EXERCISES ON LIMITS & COLIMITS

PETER J. HAINE

Exercise 1. Prove that pullbacks of epimorphisms in Set are epimorphisms and pushouts of monomorphisms in Set are monomorphisms. Note that these statements cannot be deduced from each other using duality. Now conclude that the same statements hold in Top.

Exercise 2. Let X be a set and $A, B \subset X$. Prove that the square

$$
\begin{array}{ccc}
A \cap B & \rightarrow & A \\
\downarrow & & \downarrow \\
B & \rightarrow & A \cup B
\end{array}
$$

is both a pullback and pushout in Set.

Exercise 3. Let R be a commutative ring. Prove that every R-module can be written as a filtered colimit of its finitely generated submodules.

Exercise 4. Let X be a set. Give a categorical definition of a topology on X as a subposet of the power set of X (regarded as a poset under inclusion) that is stable under certain categorical constructions.

Exercise 5. Let X be a space. Give a categorical description of what it means for a set of open subsets of X to form a basis for the topology on X.

Exercise 6. Let C be a category. Prove that if the identity functor $\text{id}_C : C \rightarrow C$ has a limit, then $\text{lim}_C \text{id}_C$ is an initial object of C.

Definition. Let C be a category and $X \in C$. If the coproduct $X \sqcup X$ exists, the codiagonal or fold morphism is the morphism $\gamma_X : X \sqcup X \rightarrow X$ induced by the identities on X via the universal property of the coproduct.

If the product $X \times X$ exists, the diagonal morphism $\Delta_X : X \rightarrow X \times X$ is defined dually.

Exercise 7. In Set, show that the diagonal $\Delta_X : X \rightarrow X \times X$ is given by $\Delta_X(x) = (x, x)$ for all $x \in X$, so Δ_X embeds X as the diagonal in $X \times X$, hence the name.

The codiagonal $\gamma_X : X \sqcup X \rightarrow X$ is a bit more mysterious. Give a description of γ_X (still in the category Set).

Exercise 8. Let C be a category and $X, Y \in C$. Suppose that the coproducts $X \sqcup X$ and $Y \sqcup Y$ exist, and let $\gamma_X : X \sqcup X \rightarrow X$ and $\gamma_Y : Y \sqcup Y \rightarrow Y$ denote the codiagonals. Show that for any morphism $f : X \rightarrow Y$ we have $f \circ \gamma_X = \gamma_Y \circ (f \sqcup f)$.

What is the dual statement?

Date: January 28, 2018.
Exercise 9. Let C be a category with pullbacks and

$$
\begin{array}{ccc}
X_1 & \longrightarrow & X_0 & \longleftarrow & X_2 \\
\downarrow & & \downarrow & & \downarrow \\
Z_1 & \longrightarrow & Z_0 & \longleftarrow & Z_2 \\
\uparrow & & \uparrow & & \uparrow \\
Y_1 & \longrightarrow & Y_0 & \longleftarrow & Y_2
\end{array}
$$

a commutative diagram in C. Prove that we have a natural isomorphism

$$(X_1 \times_{Z_1} Y_1) \times_{X_0 \times_{Y_0} Z_0} (X_2 \times_{Z_2} Y_2) \cong (X_1 \times_{X_0} X_2) \times_{Z_1 \times_{Z_0} Z_2} (Y_1 \times_{Y_0} Y_2).$$

Definition. Let C be a category with pullbacks and $f: X \rightarrow Y$ a morphism in C. The diagonal of f is the morphism $\Delta_f: X \rightarrow X \times_Y X$ induced via the universal property of the pullback by the square

$$
\begin{array}{ccc}
X & \longrightarrow & X \\
\downarrow & & \downarrow \\
X & \longrightarrow & Y
\end{array}
$$

Remark. Note that $\Delta_{id_X} = \Delta_X$.

Exercise 10 (magic square). Let C be a category and let $f_1: X_1 \rightarrow Y$, $f_2: X_2 \rightarrow Y$, and $g: Y \rightarrow Z$ morphisms in C. Assuming that C has pullbacks, prove that the square

$$
\begin{array}{ccc}
X_1 \times_Y X_2 & \longrightarrow & X_1 \times_Z X_2 \\
\downarrow & & \downarrow \\
Y & \longrightarrow & Y \times_Z Y
\end{array}
$$

is a pullback square in C (where the unlabeled morphisms are the morphisms naturally induced by the universal property of the pullback).

Definition. Let C be a category with pullbacks, $Z \in C$, and $f: X \rightarrow Y$ a morphism in the slice category $C_{/Z}$. The graph morphism of f is the morphism $f: X \rightarrow X \times_Z Y$ induced via the universal property of the pullback by the square

$$
\begin{array}{ccc}
X & \longrightarrow & Y \\
\downarrow & & \downarrow \\
X & \longrightarrow & Z
\end{array}
$$

Exercise 11. Show that if $f: X \rightarrow Y$ is a map of sets, then the graph $\Gamma_f: X \rightarrow X \times Y$ is given by $x \mapsto (x, f(x))$.
Exercise 12. Let C be a category with pullbacks, $Z \in C$, and $f : X \to Y$ a morphism in the slice category $C_{/Z}$. Write $g : Y \to Z$ for the structure morphism. Prove that the square

$$
\begin{array}{ccc}
X & \xrightarrow{f} & X \times_Z Y \\
\downarrow f & & \downarrow f \times_Z id_Y \\
Y & \xrightarrow{\Delta_g} & Y \times_Z Y
\end{array}
$$

is a pullback in C.

Definition. Let C be a category. We say that a collection of morphisms $P \subset \text{Mor}(C)$ is *stable under pullback* if for any pullback square

$$
\begin{array}{ccc}
X \times_Z Y & \xrightarrow{p} & Y \\
\downarrow q & & \downarrow q \\
X & \xrightarrow{p} & Z
\end{array}
$$

in C, if $p \in P$ then $\bar{p} \in P$.

Exercise 13. Let C be a category with pullbacks and $P \subset \text{Mor}(C)$ a collection of morphisms in C stable under composition and pullback. Prove that given any commutative triangle

$$
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow p & & \downarrow g \\
Z &
\end{array}
$$

in C, if $p \in P$ and $\Delta_g \in P$, then $f \in P$.

Definition. A functor $F : C \to D$ is *left cofinal* if for all categories E and diagrams $G : D \to E$, the colimit $\text{colim}_D G$ exists if and only if $\text{colim}_C GF$ exists, in which case the natural morphism

$$
\text{colim}_C GF \to \text{colim}_D G
$$

is an isomorphism.

Dually, $F : C \to D$ is *right cofinal* if $F^{op} : C^{op} \to D^{op}$ is left cofinal.

Remark. The “co” in “cofinal” uses the non-mathematical English prefix meaning “jointly” — there’s no duality involved here.

Exercise 14. Show that equivalences of categories are both left and right cofinal.

Exercise 15. Show that if a category C has a terminal object $*$, then the inclusion $\{ * \} \hookrightarrow C$ of the full subcategory of C spanned by $*$ is left cofinal.

Exercise 16. Let $F : C \to D$ be a functor. Show that F is left cofinal if and only if for all diagrams $G : D \to \text{Set}$ the natural morphism

$$
\text{colim}_C GF \to \text{colim}_D G
$$

is an isomorphism.

Notation. For a positive integer n, write $\Delta_{\leq n}$ for the full subcategory of Δ spanned by those sets of cardinality at most n.
Exercise 17. Show that the inclusion $\Delta_{\leq 2} \hookrightarrow \Delta$ is right cofinal.

Notation. Write $\Delta^{inj}_n \subset \Delta$ for the wide subcategory, i.e., subcategory containing all of the objects, of Δ where the morphisms are injective maps of linearly ordered finite sets. For a positive integer n, write $\Delta^{inj}_{\leq n}$ for the full subcategory of Δ^{inj}_n spanned by those sets of cardinality at most n.

Exercise 18. Show that the inclusion $\Delta^{inj}_{\leq 2} \hookrightarrow \Delta^{inj}$ is right cofinal. Now deduce that the inclusion $\Delta^{inj}_{\leq 2} \hookrightarrow \Delta$ is right cofinal.

Exercise 19. Let C be a category with pullbacks and $f : X \to Y$ a morphism in C. Construct a functor $\tilde{C}(f) : \Delta^\text{op} \to C$ whose value on $[n] = \{0 < \cdots < n\}$ is the $(n + 1)$-fold iterated pullback $X \times_Y \cdots \times_Y X$ (so that the value on $[0]$ is simply X). The simplicial object $\tilde{C}(f)$ is called the Čech nerve of f.

Exercise 20. Let X be a topological space, $U \subset X$ an open set, $\mathcal{U} = \{U_\alpha\}_{\alpha \in A}$ an open cover of U, and \mathcal{F} a presheaf on X. Choose a well-ordering of A (this does not really matter, but is necessary to make the next step well-defined.) Extend the usual "sheaf condition diagram"

$$\prod_{\alpha_0 \in A} \mathcal{F}(U_{\alpha_0}) \longrightarrow \prod_{\alpha_0, \alpha_1 \in A} \mathcal{F}(U_{\alpha_0} \cap U_{\alpha_1})$$

to a diagram $\tilde{C}(U; \mathcal{F}) : \Delta^{inj} \to \text{Set}$ of the form

$$\prod_{\alpha_0 \in A} \mathcal{F}(U_{\alpha_0}) \longrightarrow \prod_{\alpha_0, \alpha_1 \in A} \mathcal{F}(U_{\alpha_0} \cap U_{\alpha_1}) \longrightarrow \prod_{\alpha_0, \alpha_1, \alpha_2 \in A} \mathcal{F}(U_{\alpha_0} \cap U_{\alpha_1} \cap U_{\alpha_2}) \longrightarrow \cdots .$$

Now reformulate the sheaf condition for a presheaf \mathcal{F} in terms of the diagrams $\tilde{C}(U; \mathcal{F})$.