Theorem (Local Gauss-Bonet) \(\bar{x}: U \to S \) orthogonal parameterization, \(S \) oriented. \(R \subset S \) simple region,

\(\bar{x}: [0,1] \to S \) simple, closed, piecewise regular, arc-length parameterized curve,

\(\bar{x}(0,1) = \partial R \), positively oriented. Let \(\bar{x}(s_0), \ldots, \bar{x}(s_k) \) be the vertices of \(\partial R \),

and \(\theta_0, \ldots, \theta_k \) the external angles. Then \((s_k + 1 = 1) \)

\[
\sum_{i=0}^{k} \int_{s_i}^{s_{i+1}} k_g(s) \, ds + \int_{\partial R} K \, ds + \frac{k}{2} \sum_{i=0}^{k} \theta_i = 2\pi.
\]

Proof: Write \(\bar{x}(s) = \bar{x}(u(s), v(s)) \). Recall: \(k_g(s) = \left[\frac{D\bar{x}'}{ds} \right]' \left(= \left< \frac{D\bar{x}'}{ds}, N \times \bar{x}'(s) \right> \right) \)

\[
= \frac{1}{2\sqrt{EG}} (E_u v' - E_v u') + \phi_i', \quad s \in [s_i, s_{i+1}].
\]

\(\phi_i \) = angle from \(\bar{x}_u \) to \(\bar{x}'(s) \) \(\Rightarrow \sum_{i=0}^{k} \int_{s_i}^{s_{i+1}} k_g(s) \, ds = \frac{k}{2} \sum_{i=0}^{k} \int_{s_i}^{s_{i+1}} \frac{1}{2\sqrt{EG}} (-E_v u' + E_u v') \, ds + \sum_{i=0}^{k} \left(\phi_i(s_{i+1}) - \phi_i(s_i) \right) \)

Recall Green's thm: \(\int_{\partial R} F \, dx + G \, dy = \iint_{R} \left(G_x - F_y \right) \, dx \, dy \)

\[
\Rightarrow \int_{\partial R} \frac{1}{2\sqrt{EG}} \left(-E_v \frac{du}{ds} + E_u \frac{dv}{ds} \right) \, ds = \iint_{R} \frac{1}{2\sqrt{EG}} \left(-E_v du + E_u dv \right) = \iint_{R} \left[\left(\frac{G_u}{2\sqrt{EG}} \right)_u + \left(\frac{G_v}{2\sqrt{EG}} \right)_v \right] \, du \, dv
\]

\[
= -\iint_{\bar{x}'(R)} K \sqrt{EG} \, du \, dv = -\iint_{\bar{x}'(R)} K \sqrt{EG} + 2 \, du \, dv = -\iint_{R} K \, ds
\]

Plug in: \(\sum_{i=0}^{k} \int_{s_i}^{s_{i+1}} k_g(s) \, ds + \int_{\partial R} K \, ds = \frac{k}{2} \left(\phi_i(s_{i+1}) - \phi_i(s_i) \right) = 2\pi - \sum_{i=0}^{k} \theta_i \) (Thm. of turning tangents) \(\square \)
Ex. let \(\bar{x} : [0, l] \to \mathbb{R} \) parameterize \(\mathcal{D} \), \(R = \) simple region, as above. Let \(\bar{p} = \bar{x}(0) = \bar{x}(l) \), \(\omega_0 \in T_p \mathcal{D} \).

Let \(\omega(s) \) = parallel transport of \(\omega(0) = \omega_0 \) along \(\bar{x} \). Let's assume \(\bar{x} \) is regular.

Then \(0 = \int_0^l \left[\frac{d\omega}{ds} \right] ds = \int_0^l \frac{1}{2iE_0} \left(C_n \omega'(s) - E_v \omega'(s) \right) ds + \int_0^l \varphi'(s) ds, \)

\(\varphi(s) = \) angle from \(\bar{x}_t \) to \(\omega(\bar{x}) \). This \(\pi = \int \int_R K \, ds + \int_0^l \varphi'(s) \, ds \)

\(\Rightarrow \varphi(l) - \varphi(0) = \int \int_R K \, ds \) how much \(\omega \) turns

Corollary \(K(p) = \lim \frac{\varphi(R) - \varphi(0)}{\text{area}(R)} \). (E.g. take \(R = \bar{x}(\varepsilon\text{-ball around } \bar{x}'(p)) \), \(\varepsilon \to 0 \).

For global Gauss-Bonnet, need some topological facts:

Def. A triangle is a simple region with three vertices and external angles \(\Theta_i \neq 0 \).

Def. A connected region \(R \) is regular if \(R \) is compact and its boundary \(\partial R \) is a finite union of simple closed curves which do not intersect.

Def. A triangulation of a regular region \(R \subset S \) is a finite family

\(J = \{T_1, \ldots, T_n\} \) of triangles \(T_i \subset S \) s.t.
(i) \(\bigcup_{i=1}^{n} T_i = \mathbb{R} \), (ii) If \(T_i \cap T_j \neq \emptyset, i \neq j \), then \(T_i \cap T_j \) is either a common edge or a common vertex of \(T_i \) and \(T_j \).

Given a triangulation \(T \) of \(\mathbb{R} \), let \(F, E, V \) denote the number of triangles (\(F \), "faces"), edges (\(E \), counted once), vertices (\(V \), counted once). \(\chi(\mathbb{R}) := F - E + V \) is called the Euler characteristic of \(\mathbb{R} \).

Facts: (i) Every regular domain admits a triangulation.

(ii) \(\chi(\mathbb{R}) \) is independent of the triangulation.

(iii) Let \(S \) be an oriented regular surface covered by coordinate charts \(\tilde{x}_i : U_i \to S \) compatible with the orientation \(S \). Let \(R \subset S \) be a regular region. Then there exists a triangulation \(T \) of \(R \) s.t. every \(T \in T \) is contained in a single chart \(\tilde{x}_i(U_i) \). Moreover, if the boundary of each \(T \) is oriented positively, then adjacent triangles determine along their common edge opposite orientations.
EX. (1) \(\begin{align*} F = 1, \ E = 3, \ V = 3 \implies \chi(R) = 1. \end{align*} \)

(2) \(\chi(R) = 1. \)

(3) \(\chi(\Delta) = 0. \)

(4) \(\n \text{ holes } \implies \chi = 1-n. \)

(5) Regard a compact surface as a regular region with empty boundary. \(S^2: \)
\[F = 8, \ E = 12, \ V = 6 \implies \chi(S^2) = 2. \]

(6) Let \(S = \text{torus with g holes} = \text{genus g surface (compact)} \)
\[\implies \chi(S) = 2 - 2g. \]
\[\chi(\bigcirc) = 0. \]

Example (6) (and (5)) gives all regular compact surfaces up to homeomorphism. (orientable, connected.) If \(S \) is compact, \(\chi(S) > 0 \implies S \simeq \text{sphere.} \)
Global Gauss-Bonnet. Let $R \subset S$ be a regular region inside of an oriented surface C. Denote by C_1, \ldots, C_p the closed, simple, positively oriented, piecewise regular curves comprising ∂R, and denote by $\Theta_1, \ldots, \Theta_q$ the collection of exterior angles of the C_i. Then

$$\sum_{i=1}^{p} \int_{C_i} \log \Theta \, ds + \iint_{R} K \, d\sigma + \sum_{j=1}^{q} \Theta_j = 2\pi \chi(R),$$

(sum of integrals, arc-length as variable,)
(over the regular arcs of C_i)

Proof. From local Gauss-Bonnet + counting.

Cor. (Improved "local" Gauss-Bonnet.) If $R \subset S$ is a simple region ($\Rightarrow \chi(R) = 1$), then

$$\sum_{i=0}^{k} \int_{s_i} \log \Theta \, ds + \iint_{R} K \, d\sigma + \sum_{i=0}^{k} \Theta_i = 2\pi.$$ \quad \text{genus} = \# holes

Cor. Let S be orientable compact surface. Then $\iint_{S} K \, d\sigma = 2\pi \chi(S) = 2\pi (2 - 2g).$ \quad \text{genus} \geq 0

$$\int_{T_2} K \, d\sigma = 0.$$
Applications. 1) S = connected, compact, \(k > 0 \) \(\Rightarrow \) S is homeomorphic to a sphere.

Proof. \(\int_S k \, d\sigma > 0 \Rightarrow \chi(S) > 0 \Rightarrow S \cong \mathbb{S}^2. \quad \square \)

2) S = connected, orientable, compact, \(k > 0 \). \(\gamma_1, \gamma_2 \) = two distinct simple closed geodesics

\(\Rightarrow \gamma_1 \cap \gamma_2 \neq \emptyset \).

Proof. S is homeomorphic to a sphere.

If \(\gamma_1 \cap \gamma_2 = \emptyset \),
then \(\gamma_1 \cup \gamma_2 = \partial R \) for a region R
with \(\chi(R) = 0 \). By Gauss-Bonnet,
\(2\pi \chi(R) = \int_R k \, d\sigma > 0 \). \(\square \)
Let \(\mathbf{x} : I \to \mathbb{R}^3 \) be a closed, regular, parameterized curve with everywhere nonzero curvature.

Assume the curve \(\hat{n}(s) \) of normal vectors is simple. Then \(\hat{n}(I) = S^2 \) subdivides \(S^2 \) into two regions of equal area (2π).

Pf: WLOG \(\mathbf{x}(s) \) is parameterized by arclength.

Let \(\hat{s} = \text{arclength of } \hat{n}(s) \); write \(\cdot \) for \(\frac{d}{ds} \), \(\cdot' = \frac{d}{ds} \).

Geodesic curvature of \(\hat{n}(I) \) is \(\overline{k}_g = \langle \hat{n}'', \hat{n} \times \hat{n} \rangle \).

Have \(\hat{n}' = \frac{d\hat{n}}{ds} = \frac{d\hat{n}}{ds} \frac{ds}{d\hat{s}} = (-k\hat{t} - t\hat{b}) \frac{ds}{d\hat{s}} \),

\[
\hat{n}'' = (-k\hat{t} - t\hat{b}) \left(\frac{d^2s}{d\hat{s}^2} \right) + (-k'\hat{t} - t'\hat{b}) \left(\frac{ds}{d\hat{s}} \right)^2
- (k^2 + t^2) \hat{n} \left(\frac{ds}{d\hat{s}} \right)^2,
\]

\[
1 = ||\hat{n}'||^2 = \left(\frac{ds}{d\hat{s}} \right)^2 \quad ||\hat{n}''||^2 = \left(\frac{ds}{d\hat{s}} \right)^2 (k^2 + t^2) \implies \left(\frac{ds}{d\hat{s}} \right)^2 = \frac{1}{k^2 + t^2}.
\]

\[
\overline{k}_g = \frac{ds}{d\hat{s}} \langle \hat{n}'', \hat{n} \times \hat{n} \rangle = \left(\frac{ds}{d\hat{s}} \right)^3 (Tk' - t'k) = \frac{ds}{d\hat{s}} \frac{tk' - t'k}{t^2 + k^2}
= -\frac{ds}{d\hat{s}} \frac{d}{d\hat{s}} \left(\arctan \left(\frac{t}{k} \right) \right) = -\frac{d}{d\hat{s}} \left(\arctan \left(\frac{t}{k} \right) \right).
\]

Apply Gauss-Bonnet: \(2\pi = 2\pi \chi(R) = \int_{\partial R} k \, d\sigma + \int_{\partial R} \overline{k}_g \, d\sigma = \int_{\partial R} k \, d\sigma = \text{area}(R). \)