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1

The classical definition (one variable) is

rΦs(a1, . . . , ar; b1, . . . , bs;x; q) =
∑
n≥0

(a1; q)n . . . (ar; q)n
(b1; q)n . . . (bs; q)n

· xn

(q; q)n

and we have in particular

(1.1) 0Φ0(x; q) = (x; q)−1∞ ,

(1.2) 1Φ0(a;x; q) = (ax; q)∞/(x; q)∞.

In several variables the definitions should be such as to give

(1.3) 0Φ0(x1, . . . , xn; q, t) =

n∏
i=1

(xi; q)
−1
∞ ,

(1.4) 1Φ0(a;x1, . . . , xn; q, t) =

n∏
i=1

(axi; q)∞
(xi; q)∞

.

We have (any u)

εu,t(Jλ(x; q, t)) =
∏

(i,j)∈λ

(ti−1 − qj−1u) = tn(λ)
∏
i≥1

(t1−iu; q)λi

and we define

(1.5) (u; q, t)λ =
∏
i≥1

(ut1−i; q)λi

so that we have

(1.6) εu,t(Jλ) = tn(λ)(u; q, t)λ.

In particular,

(1.7) ε0,t(Jλ) = tn(λ).

More generally, if a = (a1, . . . , ar), define

(a; q, t)λ =
r∏
i=1

(ai; q, t)λ.

Let

J∗λ(x; q, t) = Jλ(x; q, t)/〈Jλ, Jλ〉q,t
so that (J∗λ) is the basis of ΛF dual to the basis (Jλ).

Definition. Let a = (a1, . . . , ar), b = (b1, . . . , bs). Then we define(1.8)

rΦs(a; b;x; q, t) =
∑
λ

(a; q, t)λ
(b; q, t)λ

tn(λ)J∗λ(x; q, t),

a formal power series with coefficients in F (a, b), i.e., an element of Λ̂F (a,b).
Here the number of variables xi may be finite or infinite.
The next definition, however, seems to be relevant only when the number of variables is finite, say

x = (x1, . . . , xn), y = (y1, . . . , yn).
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Let

(1.9) J∗λ(x, y; q, t) =
J∗λ(x; q, t)J∗λ(y; q, t)

εtn,t(J∗λ)

the denominator of which is J∗λ(1, t, . . . , tn−1, q, t).

=
Jλ(x)J∗λ(y)

tn(λ)(tn)λ

Definition. With a, b as in (1.8), we define(1.10)

rΦs(a; b;x, y; q, t) =
∑
λ

(a; q, t)λ
(b; q, t)λ

tn(λ)J∗λ(x, y; q, t).

Here the sum is over partitions of length ≤ n. (hypergeometric kernel)
The relationship between rΦs(x, y) and rΦs(x) is given by

(1.11) ε
(y)
tn,t rΦs(x, y) = rΦs(x)

Proof. This follows from the definitions, since

ε
(y)
tn,tJ

∗
λ(x, y) = J∗λ(x).

�

Each such rΦs(x, y) determines a scalar product on ΛF,n for which the Pλ are pairwise orthogonal and

〈Pλ, Qλ〉 =
(a)λ

(b)λ(tn)λ

for

rΦs =
∑
λ

(a)λ
(b)λ

· Pλ(x)Qλ(y)

(tn)λ
. (better definition)
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2. Particular cases

(2.1) 0Φ0(x; q, t) =
∏
i

(xi; q)
−1
∞ .

Proof.

0Φ0(x; q, t) =
∑
λ

tn(λ)J∗λ(x; q, t)

=
∑
λ

ε0,t(Jλ)J∗λ by (1.7)

= ε
(y)
0,tΠ(x, y; q, t).

Since ε0,t(Pr) = (1− tr)−1 (r ≥ 1), the effect of ε0,t on the y-variables is to specialize yi 7→ ti−1 (i ≥ 1), +
hence

ε
(y)
0,tΠ(x, y; q, t) =

∏
i,j

(xit
j ; q)∞

(xitj−1; q)∞
=
∏
i

1

(xi, q)∞
.

�

(2.2) 1Φ0(a;x; q, t) =
∏
i

(axi; q)∞
(xi; q)∞

Proof. By (1.6) and (1.8),

1Φ0(a;x; q, t) =
∑
λ

εa,t(Jλ)J∗λ = ε
(y)
a,tΠ(x; y; q, t).

Now

Π(x, y; q, t) = exp
∑
r≥1

1

r
· 1− tr

1− qr
pr(x)pr(y)

and εa,tpr = 1−ar
1−tr , so that

ε
(y)
a,tΠ(x, y; q, t) = exp

∑
r≥1

1

r
· 1− ar

1− qr
pr(x)

= Π(x, 1; q, a)

=
∏
i

(axi; q)∞
(xi; q)∞.

�

Notice that (2.1) is the case a = 0 of (2.2), since (0; q, t)λ = 1 for all partitions λ. Thus

rΦs(a1, . . . , ar−1, . . . , 0; b1, . . . , bs, x; q, t) = r−1Φs(a1, . . . , ar−1; b1, . . . , bs;x; q, t)

and likewise if one of the bi is zero.

(2.3) 1Φ0(tn;x, y; q, t) = Π(x, y; q, t)
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Proof. We have

1Φ0(tn;x, y; q, t) =
∑
λ

tn(λ)(tn)λJ
∗
λ(x, y)

=
∑
λ

Jλ(x)J∗λ(y)

(since tn(λ)(tn)λ = εtn,t(Jλ)) whence the result. �

Next consider the scalar product of Ch.VI, §9:

〈f, g〉′q,t =
1

n!
[fḡ∆]1,

where

∆ = ∆(x; q, t) =
∏
i 6=j

(xix
−1
j ; q)∞

(txix
−1
j ; q)∞

and [ ]1 denotes the constant term.
We shall normalize this as follows

〈f, g〉′′q,t = 〈f, g〉′q,t/〈1, 1〉′q,t
[In fact (q–Dyson conjecture)

〈1, 1〉′q,t =
(t; q)n∞

(tn; q)∞(q; q)n−1∞
·
n−1∏
i=1

(1− ti)−1

–see e.g., Stembridge for a reasonably simple proof.]

Conjecture (C1). 〈Pλ, Pλ〉′′q,t = εtn,t(Pλ)/εqtn−1,t(Qλ)

We associate with this scalar product the power series

Π′′(x, y; q, t) =
∑
λ

uλ(x)vλ(y),

where (uλ), (vλ) are dual bases of ΛF for the scalar product. Taking uλ = Pλ we have

Π′′(x, y; q, t) =
∑
λ

Pλ(x)Pλ(y)

〈Pλ, Pλ〉′′

=
∑
λ

Pλ(x)Pλ(y)εqtn−1,t(Qλ)

εtn,t(Pλ)

=
∑
λ

εqtn−1,t(Jλ)J∗λ(x)J∗λ(y)

εtn,t(J∗λ)

(because PλQλ = JλJ
∗
λ)

=
∑
λ

tn(λ)(qtn−1)λJ
∗
λ(x, y)

= 1Φ0(qtn−1;x, y; q, t).

Then we have

Conjecture (C1) ⇐⇒ Π′′(x, y; q, t) = 1Φ0(qtn−1;x, y; q, t),(2.4)
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From (2.4) and (1.11) we obtain (always assuming (C1)) that

ε
(y)
tn,tΠ

′′(x, y; q, t) = 1Φ0(qtn−1;x; q, t)

=
∏
i

(qtn−1xi; q)∞
(xi, q)∞

by (2.2)

=
∏
i

(xi; q)
−1
k(n−1)+1

if t = qk:

Conjecture (C1) ⇐⇒ ε
(y)
tn,t Π′′(x, y; q, t) =

n∏
i=1

(qtn−1xi; q)∞
(xi; q)∞

(2.5)
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3. Selberg integrals

Set t = qk provisionally, where k is a positive integer. Define

(3.1) Wa,b(x; q, t) =

n∏
i=1

xa−1i (qxi; q)b−1 ·
∏

1≤i<j≤n

k−1∏
r=0

(xi − qrxj)(xi − q−rxj)

Let Cn denote the unit cube [0, 1]n and define

(3.2) Ia,b(f) =

∫
Cn

f(x)Wa,b(x)dqx

(3.3) Ja,b(f) = Ia,b(f)/Ia,b(1).[
The multiple q-integral is defined as follows: if f is a function on Cn, then

(3.4)

∫
Cn

f(x)dq(x) = (1− q)n
∑
α∈Nn

q|α|f(qα1 , . . . , qαn).

If f vanishes whenever some xi is equal to 1, then∫
Cn

f(x)dqx = (1− q)n
∑
α∈Nn

qn+|α|f(qα1+1, . . . , qαn+1),

i.e.,

(3.5)

∫
Cn

f(x)dqx = qn
∫
Cn

f(qx)dqx.
]

Conjecture (C2). Ja,b(Pλ) = εu,t(Pλ)εtn,t(Pλ)/εv,t(Pλ)

where u = qatn−1, v = qa+bt2n−2.

(t = qk : u = qa
′
, v = qa

′+b′ , a′ = a+ k(n− 1), b′ = b+ k(n− 1))

Equivalently, by (1.6), (C2) ⇐⇒

(C2′) Ja,b(Pλ) =
(qatn−1)λ

(qa+bt2n−2)λ
εtn,t(Pλ).

Conjecture (C2) implies

(3.6) Ia,b(1)−1
∫
Cn

rΦs(a; b;x, y)Wa.b(x)dqx = r+1Φs+1(a, u; b, v; y),

where as above u = qatn−1, v = qa+bt2n−2.

Proof. We have

Ia,b(1)−1
∫
Cn

J∗λ(x, y)Wa,b(x)dqx =
Ja,b(J

∗
λ(x))J∗λ(y)

εtn,t(J∗λ)

=
(u)λ
(v)λ

J∗λ(y) by (C2′).

�
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Thus integration against Wa,b(x; q, t) raises both indices by 1.
We can rewrite the Selberg kernel Wa,b in terms of ∆(x; q, t):–
We have

k−1∏
r=0

(xi − qrxj)(xi − q−rxj) = (−1)kq−k(k−1)/2(xixj)
k(xix

−1
j ; q)k(x−1i xj ; q)k

and therefore

(3.7) Wa,b(x; q, t) = (−1)αq−β
n∏
i=1

x
a+k(n−1)−1
j (qxi; q)b−1∆(x; q, t),

where α = k
(
n
2

)
, β =

(
k
2

)(
n
2

)
.

So if we define

(3.8) W̃a,b(x; q, t) =

n∏
i=1

xa−1i (qxi; q)b−1∆(x; q, t)

and

(3.9) Ĩa,b(f) =

∫
Cn

f(x)W̃a,b(x)dqx,

(3.10) J̃a,b(f) = Ĩa,b(f)/Ĩa,b(1),

we have

(3.11) Ĩa,b(f) = (−1)αq−βIa−k(n−1),b(f)

(3.12) J̃a,b(f) = Ja−k(n−1),b(f)

so that (C2) now takes the form

(C2′′) J̃a,b(Pλ) =
(qa)λ

(qa+b tn−1)λ
εtn,t(Pλ).

The value of Ia,b(1) is in fact

(3.13) Ia,b(1) = n!qγ
n∏
i=1

Γq(ik)Γq(a+ (r − i)k)Γq(b+ (r − i)k)

Γq(k)Γq(a+ b+ (2r − i− 1)k)
,

where γ = ka
(
n
2

)
+ 2k2

(
n
3

)
.

If we define

(3.14) Γq,n(a′) =

n∏
i=1

Γq(a
′ − k(i− 1))

then (3.13) takes the form

(3.13′) Ia,b(1) = n!qγ
Γq,n(nk)

Γq(k)n
· Γq,n(a′)Γq,n(b′)

Γq,n(a′ + b′)
,

where a′ = a+ k(n− 1), b′ = b+ k(n− 1).
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4. Gauss summation for 2Φ1

2Φ1(a1, a2; b; c, ct−1, . . . , ct1−n; q, t) =

n∏
i=1

(a−11 bt1−i; q)∞(a−12 bt1−i; q)∞

(bt1−i; q)∞(a−11 a−12 bt1−i; q)∞
(4.1) (

=
Γn,q(β − α1)Γn,q(β − α2)

Γn,q(β)Γn,q(β − α1 − α2)

)
,

where c = b/(a1a2).

Proof. From (3.6) we have

2Φ1(a1, a2; b; y; q, t) = Iα,β(1)−1
∫
Cn

1Φ0(a2;x, y)Wα,β(x)dqx

where a1 = qαtn−1, b = qα+βt2n−2 and the effect of replacing yi by ct1−i replaces 1Φ0(a2;x, y) by

1Φ0(a2; ct1−nx) =
∏
i

(a2ct
1−nxi; q)∞

/
(ct1−nxi; q)∞.

Hence the integral becomes∫
Cn

n∏
i=1

xα−1i ·
n∏
i=1

(qxi, q)∞
(qβxi, q)∞

· (a2ct
1−nxi; q)∞

(ct1−nxi; q)∞

∏
i<j

k−1∏
r=0

( )( )dqx

Now a2ct
1−n = ba−11 t1−n = qβ , and ct1−n = a−12 qβ = qγ say.

So finally we have

2Φ1(a1, a2; b; (ct1−i)1≤i≤n; q, t) =
Iα,γ(1)

Iα,β(1)

=
Γq,n(α′)Γq,n(γ′)

Γq,n(α′ + γ′)
· Γq,n(α′ + β′)

Γq,n(α′)Γq,n(β′)

by (3.13′), where α′ = α+ k(n− 1), β′ = β + k(n− 1), γ′ = γ + k(n− 1) so that

qα
′

= a1, q
β′ = b/a1, q

γ′ = a−12 qβ
′

= c = b/a1a2, q
α′+γ′ = b/a2.

Hence we obtain the formula (4.1).
�

Additional observation.

Γn,q(a) =

n∏
i=1

Γq(a− k(i− 1))

=

n∏
i=1

(q; q)∞
(qa−k(i−1); q)∞

· (1− q)−a+k(i−1)

q–Saalschutz should be

3Φ2(a; b; (qtn−i)1≤i≤n; q, t) = . . . ,

where some ai = q−N and a1a2a3t
n−1q = b1b2.

This will ⇒ Gauss as N →∞.
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5. Laplace transform

The q–analogue of ex is ∑ xn

(q; q)n
= (x; q)−1∞

and so the analogue of e−x is (x; q)∞. Let b → ∞ in Conjecture (C2), then v = qa+bt2n−2 → 0 and so we
have

(5.1)

∫
Cn

Pλ(x; q, t)

n∏
i=1

xa−1i (qxi; q)∞
∏
i<j

k−1∏
r=0

(xi − qrxj)(xi − q−rxj)dqx = Ia,∞(1)(q
atn−1)λ · εtn,t(Pλ).

Since Γq(b) = (q; q)b
/

(1− q)b−1, it follows that

lim
b→∞

Γq(b+ (n− 1)k)

Γq(a+ b+ (2n− i− 1)k)
= (1− q)a+(n−1)k

and hence from (3.13) that

Ia,∞(1) = n!qγ
n∏
i=1

Γq(ik)Γq(a+ (n− i)k)

Γq(k)
· (1− q)na+n(n−1)k.

In the product of gammas the exponent of (1− q)is

n(k − 1)−
n∑
i=1

(
(ik − 1) + a+ (n− i)k − 1

)
= nk − n− n(nk + a− 2)

= −(na+ n(n− 1)k) + n

so the total exponent is n. So we obtain

(5.2) Ia,∞(1) = n!qγ(1− q)n
n∏
i=1

(q, q)∞(qk; q)∞
(qik; q)∞(qa+(n−i)k; q)∞

.

From (5.1) it follows that

(5.3) Iα,∞(1)−1
∫
Cn

rΦs(a, b;x, y)Wa,∞(x)dqx = r+1Φs(a, q
αtn−1; b; y),

raising the r–index by 1.
In particular, assuming (C1) we have by (2.3) and (2.4)

I1,∞(1)−1
∫
Cn

Π(x, y; q, t)W1,∞(x)dqx = 2Φ0(tn, qtn−1; y)

= Ik,∞(1)−1
∫
Cn

Π′′(x, y; q, t)Wk,∞(x)dqx

and ∫
Cn

Π(x, y; q, t)W1,∞(x)dqx =

∫
Cn

∏
i,j

(xiyj ; q)∞
(txiyj ; q)∞

∏
i

(qxi; q)∞
∏
i<j

k−1∏
r=0

(xi − q±rxj)dqx.
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Here

Ik,∞(1)

I1,∞(1)
= qk(k−1)(

n
2)

n∏
i=1

(q1+(n−i)k; q)∞
(q(n−i+1)k; q)∞

= qk(k−1)(
n
2) (q; q)∞

(tn; q)∞

n∏
i=1

(1− ti)−1

= qk(k−1)(
n
2) (q; q)n∞

(t; q)n∞
〈1, 1〉′q,t.
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Hahn polynomials in one variable

We shall use the notation

(x+ 1)a =
(x+ a)!

x!
even if a, x are not integers.

Consider the function

(H1) F (a,b)
n (x;N) = Fn(x) = (x− n+ 1)a+n (N + 1− x)b+n,

where n,N are integers such that 0 ≤ n ≤ N . Then

(H2) ∆nFn(x) =

n∑
r=0

(−1)r
(
n

r

)
(x− r + 1)a+n (N + 1− x− n+ r)b+n,

in which each term is of the form (x+ 1)a(N + 1− x)b multiplied by a polynomial in x (and a).

(x− r + 1)a+n
(x+ 1)a

=
(x− r + a+ n)!

(x+ a)!
· x!

(x− r)!
= (x+ a+ 1)n−r(x− r + 1)n−r

and likewise

(N − x+ 1− n+ r)b+n
(N − x+ 1)a

=
(N − x+ r + b)!

(N − x+ b)!
· (N − x)!

(N − x− n+ r)!

= (N − x+ b+ 1)r(N − x− n+ r + 1)r.

Putting x = 0 in (H2), we obtain

∆nFn(0) = (1)a+n(N + 1− n)b+n

= (a+ n)!(N + b)!/(N − n)!.(H3)

We define the nth Hahn polynomial with parameters a, b to be

(H4) G(a,b)
n (x,N) =

(N − n)!

N !
·

∆n
x

(
(x− n+ 1)a+n(N + 1− x)b+n

)
(x+ 1)a(N + 1− x)b

.

It has the following properties:–

Symmetry.(1)

If g(x) = f(N − x) then

∆ng(x) =

n∑
r=0

(−1)r
(
n

r

)
g(x+ n− r)

=

n∑
r=0

(−1)r
(
n

r

)
f(N − x− n+ r)

= (−1)n(∆nf)(N − x− n)

Hence

G(a,b)
n (N − x;N) =

(N − n)!

N !
(−1)n

∆n((N + 1− x)a+n(x− n+ 1)b+n)

(N + 1− x)a(x+ 1)b
i.e.,

(H5) G(a,b)
n (N − x;N) = (−1)nG(b,a)

n (x;N).
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Explicitly, we have

(H6) G(a,b)
n (x;N) =

(
N

n

)−1 ∑
q+r=n

(−1)r

q!r!
(x+ a+ 1)q(y + b+ 1)r(x− r + 1)q(y − q + 1)r,

where y = N − x.

Leading term.(2)

G(a,b)
n (x;N) is a polynomial in x of degree n, with leading coefficient (−1)n

(
N

n

)−1(
a+ b+ 2n

n

)
.(H7)

Proof. . When a, b are positive integers, clearly (x− n+ 1)a+n(N + 1− x)b+n is a polynomial in x of degree

a+ b+ 2n, with leading coefficient (−1)b+n. Hence G
(a,b)
n (x;N) is a polynomial of degree

(a+ b+ 2n)− n− (a+ b) = n

with leading coefficient

(−1)n
(N − n)!

N !
(a+ b+ n+ 1)n = (−1)n

(
N

n

)−1(
a+ b+ 2n

n

)
.

Since this is true whenever a, b ∈ N, it holds generally. �

Values of G(a,b)
n (x;N) at x = 0 and x = N.(3)

From (H3) we have

G(a,b)
n (0;N) =

(N − n)!

N !
· (a+ n)!

(N − n)!
· N !

a!
=

(a+ n)!

a!
,

i.e.,

(H8) G(a,b)
n (0;N) = (a+ 1)n

and hence by symmetry

(H9) G(a,b)
n (N ;N) = (−1)n(b+ 1)n.

Orthogonality(4)

Lemma. (“integration by parts”) For any two functions f, g, we have

N∑
x=0

(∆f)(x)g(x) +

N∑
x=0

f(x+ 1)(∆g)(x) = [fg]N+1
0 .
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