8.3.2) Suppose the triangles were in the same plane \(\Pi' \). Then \(\Pi' \) would contain \(A_1, C_1, A_2, C_2 \). The plane \(\Pi \) is a plane containing these points, and it is the only one because the lines \(A_1C_1 \) and \(A_2C_2 \) are distinct in the hypotheses of Desargues’ theorem. Thus \(\Pi' = \Pi \), and this plane contains \(B_1 \) and \(D_1 \), so it contains \(P \), which lies on the line \(B_1D_1 \). This contradicts the assumption that \(P \) is not on \(\Pi \).

Points \(A_1, A_2, O \) are collinear, points \(C_1, C_2, O \) are collinear, and points \(D_1, D_2, O \) are collinear. This is what it means for triangles \(A_1C_1D_1 \) and \(A_2C_2D_2 \) to be in perspective from \(O \).

8.3.3) Since the projection from \(P \) maps \(A_1, D_1, A_2, D_2 \) to \(A_1, B_1, A_2, B_2 \), respectively, the intersection of \(A_1D_1 \) and \(A_2D_2 \) is projected to the intersection of \(A_1B_1 \) and \(A_2B_2 \). The other two statements are similar.

The first three intersection points lie on a line (by the non-planar Desargues’ theorem), so their projections from \(P \) lie on the projection of this line.

8.7.1) Let \(f(x, y) = 0 \) and \(g(x, y) = 0 \) be the two degree \(n \) curves, and let \(c(x, y) = 0 \) be the degree \(m \) curve. Let \(P \) be a point on \(c(x, y) = 0 \) not equal to one of the \(nm \) intersection points of \(f = 0 \) and \(g = 0 \) (this is possible since \(c(x, y) = 0 \) is not degenerate). Choose \(\alpha, \beta \in \mathbb{R} \) not both zero such that \(\alpha f(P) + \beta g(P) = 0 \). Then the curve \(\alpha f(x, y) + \beta g(x, y) = 0 \) of degree \(\leq n \) intersects \(c(x, y) = 0 \) in at least \(nm + 1 \) points. This contradicts Bézout’s Theorem unless \(\alpha f(x, y) + \beta g(x, y) \) and \(c(x, y) \) have a common factor. Since \(c(x, y) \) is irreducible, we get

\[
\alpha f(x, y) + \beta g(x, y) = c(x, y)p(x, y)
\]

for some polynomial \(p(x, y) = 0 \) of degree at most \(n - m \). Of the \(n^2 \) points where \(f = g = 0 \), only \(nm \) lie on \(c(x, y) = 0 \) (if there were more, then it would contradict Bézout’s Theorem applied to \(f = c = 0 \) or \(g = c = 0 \), since \(c = 0 \) cannot be a factor of both \(f \) and \(g \)). The other \(n^2 - nm = n(n - m) \) points where \(f = g = 0 \) satisfy \(\alpha f(x, y) + \beta g(x, y) \) but \(c(x, y) \neq 0 \), so by the factorization above, they must satisfy \(p(x, y) = 0 \).

9.4.1)(first part) It suffices to prove

\[
\sin x = 2^n \cos \frac{x}{2^n} \cos \frac{x}{4} \cdots \cos \frac{x}{2^n} \sin \frac{x}{2^n}
\]

since then we can divide by \(2^n \sin(x/2^n) \). We prove the formula by induction on \(n \). The case \(n = 1 \) is the given identity \(\sin x = 2 \cos \frac{x}{2} \sin \frac{x}{2} \). Suppose the formula is true for \(n \). Then we apply the identity \(\sin y = 2 \cos \frac{y}{2} \sin \frac{y}{2} \) with \(y = x/2^n \) and substitute to get the result for \(n + 1 \).

9.4.1)(second part) By definition of the derivative (or by L’Hôpital’s Rule), \(\lim_{t \to 0} \frac{\sin t}{t} = \cos 0 = 1 \), so \(\lim_{n \to \infty} \frac{\sin t_n}{t_n} = 1 \) for any sequence \(t_n \) tending to 0. Apply this to \(t_n = x/2^n \) to
get \(\lim_{n \to \infty} \frac{\sin(x/2^n)}{x/2^n} = 1 \). Take reciprocals and divide by \(x \) to get

\[
\lim_{n \to \infty} \frac{1}{2^n \sin(x/2^n)} = \frac{1}{x}.
\]

for any \(x \neq 0 \). Plugging this into the first part of 9.4.1 gives the desired formula, since the infinite product on the right hand side also is defined as a limit.

9.4.2) Taking \(x = \pi/2 \), we get \(\frac{\sin x}{x} = \frac{1}{\pi/2} = \frac{2}{\pi} \) on the left, and

\[
\cos \frac{\pi}{4} \cos \frac{\pi}{8} \cos \frac{\pi}{16} \cdots
\]

on the right. We have \(\cos \frac{\pi}{4} = \frac{\sqrt{2}}{2} \) and the successive cosines can be gotten by iterating the half-angle formula \(\cos \frac{t}{2} = \sqrt{\frac{1}{2} (1 + \cos t)} \):

\[
\begin{align*}
\cos \frac{\pi}{8} &= \sqrt{\frac{1}{2} (1 + \frac{\sqrt{2}}{2})} \\
\cos \frac{\pi}{16} &= \sqrt{\frac{1}{2} \left(1 + \sqrt{\frac{1}{2} \left(1 + \frac{\sqrt{2}}{2}\right)}\right)} \\
&\quad \vdots
\end{align*}
\]

9.5.3) Taking \(a = -t^2 \) and \(p = -1/2 \) in the binomial theorem on page 158, we find that the \(t^{2n} \) term is

\[
\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\cdots\left(-\frac{1}{2}-(n-1)\right)}{n!}(-t^2)^n
\]

so the coefficient of \(t^{2n} \) is

\[
\frac{\left(\frac{1}{2}\right)\left(\frac{3}{2}\right)\cdots\left(\frac{2n-1}{2}\right)}{n!} = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots 2n}
\]

(the minus signs cancel) This gives the expansion

\[
\frac{1}{\sqrt{1-t^2}} = 1 + \frac{1}{2} t^2 + \frac{1}{2 \cdot 4} t^4 + \frac{1}{2 \cdot 4 \cdot 6} t^6 + \cdots.
\]

9.5.3) Just integrate term by term.

1a) If \(f \in P_d \), then \(\deg(f(x) - f(x-1)) < d \), since the \(x^d \) terms in the expansions of \(f(x) \) and \(f(x-1) \), if any, cancel. Thus \(\phi \) is well-defined.

If \(f, g \in P_d \), then \(\phi(f+g) = (f+g)(x)-(f+g)(x-1) = f(x)+g(x)-(f(x-1)+g(x-1)) = (f(x)-f(x-1))+(g(x)-g(x-1)) = \phi(f)+\phi(g) \). If \(f \in P_d \) and \(\lambda \in \mathbb{R} \), then \(\phi(\lambda f) \) is \((\lambda f)(x)-(\lambda f)(x-1) = \lambda f(x)-\lambda f(x-1) = \lambda (f(x)-f(x-1)) = \lambda \phi(f) \). Thus \(\phi \) is linear.

1b) The kernel of \(\phi \) consists of polynomials \(f(x) \) (of degree \(\leq d \)) such that \(f(x)-f(x-1) = 0 \). For such a polynomial \(f(x) = f(x-1) \), so \(f(0) = f(-1) = f(-2) = \cdots \). In particular, \(f(x) - f(0) \) is a polynomial taking the value 0 at 0, -1, -2, \cdots, but a nonzero polynomial could have only finitely many zeros, so \(f(x) - f(0) \) is the zero polynomial. Thus \(f(x) = f(0) \) as polynomials in \(x \), so \(f(x) \) is a constant. Conversely, any constant polynomial is obviously in the kernel.
1c) We have \(\dim P_d = d + 1 \), because \(1, x, x^2, \ldots, x^d \) is a basis. We have \(\dim \ker \phi + \dim \im \phi = \dim P_d \). This gives \(1 + \dim \im \phi = d + 1 \), so \(\dim \im \phi = d = \dim P_{d-1} \). Thus \(\im \phi = P_{d-1} \). So \(\phi \) is surjective.

1d) Choose \(d \) such that \(g \in P_{d-1} \). By 1c, there exists \(f \in P_d \) with \(\phi(f) = g \), and we may adjust \(f \) by a constant in order to assume \(f(0) = 0 \). Now

\[
g(1) + g(2) + \cdots + g(n) = (f(1) - f(0)) + (f(2) - f(1)) + \cdots (f(n) - f(n-1)) \\
= -f(0) + f(1) - f(1) + f(2) - \cdots + f(n-1) + f(n) \\
= -f(0) + f(n) \quad \text{(everything else cancels)} \\
= f(n).
\]