Computing the Singular Value Decomposition to High Relative Accuracy

James Demmel
Department of Mathematics
Department of Electrical Engineering and Computer Science
University of California - Berkeley
demmel@cs.berkeley.edu

Plamen Koev
Department of Mathematics
University of California - Berkeley
plamen@math.berkeley.edu

Structured Matrices In Operator Theory, Numerical Analysis, Control, Signal and Image Processing
Boulder, Colorado

June 27-July 1, 1999

Supported by NSF and DOE
INTRODUCTION

- High Relative Accuracy means computing the correct SIGN and LEADING DIGITS

- Singular Value Decomposition (SVD):

 \[A = U \Sigma V^T \]

 where \(U, V \) are orthogonal,

 \[
 \Sigma = \begin{bmatrix}
 \sigma_1 \\
 \sigma_2 \\
 \vdots \\
 \sigma_n
 \end{bmatrix}
 \text{ and } \sigma_1 \geq \sigma_2 \geq \ldots \sigma_n \geq 0
 \]

- GOAL: Compute all \(\sigma_i \) with high relative accuracy, even when \(\sigma_i \ll \sigma_1 \)

- It all comes down to being able to compute determinants to high relative accuracy.
Example: 100 by 100 Hilbert Matrix

\[H(i, j) = \frac{1}{i + j - 1} \]

- Singular values range from 1 down to \(10^{-150}\)
- **Old algorithm, New Algorithm**, both in 16 digits

\[D = \log(\text{cond}(A)) = \log(\sigma_1/\sigma_n) \] (here \(D = 150\))
- Cost of Old algorithm = \(O(n^3D^2)\)
– Run in double, not bignums as in Mathematica
– New hundreds of times faster than Old

• When does it work? Not for all matrices ...

• Why bother?
Why do we want tiny singular values accurately?

1. When they are determined accurately by the data
 - Hilbert: $H(i, j) = 1/(i + j - 1)$
 - Cauchy: $C(i, j) = 1/(x_i + y_j)$

2. In some applications, tiny singular values matter most
 - Quantum mechanics: want lowest energy levels only
 - Elasticity: want lowest frequencies of vibration only
 - Getting the sign of the determinant right
 - Always a good idea to get accurate results if we can do it at a similar cost
Overview of Results

• Being able to compute $|\det(A)| = \prod_{i=1}^{n} \sigma_i$ to high relative accuracy is a necessary condition for accurate SVD.

• Well known similar sufficient condition for accurate A^{-1}: Enough to compute $n^2 + 1$ minors (Cramer’s Rule)

• New: Similar sufficient condition for accurate SVD: Enough to compute $O(n^3)$ minors

• We have identified many matrix classes whose structure permits efficient ($O(n^3)$) accurate computation of these minors.
 - Sparse Matrices, depending on sparsity pattern
 - Cauchy, Vandermonde, Unit Displacement Rank Matrices
 - “Graded” matrices (diagonal \cdot ”nice” \cdot diagonal)
 - Appropriately discretized ODEs, PDEs
SVD Algorithm

\[A = XDY^T \]

Phase 1: compute Rank Revealing Decomp (RRD)

\[X, Y \text{ full column rank and "well-conditioned"} \]
\[D \text{ diagonal} \]

Phase 2: compute SVD of an RRD

\[A = U\Sigma V^T \]

- **Examples of RRDs:**
 - \(A = U\Sigma V^T \), SVD itself
 - \(A = QDR \), QR decomposition with pivoting
 - \(A = LDU \), Gaussian Elimination with “complete” pivoting (GECP)

- **Fact:** Each entry of \(L, D, U \) is a quotient of minors

- **Phase 1:** GECP via (implicitly) computing accurate minors of \(A \)
 - Depends on structure of \(A \)

- **Phase 2:** Works for any RRD in \(O(n^3) \)
 - Independent of structure of \(A \)
 - Uses 1 or 2 one-sided Jacobis, matmuls

- **Relative error in singular values bounded by**
 \(O(macheps \cdot \max(\text{cond}(X), \text{cond}(Y))) \)
How do we compute $A = L \cdot D \cdot U$ for a Hilbert (or Cauchy) Matrix?

- How can we lose accuracy in computing in floating point?
 - OK to multiply, divide, add positive numbers
 - OK to subtract exact numbers (initial data)
 - Cancellation when subtracting approximate results dangerous:
 \[
 \begin{array}{c}
 .12345xxx \\
 - .12345yyy \\
 \hline
 .00000zzz
 \end{array}
 \]

- Cauchy:
 \[
 C(i, j) = \frac{1}{x_i + y_j}
 \]

\[
\text{det}(C) = \frac{\prod_{i<j}(x_j - x_i)(y_j - y_i)}{\prod_{i,j}(x_i + y_j)}
\]

 - No bad cancellation ⇒ good to most digits

- Change inner loop of Gaussian Elimination from
 \[
 C(i, j) = C(i, j) - \frac{C(i, k)C(k, j)}{C(i, i)}
 \]
 to
 \[
 C(i, j) = C(i, j)\frac{(x_i - x_k)(y_j - y_k)}{(x_k + y_j)(x_i + y_k)}
 \]

- Each entry of L, D, U accurate to most digits!
Vandermonde Matrices

- $V_{ij} = x_i^{j-1}$
- $\det(V) = \prod_{1 \leq i < j \leq n}(x_i - x_j)$
 - Computable to high relative accuracy
- For SVD use fact that $V \cdot DFT = Cauchy$
 - Extends to unit-displacement rank, but not higher
- Generalized Vandermonde Matrix $G_{ij}^{\mu} = x_i^{\mu_j}, x_i > 0$
 - Ex: $\mu_j = j - 1$ is usual Vandermonde
 - G^{μ} is a submatrix of a larger Vandermonde
 - Totally positive if $0 < x_1 < \cdots < x_n$
 - SVD determined to high relative accuracy; can we compute it?
- Let $\lambda_j = \mu_j - j + 1, \lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n), |\lambda| = \sum \lambda_i$
- $\det(G^{\mu}) = \det(V) \cdot s_\lambda(x_1, \ldots, x_n)$
 - Polynomial s_λ called Schur Function
 - Widely studied in representation theory, combinatorics, ...
 - For usual Vandermonde, $|\lambda| = 0$ and $s_\lambda = 1$

- Theorem (Plamen Koev): Cost of computing $\det(G^{\mu})$ to high relative accuracy is $n^{|\lambda|} + n^2$
- Corollary: Cost of high relative accuracy for some minors of V can be exponential in n, alas
When is High Accuracy Possible Efficiently?

• When are all minors computable accurately?
• Depends on model of arithmetic

Model 1: \(fl(a \odot b) = (a \odot b)(1 + \text{tiny}) \)

Model 2: IEEE floating point

• Model 1
 – Ok to multiply, divide, add positives, add or subtract initial data
 – Theorem 1. Can evaluate a polynomial accurately [in \(\text{poly}(n) \) time] if it factors into a product of [\(\text{poly}(n) \)] factors each of which is
 * initial data
 * sum or difference of initial data
 * sum of [\(\text{poly}(n) \)] positives
 – Covers many examples
 * Cauchy, real Vandermonde, graded, sparse, appropriately discretized ODEs and PDEs (so far)
 * Totally positive (eg generalized Vandermonde), but not in \(\text{poly}(n) \) time
 – Proposition (D,Kahan) Can’t add three numbers accurately
 * Model 1 much weaker than Model 2
Model 2 vs Model 1

- How much stronger is Model 2 than Model 1?

<table>
<thead>
<tr>
<th>Form of $\det(A)$</th>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Pi_{i=1}^{d} a_i$</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>$\Pi_{i=1}^{d} (a_i - b_i)$</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>$\sum_{i=1}^{t} a_i$, $a_i > 0$</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>$\sum_{i=1}^{t} a_i$</td>
<td>imposs.</td>
<td>$t \log t$</td>
</tr>
<tr>
<td>poly(a_i)</td>
<td>imposs.</td>
<td>$d^2 t \log t$</td>
</tr>
<tr>
<td>(t terms, degree $\leq d$)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Idea: represent numbers \textit{sparsely}, not \textit{densely}

- Theorem 2. Can evaluate a polynomial accurately in $\text{poly}(n)$ time if it factors into a produce of $\text{poly}(n)$ factors each of which is has $\text{poly}(n)$ terms of $\text{poly}(n)$ degree

- Examples
 - All examples from Model 1
 - Complex Vandermonde
 - Substitute polynomials for input data in previous example
 - Ex: Cauchy with x_i, y_j replaced by $p(x_i), q(y_j)$
 - Inverse of a tridiagonal

- Open Problem: what is complexity of accurate determinant of a general floating point matrix?
Conclusions and Future Work

- We can compute the SVD much more accurately than via bidiagonalization for many matrix classes
- Some algorithms will appear in LAPACK
- We only solve accurately the problem as stored in the computer, i.e. the last link of the chain:

 Real World
 \[\rightarrow\] Continuous Problem
 \[\rightarrow\] Discrete Problem
 \[\rightarrow\] Rounded Discrete Problem
 \[\rightarrow\] Solution

- Many open problems remain to extend these algorithms to new problem classes, especially
 - finite element matrices, other PDE discretizations
 - totally positive matrices
 - higher displacement rank
 - sparse problems from these classes
• Slides for this talk
 http://math.berkeley.edu/~plamen/src99.ps

• Report on overall algorithm

• Report on Cauchy, Vandermonde

• Report on Generalized Vandermonde Matrices and Schur Functions
 http://math.berkeley.edu/~plamen/schur.ps