The book references are to do Carmo, *Differential Geometry of Curves and Surfaces*. (The numbers for the assigned problems are the same in both editions of the book.)

Due: Thursday, Apr 2, on Gradescope.\(^1\)

Exercise 1. Show that at a hyperbolic point of a regular surface, the principal directions bisect the asymptotic directions.

Exercise 2. Let \(S \) be a regular surface, \(p \in S \).

1. Show that the sum of the normal curvatures for any pair of orthogonal directions at \(p \) is constant.
2. Show that if the mean curvature at \(p \) is zero, and \(p \) is not a planar point (that is, \(dN_p \neq 0 \)), then \(p \) has two orthogonal asymptotic directions.

Exercise 3. A curve \(C \) is called a *line of curvature* of a regular surface \(S \) if each tangent vector of \(C \) is a principal direction of \(S \). Suppose two regular surfaces \(S_1, S_2 \) intersect in a regular curve \(C \), and the angle between the normal vectors of \(S_1 \) and \(S_2 \) is \(\theta(p) \), \(p \in C \). Assume that \(C \) is a line of curvature of \(S_1 \). Show that \(C \) is a line of curvature of \(S_2 \) if and only if \(\theta(p) \) is constant.

Exercise 4.
1. Let \(R > 0 \). Suppose \(\alpha : I \to \mathbb{R}^3 \) is a regular parameterized curve in \(\mathbb{R}^3 \) with the property that \(\|\alpha(s)\| \leq R \) and \(\|\alpha(s_0)\| = R \). Show that the curvature of \(\alpha \) at \(s_0 \) satisfies the inequality \(k(s_0) \geq 1/R \).
2. Let \(S \) be a compact (that is, closed and bounded) regular surface. Show that there exists a point \(p \in S \) with positive Gauss curvature.

Exercise 5. Let \(I \subset \mathbb{R} \) be an open interval, \(\alpha : I \to \mathbb{R}^3 \) a regular parameterized curve, and \(\beta : I \to \mathbb{R}^3 \) a smooth function with \(\beta \neq 0 \). We define a parameterized surface by
\[
x(u,v) = \alpha(u) + v\beta(u), \quad (u,v) \in I \times \mathbb{R}.
\]
This is called a *ruled surface*, with *rulings* \(\beta \) and *directrix* \(\alpha \). (An example is a cylinder, with \(\alpha \) a circle and \(\beta \) a constant vector.) Show that a regular ruled surface has Gauss curvature \(K \leq 0 \).

Exercise 6. Chapter 3–3, Problem 13.

\(^{1}\)See the course website, https://math.mit.edu/~phintz/18.950-S20/, for homework policies.