19.4.1) In Figure 19.2, number the diagonals AA', BB', CC', DD' as 1, 2, 3, 4, respectively. Let G be the symmetry group of the cube (i.e., the group of rotations of \mathbb{R}^3 that map the cube to itself). Then G acts on the set of diagonals, which has been identified with the set \{1, 2, 3, 4\}, so we get a homomorphism $\phi: G \to S_4$ describing the action. Problem 19.4.1 asks us to show that ϕ is surjective (every permutation of the four diagonals is induced by symmetry of the cube), and Problem 19.4.2 asks us to show that ϕ is injective.

Let us prove the surjectivity. Since S_4 is generated by the transpositions (12), (23), and (34), it suffices to prove that each of these is in the image of ϕ.

Let ρ_1 be the 180° rotation around the line joining the midpoint of AB and the midpoint of $A'B'$. Then ρ_1 maps AA' to BB', BB' to AA', CC' to $C'C'$, and DD' to $D'D'$, so $\phi(\rho_1) = (12)$. Let ρ_2 be the 180° rotation around the line joining the midpoint of BC and the midpoint of $B'C'$. A calculation like the one above shows that $\phi(\rho_2) = (23)$. Let ρ_3 be the 180° rotation around the line joining the midpoint of CD and the midpoint of $C'D'$. A calculation like the one above shows that $\phi(\rho_3) = (34)$.

19.4.2) Now we prove that ϕ is injective. Suppose ρ is in the kernel. Thus ρ is a symmetry of cube that maps each diagonal to itself. Hence ρ maps A to either A or A', maps A' to either A or A', maps B to either B or B', and so on.

Suppose that $\rho(A) = A$. Then the segment AB is mapped by ρ to either AB or AB' (since B is mapped to B or B'), but AB' has the wrong length, so ρ must map B to B. Similarly ρ must fix each vertex adjacent to A. By the same argument, ρ must fix the vertices adjacent to the vertices adjacent to A, and so on. Thus ρ must fix all the vertices, so ρ must be the identity.

By the same argument, if $\rho \in \ker \phi$ fixes any vertex, it must be the identity. The alternative is that ρ maps each vertex to its opposite. The right-handed coordinate system formed by the vectors \overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} would then be mapped to $\overrightarrow{A'B'}$, $\overrightarrow{A'C'}$, $\overrightarrow{A'D'}$, which is left-handed. This is a contradiction, since rotations preserve orientation.

20.4.3) Suppose $x, y, z \in \mathbb{Q}$ and $x^2 + y^2 + z^2 = 8n + 7$. Let d be the least common denominator of x, y, z. Multiplying both sides by d^2 gives an equation

$$a^2 + b^2 + c^2 = (8n + 7)d^2$$

where $a, b, c, d \in \mathbb{Z}$ are integers. Moreover, $\gcd(a, b, c, d) = 1$, since otherwise d would not have been the least common denominator.

The $8n$ is a hint to reduce the equation modulo 8. Doing so and adding d^2 to both sides gives

$$a^2 + b^2 + c^2 + d^2 \equiv 0 \pmod{8}.$$
Computing $x^2 \pmod{8}$ for $0 \leq x \leq 7$ shows that an integer square is 0, 1, or 4, modulo 8, with 1 occurring only if x is odd. Checking possibilities shows that the only way to get 0 mod 8 as a sum of four numbers that are 0, 1, 4 modulo 8 is to use only the 0’s and 4’s (a quick
way to see this is to work first modulo 4). But then a, b, c, d are all even, contradicting the fact that $\gcd(a, b, c, d) = 1$.

20.5.3) Expanding gives

$$q\bar{q} = (\alpha + \beta i + \gamma j + \delta k)(\alpha - \beta i - \gamma j - \delta k)$$

$$= \alpha^2 - \beta^2i^2 - \gamma^2j^2 - \delta^2k^2 - 2\alpha\beta(ij + ji) - \beta\delta(ik + ki) - \gamma\delta(jk + kj)$$

$$= \alpha^2 + \beta^2 + \gamma^2 + \delta^2,$$

since $i^2 = j^2 = k^2 = -1$ and $ij + ji = ik + ki = jk + kj = 0$.

20.7.2) According to Figure 20.1,

$$i(jl) = in = -o$$

$$(ij)l = kl = o.$$

1) First, F is the splitting field of $(x^2 - 2)(x^2 - 3)$, so Galois theory applies to F. Let $\sigma \in G := \text{Gal}(F/Q)$. Then σ acts as the identity on Q, since $\sigma(1) = 1$ and rational numbers can be built up from 1 using the operations $+, -, \cdot, /$, which are respected by σ.

Also σ maps $\sqrt{2}$ to another zero of $x^2 - 2$, so $\sigma(\sqrt{2}) = \pm \sqrt{2}$. Similarly $\sigma(\sqrt{3}) = \pm \sqrt{3}$.

Hence we have a map

$$\phi: G \to \{\pm 1\} \times \{\pm 1\}$$

sending each automorphism σ to the signs determining its action on $\sqrt{2}$ and $\sqrt{3}$.

The map ϕ is injective, since if the two signs are given, then $\sigma(\sqrt{6})$ is determined since it equals $\sigma \sqrt{2} \sigma \sqrt{3}$, and then $\sigma(a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6})$ is determined for all $a, b, c, d \in Q$.

On the other hand, by Galois theory, $\#G = [F : Q] = 4$, so there actually exist 4 automorphisms. Thus ϕ is a bijection. Explicitly, the automorphisms are

$$\sigma_1(a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}) = a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}$$

$$\sigma_2(a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}) = a + b\sqrt{2} - c\sqrt{3} - d\sqrt{6}$$

$$\sigma_3(a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}) = a - b\sqrt{2} + c\sqrt{3} - d\sqrt{6}$$

$$\sigma_4(a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}) = a - b\sqrt{2} - c\sqrt{3} + d\sqrt{6}.$$

The group G is of order 4, so it is isomorphic to either $\mathbb{Z}/4\mathbb{Z}$ or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. The first case can be ruled out, since a calculation shows that σ_i^2 is the identity for each i. Thus $G \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

In particular G has five subgroups: the trivial subgroup, three subgroups of order 2, and G itself.

Let us list subfields of F. Besides Q and F, there are three subfields of degree 2, namely $Q(\sqrt{2})$, $Q(\sqrt{3})$, and $Q(\sqrt{6})$. These are different, since each contains a square root not belonging to the other two. (And these three fields are different from Q and F, since they have degree 2.) Thus F has at least five subfields.

But by Galois theory, the number of subfields of F equals the number of subgroups of G, so F has no more subfields than those already listed.

2) Let $P_0, P_1, \ldots, P_{n-1}$ be vertices of a regular n-gon, ordered counterclockwise. The dihedral group D_{2n} is the group of symmetries of this n-gon. Let O be the center of the n-gon. Let τ be the reflection in the line OP_0. Then τ maps each P_i to $P_{i \mod n}$, so $\tau \in D_{2n}$. Let σ be the counterclockwise rotation by an angle $2\pi/n$ around O. Then σ maps P_i to
\(p_{i+1} \mod n \), so \(\sigma \in D_{2n} \). Let \(\nu = \tau \sigma \). Then \(\nu \) maps \(p_i \) to \(p_{-\tau(i+1) \mod n} \), and \(\nu^2 \) maps \(p_i \) to \(p_{-\tau(i+1) \mod n} = p_i \), so \(\nu^2 = 1 \). Also \(\tau \nu = \tau \tau \sigma = \sigma \), so \((\tau \nu)^n = \sigma^n = 1 \).

Thus if \(G := \langle a, b : a^2 = b^2 = (ab)^n = 1 \rangle \), there is a homomorphism \(\phi : G \to D_{2n} \) mapping \(a \) to \(\tau \) and \(b \) to \(\nu \). The image contains \(\tau \) and \(\nu \), and hence also \(\tau \nu = \sigma \), and we showed in class that \(\tau \) and \(\sigma \) generate \(D_{2n} \), so \(\phi \) is surjective.

To prove that \(\phi \) is an isomorphism, it will suffice to prove that \(\#G \leq 2n \). Every element of \(G \) is a word in \(a \) and \(b \), that is, a product of terms from \(\{a, b, a^{-1}, b^{-1}\} \). The relations \(a^2 = b^2 = 1 \) imply that \(a^{-1} = a \) and \(b^{-1} = b \). Any word containing two adjacent \(a \)'s or two adjacent \(b \)'s can be reduced using the relation \(a^2 = 1 \) or \(b^2 = 1 \), so every word is equivalent to one in which \(a \) and \(b \) alternate.

We next claim that every alternating word starting with \(b \) is equivalent to an alternating word starting with \(a \). Suppose we have a word \(w \) starting with \(b \) and containing \(m \) letters. Choose a positive multiple \(N \) of \(n \) such that \(2N > m \). Then \((ab)^N \) is a power of \((ab)^n = 1 \), so \((ab)^N = 1 \). The product \((ab)^N \cdot w \) can be reduced by canceling terms in the middle, starting with the last \(b \) in \((ab)^N \) and the first \(b \) in \(w \). Eventually all of \(w \) cancels with the last \(m \) letters in \((ab)^N \), and what remains is a word equivalent to \(w \), and it is an initial segment of \((ab)^N \) so it starts with \(a \).

Thus it remains to consider words starting with \(a \) in which \(a \) and \(b \) alternate. If such a word has \(2n \) or more letters, we can cancel \((ab)^n \) from its front, so it suffices to consider such words having \(< 2n \) letters. These are (starting with the empty word)

\[
\emptyset, a, ab, aba, abab, ababa, \ldots, (ab)^{n-1}a.
\]

There is one of these of each length between 0 and \(2n - 1 \), so there are \(2n \) such words. Thus \(\#G \leq 2n \). As explained earlier, this implies that the surjective homomorphism \(\phi : G \to D_{2n} \) must be an isomorphism.