EXERCISES AROUND GIRAUD’S AXIOMS

PETER J. Haine

Exercise 1.
(a) Prove that the \(\omega \)-compact objects of \(\text{Set} \) are the finite sets. Use this to prove that \(\text{Set} \) is \(\omega \)-presentable.
(b) Let \(C \) be a small category. Prove that the functor category \(\text{Set}^C \) is \(\omega \)-presentable.
(c) Let \(D \) be a \(\kappa \)-presentable category and \(i : D' \hookrightarrow D \) a localization of \(D \) with localization functor \(L : D \to D' \). Prove that if \(i \) preserves \(\kappa \)-filtered colimits, then \(D' \) is \(\kappa \)-presentable.

Definition. Let \(D \) be a category with finite coproducts, and let \(\emptyset \) denote the initial object of \(D \) (i.e., the empty coproduct). We say that coproducts are disjoint in \(D \) if for any objects \(X, Y \in D \), the square

\[
\begin{array}{ccc}
\emptyset & \longrightarrow & Y \\
\downarrow & & \downarrow \iota_Y \\
X & \longrightarrow & X \sqcup Y
\end{array}
\]

is a pullback square in \(D \).

Exercise 2.
(a) Prove that coproducts in \(\text{Set} \) are disjoint
(b) Let \(I \) be a small category and \(D \) a category admitting finite coproducts and \(I \)-shaped colimits. Prove that if coproducts are disjoint in \(D \), then coproducts are disjoint in \(D^I \).
(c) Let \(D \) be a category admitting finite coproducts and \(D' \hookrightarrow D \) a localization of \(D \) with localization functor \(L : D \to D' \). Prove that if coproducts are disjoint in \(D \), then coproducts are disjoint in \(D' \).

Exercise 3. Let \(C \) be a category, and \(F \in \text{PShv}(C) \). Prove that the slice category \(\text{PShv}(C)/F \) is (equivalent to) a presheaf category.

Hint: The category of elements.