two, the set of objects is a subset of U having
the same cardinality as U , which implies that the set of objects cannot be
an element of U . This creates a minor problem: the collection of all functors
Schemesopp → Sets, say, is a set of cardinality larger than that of U ! The
category of such functors is still a small category, but it lives in a larger
universe U ′.

A.5. Avoiding universes

Suppose that we want to prove theorems that are not conditional on the
universe axiom. Then we cannot define the category Schemes as the set of
schemes that are elements of a particular universe U . Instead we choose a
category of schemes that is closed under various operations, and work within
that category [SP, Tag 020S, Tag 03XB]. Ideally, we should then show that
our choice did not matter for our particular objects of study; see [SP, Tag
00VY] for an example of this.

http://stacks.math.columbia.edu/tag/020S
http://stacks.math.columbia.edu/tag/03XB
http://stacks.math.columbia.edu/tag/00VY
http://stacks.math.columbia.edu/tag/00VY
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Exercises

A.1. Classify all finite universes.
A.2. Let U be a universe. Prove that U /∈ U .
A.3. Let P0 = ∅. For n ∈ N, inductively define Pn+1 := P(Pn). Let

U =
⋃
n∈N Pn. Prove that U is a universe.
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Appendix B

Other kinds of fields

In Section 1.1, we introduced some of the most important fields for number
theory, namely local and global fields. Here we discuss some other fields that
arise in nature.

B.1. Higher-dimensional local fields

Higher-dimensional local fields are defined recursively as follows. A 0-dimen-
sional local field is a finite field. For n ≥ 1, an n-dimensional local field
is a field complete with respect to a discrete valuation whose residue field is
an (n−1)-dimensional local field. Local class field theory can be generalized
to these fields, and there is also a generalization of global class field the-
ory to finitely generated fields [Kat79], [Kat80], [Kat82], [KS86]. These
generalizations involve K-theory.

Example B.1.1. The field Qp((t)) is a 2-dimensional local field.
�

Warning B.1.2. An n-dimensional local field for n 6= 1 is not a local field
in the sense of Section 1.1.2. In the rest of this book, we use the term “local
field” as in Section 1.1.2.

B.2. Formally real and real closed fields

(Reference: [Jac89, Chapter 11])

Definition B.2.1. A field k is formally real if it satisfies one of the following
equivalent conditions:

(i) k admits a total ordering compatible with the addition and multiplica-
tion.

295
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296 B. Other kinds of fields

(ii) −1 is not a sum of squares in k.

The implication (ii)⇒(i) is not obvious. Its proof uses Zorn’s lemma to
find a maximal subgroup P of k× that is closed under addition and contains
k×2 but not −1. Then P turns out to be the set of positive elements for an
ordering on k. See [Jac89, Theorem 11.1] for details.

Definition B.2.2. A field k is real closed if it satisfies one of the following
equivalent conditions:

(i) −1 /∈ k×2, and k(
√
−1) is algebraically closed.

(ii) 1 < [k : k] <∞.
(iii) k is an ordered field such that every positive element has a square root

and every odd degree polynomial in k[x] has a zero.
(iv) k is a formally real field with no nontrivial formally real algebraic ex-

tension.

The equivalence of these conditions is not obvious. For the proof, see
[Jac89, Theorems 11.2, 11.3, and 11.14]. The entire theory is due to Artin
and Schreier.

The field Q is formally real but not real closed. The field R is real closed,
as is the subfield of real numbers that are algebraic over Q. Every formally
real field has an algebraic extension that is real closed.

B.3. Henselian fields

(Reference: [Ray70a] or [BLR90, §2.3])

Complete discrete valuation rings are not the only rings satisfying Hen-
sel’s lemma.

Definition B.3.1. Let R be a local ring, and let k be its residue field. The
ring R is called henselian if one of the following equivalent conditions holds:

(1) Every finite R-algebra is a product of local rings.
(2) Hensel’s lemma for lifting roots: If f ∈ R[x] is a monic polynomial whose

reduction f̄ ∈ k[x] has a simple zero ā ∈ k, then there exists a zero a ∈ R
of f reducing to ā.

(3) Hensel’s lemma for lifting factorizations: If f ∈ R[x] is a monic poly-
nomial, any factorization of its reduction f̄ = ḡh̄ into relatively prime
monic polynomials ḡ, h̄ ∈ k[x] lifts to a factorization f = gh into monic
polynomials g, h ∈ R[x].

(For the equivalence, see [Ray70a, I.§1.5 and VII.§3.3].)
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Definition B.3.2. A valued field is henselian if its valuation subring is
henselian.

Example B.3.3. Let k = Qp ∩ Q, i.e., the set of elements of Qp that are
algebraic over Q. Restrict the p-adic valuation on Qp to a valuation on k.
Then k is a noncomplete henselian field. This field acts in many ways like
Qp, but is algebraic over Q, which can be an advantage.

Definition B.3.4. A henselian ring (or its fraction field) is called strictly
henselian if its residue field is separably closed.

Example B.3.5. The maximal unramified extension kunr of a discretely
valued field k is strictly henselian (cf. [Ray70a, X.§2]) but usually not com-
plete. For example, if k is a nonarchimedean local field, then kunr is not
complete.

Given a commutative local ring R, its henselization Rh is a henselian
local ring with the following universal property: every homomorphism from
R to a henselian local ring factors through Rh. Such a ring Rh exists: it
can be constructed as the direct limit of R′ as R′ ranges over étale local
R-algebras having the same residue field as R [Ray70a, VIII, Théorème 1].

If F is a valued field and R is its valuation ring, then one can define the
henselization of F by F h := Frac(Rh). The field k in Example B.3.3 is the
henselization of Q with its p-adic valuation. One can also define the strict
henselization. See [Ray70a, Chapitre VIII] or [BLR90, §2.3, Definitions 6
and 6′] for details.

B.4. Hilbertian fields

(References: [Ser97, Chapter 9] and [FJ08, Chapters 12, 13, and 16])

Given the polynomial

f(t, x) := (t+ 5)x2 + (2t− 3)x+ (t2 − 9) ∈ Q[t, x]

and the number 4, we can specialize f by evaluating each coefficient at t = 4;
the result is

f(4, x) = 9x2 + 5x+ 7 ∈ Q[x].

The simplest version of the Hilbert irreducibility theorem states that for ev-
ery irreducible polynomial f(t, x) ∈ Q[t, x], there are infinitely many a ∈ Q
such that the specialized polynomial f(a, x) ∈ Q[x] is irreducible. The defi-
nition of hilbertian field is modeled after this property. (For other equivalent
definitions, see [Ser97, Chapter 9] and [FJ08, §12.1].)

Definition B.4.1. A field k is hilbertian if for every finite list of irreducible
two-variable polynomials f1, . . . , fn ∈ k[t, x] with each fi separable in x,
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there are infinitely many a ∈ k such that the one-variable polynomials
f1(a, x), . . . , fn(a, x) ∈ k[x] are simultaneously irreducible.

Global fields are hilbertian [FJ08, 13.4.2]. If K is a finitely generated
transcendental extension of any field k, then K is hilbertian [FJ08, 13.4.2].
Finite fields, local fields, and separably closed fields are not hilbertian, as
will be shown in the exercises.

B.5. Pseudo-algebraically closed fields

(Reference: [FJ08, Chapter 11])

These are studied in model theory.

Definition B.5.1. A field k is pseudo-algebraically closed (PAC) if every
geometrically integral variety over k has a k-point. (See Section 2.2 for
the definition of “geometrically integral variety” and Section 2.3.2 for the
definition of “k-point”.)

Remark B.5.2. Bertini theorems show that every geometrically integral
variety of positive dimension over k contains a geometrically integral curve,
so Definition B.5.1 is unchanged if we replace “variety” by “curve”. (Here
“curve” means “variety of dimension 1”.)

The following are examples of PAC fields:

• separably closed fields;
• infinite algebraic extensions of finite fields;
• nonprincipal ultraproducts of distinct finite fields (that is, (

∏∞
i=1 ki) /m

where the ki are finite fields of distinct orders, and m is a nonprincipal
maximal ideal of the ring

∏∞
i=1 ki.)

Question B.5.3 ([FJ08, 11.5.9(a)]). Is the maximal solvable extension of
Q a PAC field?

Exercises

B.1. Let k be a local field. Let n be a positive integer such that char k - n.
Prove that k×/k×n is finite.

B.2. Prove that finite fields are not hilbertian.
B.3. Prove that separably closed fields are not hilbertian.
B.4. Prove that local fields are not hilbertian.
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Appendix C

Properties under base
extension

C.1. Morphisms

Let blah be a property of morphisms of schemes. We can ask the following
questions:
Definition: Where in EGA (or elsewhere) is blah defined?
Composition: Is a composition of two blah morphisms blah?
Base extension: Let f : X → S be a morphism of schemes, and let
f ′ : X ′ → S′ be its base extension by a morphism S′ → S. If f is blah,
must f ′ be blah?
fpqc descent: Let f : X→S be a morphism of schemes, and let f ′ : X ′ → S′

be its base extension by an fpqc morphism S′ → S. If f ′ is blah, must f be
blah?
Spreading out: Does blah spread out in the sense of Theorem 3.2.1(iv)?

Answers are given in Table 1 on pp. 302–303. If a reference is given, the
answer is “YES”. In some cases, if the answer is obvious or it follows easily
from other entries, we write “YES” or “NO” instead of giving a reference. If
you see a superscript (such as 4), then please read the corresponding caveat
below:

1. Our definitions of fppf and fpqc are less restrictive than the standard
ones suggested by the acronyms; see Section 3.4.

2. In the fpqc column, the EGA references assume that the base extension is
by a faithfully flat and quasi-compact morphism. This implies descent for

299
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300 C. Properties under base extension

our more general notion of fpqc morphism, by Lemma C.1.1 below, pro-
vided that we know that blah is local on the base (in the Zariski topol-
ogy), i.e., that for any morphism f : X → S and any Zariski open cover-
ing {Si} of S, the morphism f is blah if and only if f |f−1Si : f

−1Si → Si
is blah for all i. Conversely, if blah satisfies fpqc descent and is stable
under base extension by open immersions, then blah is local on the base.

Lemma C.1.1 below says roughly that the “open covering” given by
an fpqc morphism can be “refined” to another fpqc morphism consisting
of a faithfully flat quasi-compact morphism followed by a Zariski open
covering morphism.

3. In the rows labelled “geom. connected”, “geom. integral”, “geom. irre-
ducible”, and “geom. reduced”, we are considering a morphism of finite
presentation whose fibers have the specified property. The first and
third properties for morphisms are called connected and irreducible in
[EGA IV2, 4.5.5].

4. The morphisms

Spec k[x, x−1]q Spec k[x]/(x) −→ Spec k[x] −→ Spec k

have geometrically integral fibers, but the unique fiber of the composition
is not even connected. On the other hand, see [EGA IV2, 4.5.7] for some
positive results.

5. The morphisms

Spec k[x]/(x2) −→ Spec k[x] −→ Spec k

have geometrically reduced (and even geometrically integral) fibers, but
their composition does not.

6. The property of being an immersion satisfies fppf descent, but it is not
known whether it satisfies fpqc descent.

7. A composition of projective morphisms X → Y → Z is projective if Z
is quasi-compact or the topological space underlying Z is noetherian.

8. A composition of quasi-projective morphisms X → Y → Z is quasi-pro-
jective if Z is quasi-compact.

9. Projective and quasi-projective do not satisfy fpqc descent, because they
are not even local on the base in the Zariski topology; see [Har77,
Exercise II.7.13] for a counterexample.

10. To generalize the spreading out properties for projective and quasi-pro-
jective morphisms beyond Theorem 3.2.1 to the setting of more general
limits, one should work over a quasi-separated base.

11. To generalize the spreading out properties for étale, faithfully flat, flat,
fppf, smooth, and G-unramified morphisms beyond Theorem 3.2.1 to
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C.1. Morphisms 301

the setting of more general limits, one should work over a quasi-compact
base.

12. What is called G-unramified here is called unramified in [EGA IV4,
17.3.1]. See Warning 3.5.32.

Lemma C.1.1. Any fpqc morphism of schemes f : X → Y fits into a com-
mutative diagram

X ′′

faithfully flat
quasi-compact

��

open immersion

!!
X ′

}}

Zariski open covering

  
Y ′

Zariski open covering !!

X

f~~
Y

in which Y ′→Y and X ′→X are Zariski open covering morphisms, X ′′ → X ′

is an open immersion, and X ′′ → Y ′ is faithfully flat and quasi-compact. (In
particular, X ′′ → Y is fpqc.)

Proof. Let {Yi} be an affine open cover of Y . Let Y ′ =
∐
Yi, and let

X ′ =
∐
f−1Yi. By definition of fpqc, for each i there is a quasi-compact

open subscheme Ui of f−1Yi with f(Ui) = Yi. Let X ′′ be the open subscheme∐
Ui ofX ′. ThenX ′′ → Y ′ is faithfully flat and quasi-compact, because each

morphism f |Ui : Ui → Yi is so. �

(Please contact the author if you can fill in some of the blanks in Table 1.)
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C.2. Varieties

Table 2. Properties of varieties

blah Definition Base extension Descent
connected [EGA I, 2.1.8] NO YES
loc. integral [EGA I, 2.1.8] NO YES
integral [EGA I, 2.1.8] NO YES

irreducible [EGA I, 2.1.8] NO YES
reduced [EGA I, 0:4.1.4] NO YES
regular [EGA I, 0:4.1.4] NO [EGA IV2, 6.5.2(i)]

Each YES in the “Descent” column denotes the easy fact that if X is a
k-variety and L ⊇ k is a field extension such that the L-variety XL has the
property, then X has the property too.

C.3. Algebraic groups

Let blah be a property of an algebraic group G over a field k. We can ask
the following questions:
Base extension: If G is blah and L ⊇ k is a field extension, must GL be
blah?
Subgroup: If G is blah, must every closed subgroup scheme of G be blah?
Quotient: If G is blah and H ≤ G is a closed normal subgroup scheme,
must G/H be blah?
Extension: If 1 → A → B → C → 1 is an exact sequence of algebraic
groups and A and C are blah, must B be blah?
Descent: If L ⊇ k is a field extension and GL is blah, must G be blah?

Answers are given in Table 3; we omit the answers for “Descent” since
they are “YES” for every property listed. If a reference is given, the answer
is “YES”. In some cases, if the answer is obvious or it follows easily from
other entries, we write “YES” or “NO” instead of giving a reference. If you
see a superscript (such as 4), please read the corresponding comment below:

1. The answer is “YES” if the extension B is commutative or C is connected.
But in general the answer is “NO”: if char k 6= 2, then the group G in
Exercise 5.1 is an extension of groups of multiplicative type, but G itself
is not of multiplicative type.

2. Let k = Fp(t) and L = Fp(t1/p). If G is the subgroup xp − typ = 0 in G2
a

over k, then G is reduced, but GL is not.
3. If G is as in comment 2, then G×G is not reduced.
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C.3. Algebraic groups 305

4. The conjugation action of PGL2 on the space M2 of 2× 2 matrices gives
an injective homomorphism PGL2 → GL4 whose image is contained in
SL4 (because PGL2 is simple).

5. For any n ≥ 2, the group SLn is simply connected, but its quotient
PGLn ' SLn /µn is not.

The answers are the same for fppf group schemes over a field, and in this
setting, one can add a row for “finite type” with all answers being YES.
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abelian scheme, 143, 144, 182
abelian variety, 89, 111, 138–146,

147–149, 153, 157–159, 203, 212,
221, 222, 225, 241, 242, 272, 286,
288, 306

adèle ring, 3, 49–50, 52, 56, 95, 150, 227
adjoint algebraic group, 135–136, 137,

150, 306
affine algebraic group, 126–127, 147,

149
affine morphism, 100
Albanese torsor, 153, 162
Albanese variety, 140–141, 142, 153,

153, 162
algebraic cycle, 218–219
algebraic group, 121, 115–163
quasi-projectivity of, 125

algebraic space, 39, 88, 182
almost simple algebraic group,

136–137, 137, 138, 150
αp, 120, 128, 160, 161, 203
α-twisted sheaf, 191
Amitsur’s conjecture, 109
anti-affine algebraic group, 149
Azumaya algebra, 16, 16–30, 107, 109,

187, 189, 189–191, 203, 234, 235

base extension, 32–37, 41, 47–48, 97,
101, 112, 122, 299–307

Betti number, 205, 206, 209, 211–212,
217

bielliptic surface, 248
birational automorphism group, 91, 265

birational invariant, 93, 198, 257, 258,
264, 265, 277, 278, 289

birational map, 91, 109, 113, 198, 239,
258, 259, 261, 270

factorization of, 268
birational morphism, 188, 267–271, 276
factorization of, ix, 267

Birch and Swinnerton-Dyer conjecture,
111, 146, 221

Bombieri–Lang conjecture, 288
Borel–Serre theorem
global, 159, 184
local, 157, 185, 241

Brauer evaluation, 229, 230–232, 234,
253

Brauer group, 1, 19, 16–27, 107–110,
113, 166, 167, 187, 189, 186–192

algebraic part of, 195, 200
Azumaya, 189, 189–192, 198
birational invariance of, 198
cohomological, 187, 187–189
counterexamples, 188, 191–192, 197,
203

of a C1 field, 24, 196
of a complete intersection, 252
of a curve, 199, 203
of a del Pezzo surface, 253, 277
of a discrete valuation ring, 196–199,
204, 229

of a finite field, 24, 162, 199
of a function field, 24, 27, 30, 197
of a global field, 21, 25, 108
of a Laurent series field, 197
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of a limit, 29, 175, 188
of a local field, 21, 25
of a maximal abelian extension, 30
of a perfect field, 30
of a projective space, 200
of a proper Z-scheme, 199
of a quadric, 201, 203
of a quadric bundle, 201–202
of a rational variety, 200
of a regular integral scheme, 188,
197–198

of a ring of S-integers, 199, 203
of a singular variety, 191, 203
of a surface over a finite field, 199,
221, 222

of an adèle ring, 228
spreading out, 189, 229

Brauer set, 228, 230, 246
Brauer–Manin obstruction, 230,

229–236, 245, 253, 278, 285
effectivity of, 235–236
for a rationally connected variety, 267
insufficiency of, 248–253
to weak approximation, 231, 235,
253, 285

C1 field, 3, 6–8, 24, 27, 28, 196
Cr field, 1, 3, 3–8
counterexamples, 7, 24, 28
examples, 6–7
for non-integral r, 7, 27
transition theorems for, 5–6, 27, 28

C′r field, 7, 27
canonical ring, 258
Čech cohomology, 157, 158, 173,

177–178, 180–182, 186, 187, 239
center
of a group scheme, 124
of a reductive group, 133
of a semisimple group, 134

central isogeny, 134, 135, 136
centralizer of a subgroup scheme, 124
Chabauty’s method, 238
character group, 130, 131, 132, 161
Châtelet surface, 233, 235, 249
Chevalley–Warning theorem, 6, 24, 27
Chow group, 218, 220
class field theory, 26, 196, 295
classification of surfaces, 267–275
closed point, 45, 45–46, 54, 60, 208
cocharacter group, 161
Cohen structure theorem, 84

cohomological dimension, 1, 12, 12–15,
23–24, 28, 30

examples, 15
of a global field, 15, 196
of a local field, 15
strict, 12, 12–15, 196
transition theorems for, 13–15

cohomology with compact support, 217,
219, 223

commutator subgroup of an algebraic
group, 132, 138, 148

comparison of Azumaya and
cohomological Brauer groups, 187,
190–192

comparison of Brauer–Manin and
descent obstructions, 245–246

comparison of étale and fppf
cohomologies, 186, 187

comparison of étale and Galois
cohomologies, 11, 165–166, 175–176

comparison of étale and singular
cohomologies, 166–167, 210, 217

comparison of étale and topological
fundamental groups, 78

comparison of étale and Zariski
cohomologies, 186, 202

comparison of étale-Brauer and descent
obstructions, 247

complete intersection, 252, 284
complex analytic space, 49, 68, 74, 77
complex manifold, 68, 166
component group of an algebraic group,

147, 241
composition series, 123, 128
conic, 203, 232, 276–279, 284
conic bundle, ix, 232, 235, 274, 275
connected component of a group

scheme, 121, 125, 147, 148, 183
constant field
of a (−1) curve, 267
of a function field, 36

constructible scheme, 66
contracted product, 155, 182
contractible curve on a surface, 267,

268, 270
Cremona group, 91
curve, 32, 47–48, 267
cohomology of a, 166, 203, 206
of genus 0, 106, 113, 280
of genus 1, 153, 157, 238, 253, 254
of genus > 1, 50, 286–288



Un
offi
cia
l v
ers
ion

for
inc
ide
nta

l o
nli
ne
use

Index 329

cycle class homomorphism, 220,
218–222

cyclic algebra, 22, 21–23, 25, 26, 29, 30,
190

cyclotomic character, 213

Dedekind domain, 61, 61–64, 88, 89, 96
Dedekind scheme, 62, 61–64, 89, 143,

271
degree of a closed point, 46
degree of a Fano variety, 264, 275
degree of a morphism, 92, 93
del Pezzo surface, 275, 274–286

of degree 1, 278, 285
of degree 2, 278, 285
of degree 3, 284–285
of degree 4, 253, 284, 284
of degree 5, ix, 282, 282–284, 289
of degree 6, ix, 280–282
of degree 7, 280, 281
of degree 8, 278–280, 282
of degree 9, 278, 281

Demyanenko–Manin method, 238
descent
fpqc, 97–113, 122, 123, 171
for algebraic groups, 125, 304
for properties of morphisms, 101,
179, 185, 194, 203, 299, 300, 302,
303

for quasi-coherent sheaves, 100,
172, 186, 190, 219

for schemes, 101, 172, 181–183, 219
Galois, 9–11, 20, 54, 102–105, 133,
181

generalizations of Fermat’s method of
infinite, 227, 236–245, 254

descent datum, 99
descent obstruction, 245, 244–248
insufficiency of, 249, 252–253
iterated, 248

dimension, 65
dimension ≤ 1, 24, 24, 30, 156, 277,

278, 280, 281
diophantine approximation, 286
discrete valuation ring or field, 2, 6, 7,

15, 60–61, 63, 64, 73, 87–89, 112,
143, 144, 196–199, 203, 204, 271,
295–297

dominant rational map, 42, 43, 53, 91,
91–92, 244, 259–263, 266, 283, 302

elliptic curve, 113, 119, 138, 142,
144–146, 149, 153, 237, 238, 241,
249

elliptic surface, 273
embedding of algebraic groups, 124
Enriques surface, 272
étale algebra, 8, 8–9, 22–23
split, 9, 10, 278

étale cohomology, 11, 174, 165–204,
210, 212–226, 260

and limits, 175
of a curve, 166, 203
over a field, 175–176

étale morphism, 8, 74, 74–78, 83, 94,
96, 168, 239, 243

étale schemes over a normal scheme,
79–82, 244

étale-Brauer obstruction, 249
insufficiency of, 249–252

étale-Brauer set, 247, 247
Euler characteristic, 209, 216, 273
of a sheaf, 289

exact sequence of group schemes, 120
exact sequence of sets, 170
exact sequence of sheaves, 174
extension of group schemes, 120, 304

F -obstruction, 227–229
faithfully flat morphism, 64, 66, 302
Fano variety, 263, 263–266
Fermat’s last theorem, 53, 292
fiber functor, 76, 78
fibration method, 235
field of moduli, 112
finite field, ix, ix, 6, 15, 24, 27, 48, 54,

156, 157, 162, 203, 205–226, 275,
289

finite presentation morphism, 57,
57–59, 302

finitely presented algebra, 56–57
finitely presented group, 78
flat module, 64, 64
flat morphism, 64, 302
formally real field, 7, 14, 295–296
formally smooth morphism, 82, 302
fppf cohomology, 21, 107, 157, 158,

174, 199
fppf morphism, 66, 94, 96, 120, 168,

299, 302
fpqc morphism, 66, 94–96, 99, 168,

299–302
that is not fppf, 96
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free rational curve, 261
Frobenius automorphism, 145, 156,

214–215
Frobenius morphism, 93–94, 210, 223,

287
of a group scheme, 119, 120, 124, 125,
134, 152, 156

function field of a variety, 34, 34–37,
90–91, 287–288

functor of points, 38, 38–39, 57, 89
is a sheaf, 172
of a group scheme, 117–118, 119,
122, 139, 140

fundamental group, 76, 78, 76–79, 252
of a normal scheme, 80
variety with prescribed, 78

G-unramified morphism, 74, 74, 83, 303
GAGA, 49
Galois cohomology, 11–12, 19–23, 28,

165–166, 175–176
Galois étale algebra, 9
Galois theory, 8–12
gamma function, 207
general type, 259, 273
genus, 47

change under field extension, 47–48
geometric point, 78
geometrically connected variety, 33, 34,

43, 53, 84, 85, 121, 138, 148, 157,
302

geometrically integral variety, 2, 33,
34–37, 40, 43, 44, 47, 48, 54, 72, 81,
82, 84, 85, 96, 112, 138, 141, 153,
162, 195, 201–203, 222, 223, 232,
243, 244, 251, 252, 258, 263, 287,
288, 298, 300, 302

geometrically irreducible variety, 33,
33–36, 44, 81, 121, 206, 209, 222,
223, 225, 302

geometrically reduced variety, 33,
34–36, 44, 53, 84, 85, 124, 140, 269,
270, 274, 300, 302

geometrically regular variety, 33, 34,
36, 53, 69, 71–73, 84

global field, ix, 2–3, 25–27, 50–52, 54,
145–146, 149–151, 158–159,
222–223, 227–255, 277–288

global function field, 2, 50, 150, 159,
221, 222, 287–288

good reduction, 87, 87–89, 96, 143, 144
Grassmannian, 259, 282

Greenberg transform, 112, 112
Grothendieck topology, 167, 167–169
group object, 116
group scheme, 11, 89, 116, 115–121, 172
additive, 118, 119, 120, 127–129, 150,
160, 161, 172, 304

constant, 119, 128, 129, 153
finite étale, 146–147
fppf, 120, 120–125
multiplicative, 118, 118–120, 130,
132–134, 143, 160, 161, 173, 180,
186–187, 202

of multiplicative type, 131
of order p, 160
over the ring of dual numbers, 127

Grunwald–Wang theorem, 26

Hasse–Weil bound, 157, 206, 253
height of a rational point, 51, 145
Hensel’s lemma, 83, 83, 184, 223, 234,

243, 296
henselian local ring or field, 6, 198, 231,

296–297
Hermite’s finiteness theorem, ix, 185
Hilbert irreducibility theorem, 297
Hilbert’s tenth problem, 49, 50
Hilbert’s theorem 90, 11–12, 20, 28,

187, 195
hilbertian field, 297–298, 298
Hirzebruch surface, 260, 272, 274
Hodge conjecture, 220, 221, 266
Hodge structure, 161
homogeneous space, ix, 122, 125, 152,

162
Hopf algebra, 117
hyperbolic variety, 253
hyperelliptic or superelliptic curve, 112
hypersurface, 6, 201, 210, 252–253, 264,

266, 289

imperfect field, 27, 34, 48, 67, 71, 84,
85, 113, 196, 197, 203

group scheme over an, 148–149, 160
index of an Azumaya algebra, 21, 25, 26
induced module, 13
infinitesimal lifting property, 82, 82–84
inflation-restriction sequence, 20, 185,

194
inner twist, 151, 155, 159, 182
integral scheme, 31
intermediate Jacobian, 265
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isogeny between connected algebraic
groups, 134

isotrivial variety, 287

Jacobian variety, 139, 139–141, 153,
157, 222, 238

jet, 83
jet space, 112

K3 surface, 51, 88, 272
Kodaira dimension, 257, 257–259,

272–273
Krasner’s lemma, 86, 86, 241, 243
Kronecker–Weber theorem, 7

L-function, 145, 145–146, 221
Lang’s conjecture for a hyperbolic

variety, 253
Lang–Nishimura theorem, ix, 92–93,

96, 107, 281, 283
Lang–Weil theorem, 222, 225
Laurent series, x, 1, 2, 7, 30, 49, 92,

197, 295
Lefschetz trace formula

for a nonproper variety, 217, 222
in étale cohomology, 214, 216, 275
in topology, 210, 211

linear recursive sequence, 226
local coordinates, 69, 79, 84
local field, 1–2, 7, 15, 21, 25, 27, 48, 49,

85–87, 157–158, 199, 223–224,
230–231, 240–241, 297, 298

higher-dimensional, 295
local-global principle, 52, 227, 228, 230,

232, 234, 236, 245, 248, 249, 280
for a Châtelet surface, 235
for a del Pezzo surface, 277, 278, 280,
284–286

for a hypersurface, 253
for a rationally connected variety, 267
for a Severi–Brauer variety, 108, 278,
281

for a torsor, 158–159
locally integral scheme, 62
locally of finite presentation morphism,

57, 66, 303

maximal abelian extension, 7, 30
maximal unramified extension, 6, 7, 81,

196, 297
Merkurjev–Suslin theorem, 24
Minchev’s theorem on strong

approximation, viii, 243–244

minimal regular proper model, 88, 89,
144, 271

minimal surface, 270, 270–271, 273
moduli space, 39–41, 259
coarse, 39, 39–41, 53, 273
fine, 39, 40, 53
of curves, 40
of curves with marked points, 40–41,
282, 283

Mordell–Weil theorem, 145, 242
µn, 119, 120, 121, 129, 132, 134–137,

160, 161, 190, 191, 202, 203, 213,
219

nef, 272, 272–274
Néron model, 89
of an abelian variety, 143–144
of an elliptic curve, 144–145

nice variety, 85
noetherian hypothesis, 56, 59, 300
norm form, 3–4, 24, 28
normalizer of a subgroup scheme, 124
normic form, 3–4
number field, 2, 7, 28, 50, 51, 150, 151,

159, 184, 185, 196, 223, 235, 241,
243, 247, 252, 254, 267, 286, 288

numerical equivalence, 272, 274

opposite category, x
order of a group scheme, 119

PAC field, 7, 8, 298
perfect closure, 1, 27
period of an Azumaya algebra, 21, 25,

26
Picard number, 274
Picard scheme, 140, 141
Picard variety, 141–142
Poincaré duality
for a nonproper variety, 217, 219
in `-adic cohomology, 214
in topology, 211

polynomial ring, x, 56
potential density, 51
power series ring, x, 84, 92, 96, 197
presheaf, 169–170
primary extension of fields, 35–36, 37,

44, 202
pseudo-morphism, 90
pseudo-reductive algebraic group, 148,

158, 162
pseudo-semisimple algebraic group, 148
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purity conjecture, 197

quadric, 201
quadric bundle, 201–202, 249–252
quasi-affine morphism, 101, 101, 105,

303
quasi-compact morphism or scheme,

55–56, 303
quasi-separated morphism or scheme,

55–56, 303
quaternion algebra, 17, 18, 21, 23, 29,

233, 234, 254
quotient of group schemes, 120–121,

122–124, 304

radical of an algebraic group, 132–133,
147, 148

rational equivalence, 218, 220
rational function field, x, 5, 27, 28, 30,

113
rational map, 90–93, 96, 108–110, 143,

200, 257, 259, 261, 262, 281
rational surface, 260, 272–274, 277, 280,

281, 283–285
cohomology of a, 260
number of points on a, 275

rational variety, 48, 68, 107, 131, 160,
200, 259, 259–260, 264–266, 266

in a family, 260
rationally chain connected variety, 6,

263–266, 275
rationally connected variety, 260,

262–263, 264–266, 266
real approximation theorem, 149, 162
real closed field, 296
reduced norm, 18, 24, 29
reduced subscheme of a group scheme

that is not a subgroup scheme, 161
reduced trace, 18, 29
reductive algebraic group, 133,

132–138, 147, 157, 306
regular scheme, 34–36, 47, 48, 53, 62,

67, 67, 71–73, 79, 88–89, 91, 96,
144, 188, 192, 197–198, 200–202,
246, 267–271, 304

relative dimension, 65, 70–71, 75, 79
relative Picard functor, 140
representable functor, 39, 39, 40, 49,

53, 110, 120, 124, 140, 160, 181–183
residue homomorphism, 192, 196–198,

201, 203, 233

resolution of singularities, 35, 88, 89,
258

restricted product, ix, 3, 50, 52
restriction of scalars, 110–112, 113,

130, 137, 138, 161, 162, 274,
278–280, 284

inseparable, 113
Riemann existence theorem, 77, 78
Riemann hypothesis, 207
for a curve over a finite field, 209, 210
for a variety over a finite field, 206,
209, 210

Riemann–Roch theorem, 47, 48, 54,
157, 259, 288

ring of (S-)integers, 2, 62, 81, 199, 203,
208, 254

ruled surface, 272–275
ruled variety, 261, 266

scheme-theoretically dominant, 42–43,
54

scheme-valued points, 37, 37–44
Schinzel’s hypothesis, 235
Selmer group, 241
Selmer set, 241–242, 244, 245
finiteness of, viii, 183, 241, 243

semiabelian variety, 139, 141, 143, 153
semisimple algebraic group, 133,

132–138, 147, 149–151, 157, 159,
306

separable extension of fields, 6, 35–36,
37, 53

set theory, x, 17, 167, 173, 291–294
Severi–Brauer variety, 106, 106–110,

113, 203, 235, 278–281
Shafarevich conjecture, 286
Shafarevich–Tate group, 145–146,

221–222
Shapiro’s lemma, 13, 14, 201, 279
sheaf, 170, 170–174
sheafification, 122, 140, 173, 174
sieve, 168
simply connected algebraic group, ix,

134, 134–138, 150, 157–159, 305,
306

simply connected scheme
algebraically, 78, 81, 135, 244, 251,
252, 273

simply connected topological space, 77,
78, 262

singular cohomology, 166, 206, 210–212,
217, 220
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site, 168–169
Skolem–Mahler–Lech theorem, 226
Skolem–Noether theorem, 18
small category, 293
smooth group scheme, 89, 121,

124–125, 144
smooth locus, 70–71, 84, 89, 125, 144,

145, 223, 243
smooth morphism, 70, 73, 82, 67–89,

303
smooth vs. regular, 67, 71–73
solvable algebraic group, 133, 133, 147,

306
specialization, 60, 128, 217, 297
spectral sequence, 192–196
Hochschild–Serre, 21, 192, 194–196
of Čech cohomology, 178

spreading out, 57, 58–64, 188, 189, 222,
223, 229, 239, 241–243, 253, 299,
300, 302, 303

stably birational varieties, 109, 113
stably rational variety, 259–260,

264–266
stack, 39, 40
standard étale morphism, 75, 75, 76, 86
strictly henselian local ring or field, 297
strong approximation, viii, 52, 96,

243–244
in an algebraic group, 150–151

strongly inaccessible cardinal, 292

Tate class, 221
Tate conjecture, 220, 220–222
Tate module, 145, 212, 225
Tate twist, 213, 214
topological field, 2, 48–49
torsor, 118, 151, 152, 151–159, 162,

163, 165, 167, 179, 178–185, 190,
194, 202, 203, 227, 239–255

operations on a, 154–156, 182–183
over a finite field, 156–157, 184
over a local field, 157
under a torus, 153, 162, 281
under αp, 203
under µn, 190, 203

torsor sheaf, 180, 180–182
torus, 130, 129–134, 137–139, 147, 150,

151, 153, 159, 161, 162, 281, 306
rationality of a, 131

transcedence degree, 15
transcendence basis, x

transcendence degree, x, 5, 15, 35, 65,
258, 288

Tsen’s theorem, 6, 24, 199
twist, 16, 20, 40, 105, 105–112, 128,

130, 131, 137, 138, 151, 154, 155,
181, 183, 237, 240, 246, 249, 251,
254, 279, 283

of an elliptic curve, 113
of Ga, 127, 160

unipotent group, 128, 127–129, 133,
147, 161, 306

unipotent radical, 132–133, 147, 148
unirational variety, 259–260, 266, 278,

283, 285
that is not rational, 264–266

uniruled variety, 261, 264–266, 266
universe, x, 17, 173, 291, 291–294
unramified cohomology class, 183
unramified cohomology group of a

function field, 266
unramified morphism, 73–74, 75, 80,

303
unramified torsor, 183–185

valuative criterion for properness,
63–64, 89, 91, 92, 184, 242

variety, 32
vectorial group, 127
very free rational curve, 261

weak approximation, 52, 54, 96, 228,
231, 232, 235, 253, 277, 278,
284–286

in an algebraic group, 149–150
weak Lefschetz theorem, 252
weak Mordell–Weil theorem, 145, 242
Wedderburn’s theorem on finite division

rings, 24, 162
Wedderburn’s theorem on semisimple

algebras, 16
Weierstrass model, 113, 144, 144
Weil conjectures, 205, 209, 205–226
Witt vector, 112, 128, 129

Yoneda’s lemma, 38–39, 89, 118, 126

Zariski open covering morphism, 67, 94,
94, 96, 99, 300, 301

Zariski’s main theorem, 76, 80
zeta function, 207–210
convergence of, 208, 225
Dedekind, 208
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of a scheme of finite type over a finite
field, 208–209

of a scheme of finite type over Z, 208
Riemann, 207–208, 208
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