The sign of the geodesic curvature of a curve $C \subset S$ depends on the orientation of S and the orientation of C.

Def. Let w be a smooth field of unit tangent vectors along $\alpha: I \to S$, S an oriented surface. Then

$$\frac{dw}{dt} \perp w \implies \frac{dw}{dt} \text{ is orthogonal to } N \text{ and to } w \quad (\langle \frac{dw}{dt}, w \rangle = 0).$$

(0)$\frac{d}{dt} (\|w(t)\|^2)$

Define $\left[\frac{dw}{dt} \right] := \langle \frac{dw}{dt}, N \times w(t) \rangle$ is the algebraic value of the covariant derivative.

(=) $\frac{dw}{dt} = \left[\frac{dw}{dt} \right] \cdot (N \times w(t)).$

Ex. $\dot{x} = \text{arc length parameterized curve on } S \implies k_g(s) = \left[\frac{d\dot{x}}{ds} \right]$.

$N \times w(t)$
Lemma. Let \(w_1 \) and \(w_2 \) be two smooth vector fields along \(\vec{x} : I \to S \) with \(\| w_1(t) \| = \| w_2(t) \| = 1 \) \(\forall t \in I \).

Then \(\begin{bmatrix} \frac{Dw_2}{dt} \\ \frac{Dw_1}{dt} \end{bmatrix} = \psi'(t) \) where \(\psi(t) = \vec{x}(w_1(t), w_2(t)) \).

Proof. \(w_1^* = N \times w_1, \ w_2^* = N \times w_2 \). Then
\[
\begin{align*}
 w_2(t) &= (\cos \psi(t)) w_1(t) + (\sin \psi(t)) w_1^*(t) \\
 w_2^*(t) &= - (\sin \psi(t)) w_1(t) + (\cos \psi(t)) w_1^*(t).
\end{align*}
\]

Compute \(w_2'(t) = -\psi' \sin \psi \ w_1 + \psi' \cos \psi \ w_1^* \\
+ \cos \psi \ w_1^* + \sin \psi \ (w_1^*)' = -\left< w_1^*, w_1^* \right> \\
\Rightarrow \begin{bmatrix} \frac{Dw_2}{dt} \\ \frac{Dw_1}{dt} \end{bmatrix} = \left< w_2', w_1^* \right> \\
= \psi' + \left< w_1', w_1^* \right> = \psi' + \left[\frac{Dw_1}{dt} \right].
\]

In particular, if \(w_1 \) is parallel along \(\vec{x}(t) \), then \(\frac{Dw_2}{dt} = \psi'(t) = \text{rate of change of } \vec{x}(w_1, w_2) \).

E.g. \(w_1 = \vec{y}'(s) \), \(\vec{y} \) = unit speed geodesic.
Prop. Let \(\vec{x}(u,v) \) be an orthogonal parameterization of an oriented surface \(S \) (so that \(N = \frac{\vec{x}_u \times \vec{x}_v}{|\vec{x}_u \times \vec{x}_v|} \)), and let \(\mathbf{w}(t) \) be a smooth unit vector field along \(\vec{x}(u(t), v(t)) \). Then

\[
\left[\frac{\mathbf{w}}{dt} \right] = \frac{1}{2 \text{EG}} \left(G_u \mathbf{v} - E_v \mathbf{u} \right)
\]

where \(\varphi = \text{angle between } \vec{x}_u \text{ and } \mathbf{w} \).

Proof. \(e_1 = \frac{\vec{x}_u}{\sqrt{E}} \), \(e_2 = \frac{\vec{x}_v}{\sqrt{G}} \) are orthonormal tangent vectors to \(S \), and \(e_1 \times e_2 = N \). \(\Rightarrow \) \[\left[\frac{\mathbf{w}}{dt} \right] - \left[\frac{de_1}{dt} \right] = \varphi' \] and \(\left[\frac{de_2}{dt} \right] = \left\langle \frac{de_2}{dt}, N \times e_1 \right\rangle = \left\langle \frac{de_1}{dt}, e_2 \right\rangle. \]

Since \(T = 0 \), \(\left\langle \mathbf{x}_{uu}, \mathbf{x}_u \right\rangle = 2_u \left\langle \mathbf{x}_u, \mathbf{x}_v \right\rangle - \left\langle \mathbf{x}_u, \mathbf{x}_{uv} \right\rangle = E_u - \frac{1}{2} E_v \mathbf{x}_u \mathbf{x}_v = -\frac{1}{2} E_v. \)

\[\Rightarrow \left\langle (e_1)_u, e_2 \right\rangle = \left\langle \left(\frac{\mathbf{x}_u}{\sqrt{E}}, \frac{\mathbf{x}_v}{\sqrt{G}} \right) \right\rangle = -\frac{1}{2 \text{EG}} E_v. \]

Likewise, \(\left\langle (e_1)_v, e_2 \right\rangle = \frac{1}{2 \text{EG}} G_u. \)

Example. If \(\mathbf{w}(t) = \mathbf{x}(u(t), v(t)) \), \(\mathbf{x} \) orthogonal parameterization, then \(w = \text{unit vector field along } \mathbf{x} \) is parallel iff

\[\varphi'(t) = -\frac{1}{2 \text{EG}} (G_u \mathbf{v} - E_v \mathbf{u}) = \mathbf{B}(t), \] \[\varphi(t) = \gamma(x_u, w). \]

Therefore, \(\varphi(t) = \varphi(t_0) + \int_{t_0}^t B(s) \, ds, \) \(\varphi(t_0) = \gamma(x_u(u(t_0), v(t_0)), w(t_0)). \)
IV. 4 Gauss–Bonnet Theorem. \(S \) = regular, oriented surface.

Goal:

\[\alpha + \beta + \gamma = \pi + \int T K \, ds. \]

Will consider a more situation: let \(\vec{z} : [0, l] \rightarrow S \) be a parameterized curve which

- is simple: \(\vec{z}(t) \neq \vec{z}(s), \ 0 \leq t, s \leq l, \ t \neq s, \)

- is closed: \(\vec{z}(l) = \vec{z}(0), \)

- is piecewise regular: \(\vec{z} \big|_{[t_i, t_{i+1}]} \) is regular for some partition \(0 = t_0 < t_1 < \cdots < t_k = t_{k+1} = l. \)

At the vertices \(\vec{z}(t_i), \) define \(\Theta_i = \) (oriented) exterior angle \(\in [-\pi, \pi]. \)

Intuition for \(\Theta_i \) (and their signs):

- Sharp turn:
 - geodesic curvature is positive.
Suppose \(\vec{z}(t) \in \mathbb{R}^2 \) for some parameterization \(\vec{z} : U \subset \mathbb{R}^2 \rightarrow \mathbb{R}^2 \).

Let \(\psi_i : [0, 2\pi] \rightarrow \mathbb{R} \) denote the angle from \(\vec{z}_u \) to \(\vec{z}(t) \) (chosen to be smooth in \(t \)).

Theorem of Turning Tangents. \[
\sum_{i=0}^{k} (\psi_i(t_{i+1}) - \psi_i(t_i)) + \sum_{i=0}^{k} \theta_i = \pm 2\pi, \quad \text{where } \pm \text{ depends on the orientation of } \vec{z}.
\]

(Note: \[
\sum_{i=0}^{k} (\psi_i(t_{i+1}) - \psi_i(t_i)) = \sum_{i=0}^{k} (\psi_i(t_{i+1}) - \psi_{i+1}(t_{i+1})) + (\psi_k(t_{k+1}) - \psi_0(t_0))
\]

indef. of the choice of \(\vec{z}_u \).)

Rem. Compare with regular planar curve \(\vec{z}(s) \), \(\vec{z}(s) = (\cos \psi(s), \sin \psi(s)) \), and \[\int_0^l \psi'(s) \, ds = 2\pi I, \quad I \in \mathbb{Z} .\]

If in the Theorem, \(\vec{z} \) has no vertices, \[\pm 2\pi = \sum_{i=0}^{k} (\psi_i(t_{i+1}) - \psi_i(t_i)) = \sum_{i=0}^{k} \int_{t_i}^{t_{i+1}} \psi_i'(t) \, dt
\]

\[= \int_0^l \psi'(s) \, ds.
\]

So \(I = \pm 1 \); this comes from \(\vec{z} \) being a simple curve.
Orientation. Let \(R \subset S \) be the union of a connected open subset of \(S \) with its boundary.

\(R \) is called simple if \(R \) is homeomorphic to a disk, and if the boundary \(\partial R \) of \(R \) is the image of a simple, closed, piecewise regular, parameterized curve \(\bar{x}: I \rightarrow S, \| \bar{x}'(t) \| = 1. \)

\(\bar{x} \) is positively oriented if for each \(t \in I = [0, L] \), there exists an orthogonal basis \(\{ \bar{x}'(t), w(t) \} \) of \(T_{\bar{x}(t)}S \) s.t.:

\[
\begin{align*}
\bar{x}'(t) \times w(t) &= N \\
w(t) &\text{ points towards the region } R.
\end{align*}
\]

(i.e. \(\bar{x} \) rotates ccw around \(R \)).

Surface integrals. Let \(R \subset \bar{x}(U) \subset S \) be a region contained in a coordinate chart on \(S \); let \(f: S \rightarrow R \) be a smooth function. Then

\[
\int_R f \, ds := \int_{\bar{x}^{-1}(R)} f(\bar{x}(u,v)) \sqrt{EG-F^2} \, du \, dv.
\]

(Cf. area: \(\text{area}(R) = \int_R 1 \, ds \).) This is independent of the choice of local coordinates.
Theorem (Local Gauss-Bonnet Theorem.) Let \(\vec{x}: U \to S\) be an orthogonal parameterization of \(S\)-oriented surface. Let \(R = \vec{x}(U) \) be a simple region, with positively oriented boundary curve \(\vec{x}: [\eta, \zeta] \to S\).

Let \(\vec{x}(s_0), \ldots, \vec{x}(s_k) \) and \(\theta_0, \ldots, \theta_k \) be the vertices and exterior angles; \(0 = s_0 < s_1 < \cdots < s_k < s_{k+1} = \zeta \).

Then
\[
\sum_{i=0}^{k} \int_{S_i} k_g(s) \, ds + \sum_{i=0}^{k} \theta_i + \int_{R} K \, ds = 2\pi.
\]

Ex. \(R \) = geodesic triangle:

Gauss-Bonnet

\[
\Rightarrow \sum_{i=0}^{k} \theta_i + \int_{R} K \, ds = 2\pi
\]

\[
\sum_{i=0}^{k} (\pi - \psi_i) = 3\pi - \sum_{i=0}^{k} \psi_i
\]

\[
\Rightarrow \pi + \int_{R} K \, ds = \sum_{i=0}^{k} \psi_i.
\]