Minimal Taylor Algebras

Zarathustra Brady
Taylor algebras

Definition
\(\mathbb{A} \) is called a *set* if all of its operations are projections. Otherwise, we say \(\mathbb{A} \) is *nontrivial*.
Taylor algebras

Definition
\(\mathbb{A} \) is called a \emph{set} if all of its operations are projections. Otherwise, we say \(\mathbb{A} \) is \emph{nontrivial}.

Definition
An idempotent algebra is \emph{Taylor} if the variety it generates does not contain a two element set.
Definition
\(\mathbb{A} \) is called a *set* if all of its operations are projections. Otherwise, we say \(\mathbb{A} \) is *nontrivial*.

Definition
An idempotent algebra is *Taylor* if the variety it generates does not contain a two element set.

All algebras in this talk will be idempotent, so I won’t mention idempotence further.
Useful facts about Taylor algebras

▶ Theorem (Bulatov and Jeavons)

A finite algebra \mathbb{A} is Taylor iff there is no set in $HS(\mathbb{A})$.

▶ Theorem (Barto and Kozik)

A finite algebra \mathbb{A} is Taylor iff for every number n such that every prime factor of n is greater than $|\mathbb{A}|$, there is an n-ary cyclic term c, i.e. $c(x_1, x_2, \ldots, x_n) \approx c(x_2, \ldots, x_n, x_1)$.

▶ Corollary

A finite algebra is Taylor iff it has a 4-ary term t satisfying the identity $t(x, x, y, z) \approx t(y, z, z, x)$.

Useful facts about Taylor algebras

- **Theorem (Bulatov and Jeavons)**

 A finite algebra \mathbb{A} is Taylor iff there is no set in $HS(\mathbb{A})$.

- **Theorem (Barto and Kozik)**

 A finite algebra \mathbb{A} is Taylor iff for every number n such that every prime factor of n is greater than $|\mathbb{A}|$, there is an n-ary cyclic term c, i.e.

 $$c(x_1, x_2, \ldots, x_n) \approx c(x_2, \ldots, x_n, x_1).$$
Useful facts about Taylor algebras

▶ Theorem (Bulatov and Jeavons)
A finite algebra \mathbb{A} is Taylor iff there is no set in $HS(\mathbb{A})$.

▶ Theorem (Barto and Kozik)
A finite algebra \mathbb{A} is Taylor iff for every number n such that every prime factor of n is greater than $|\mathbb{A}|$, there is an n-ary cyclic term c, i.e.

$$c(x_1, x_2, \ldots, x_n) \approx c(x_2, \ldots, x_n, x_1).$$

▶ Corollary
A finite algebra is Taylor iff it has a 4-ary term t satisfying the identity

$$t(x, x, y, z) \approx t(y, z, z, x).$$
Minimal Taylor algebras

- My interest in Taylor algebras comes from the study of CSPs.
Minimal Taylor algebras

- My interest in Taylor algebras comes from the study of CSPs.
- Larger CSPs \iff smaller clones.

Definition
An algebra is a minimal Taylor algebra if it is Taylor, and has no proper reduct which is Taylor.

Proposition
Every finite Taylor algebra has a reduct which is a minimal Taylor algebra.

Proof.
There are only finitely many 4-ary terms $t(x, x, y, z) \approx t(y, z, z, x)$.

\Box
Minimal Taylor algebras

- My interest in Taylor algebras comes from the study of CSPs.
- Larger CSPs ⇐⇒ smaller clones.
- So it makes sense to study Taylor algebras whose clones are as small as possible.

Definition

An algebra is a minimal Taylor algebra if it is Taylor, and has no proper reduct which is Taylor.

Proposition

Every finite Taylor algebra has a reduct which is a minimal Taylor algebra.

Proof.

There are only finitely many 4-ary terms \(t(x, x, y, z) \approx t(y, z, z, x) \).
Minimal Taylor algebras

- My interest in Taylor algebras comes from the study of CSPs.
- Larger CSPs \iff smaller clones.
- So it makes sense to study Taylor algebras whose clones are as small as possible.

- **Definition**
 An algebra is a *minimal Taylor algebra* if it is Taylor, and has no proper reduct which is Taylor.
Minimal Taylor algebras

- My interest in Taylor algebras comes from the study of CSPs.
- Larger CSPs ⇐⇒ smaller clones.
- So it makes sense to study Taylor algebras whose clones are as small as possible.

Definition
An algebra is a minimal Taylor algebra if it is Taylor, and has no proper reduct which is Taylor.

Proposition
Every finite Taylor algebra has a reduct which is a minimal Taylor algebra.
Minimal Taylor algebras

- My interest in Taylor algebras comes from the study of CSPs.
- Larger CSPs \iff smaller clones.
- So it makes sense to study Taylor algebras whose clones are as small as possible.

- Definition
 An algebra is a *minimal Taylor algebra* if it is Taylor, and has no proper reduct which is Taylor.

- Proposition
 Every finite Taylor algebra has a reduct which is a minimal Taylor algebra.

- Proof.
 There are only finitely many 4-ary terms t which satisfy $t(x, x, y, z) \approx t(y, z, z, x)$.
First hints of a nice theory

Theorem

If \mathbf{A} is a minimal Taylor algebra, $\mathbf{B} \in HSP(\mathbf{A})$, $S \subseteq \mathbf{B}$, and t a term of \mathbf{A} satisfy

1. S is closed under t,
2. (S, t) is a Taylor algebra,

then S is a subalgebra of \mathbf{B}, and is also a minimal Taylor algebra.
First hints of a nice theory

▶ Theorem

If \mathcal{A} is a minimal Taylor algebra, $\mathcal{B} \in HSP(\mathcal{A})$, $S \subseteq \mathcal{B}$, and t a term of \mathcal{A} satisfy

▶ S is closed under t,
▶ (S, t) is a Taylor algebra,

then S is a subalgebra of \mathcal{B}, and is also a minimal Taylor algebra.
First hints of a nice theory

- **Theorem**

 If \(A \) is a minimal Taylor algebra, \(B \in HSP(A) \), \(S \subseteq B \), and \(t \) a term of \(A \) satisfy
 - \(S \) is closed under \(t \),
 - \((S, t)\) is a Taylor algebra,

 then \(S \) is a subalgebra of \(B \), and is also a minimal Taylor algebra.

- Choose \(p \) a prime bigger than \(|A|\) and \(|S|\).
First hints of a nice theory

Theorem

If \(\mathbb{A} \) is a minimal Taylor algebra, \(\mathbb{B} \in HSP(\mathbb{A}) \), \(S \subseteq \mathbb{B} \), and \(t \) a term of \(\mathbb{A} \) satisfy

\(S \) is closed under \(t \),
\((S, t) \) is a Taylor algebra,

then \(S \) is a subalgebra of \(\mathbb{B} \), and is also a minimal Taylor algebra.

Choose \(p \) a prime bigger than \(|\mathbb{A}| \) and \(|S| \).
Choose \(c \) a \(p \)-ary cyclic term of \(\mathbb{A} \), \(u \) a \(p \)-ary cyclic term of \((S, t) \).
First hints of a nice theory

Theorem

If \mathbb{A} is a minimal Taylor algebra, $\mathbb{B} \in HSP(\mathbb{A})$, $S \subseteq \mathbb{B}$, and t a term of \mathbb{A} satisfy

- S is closed under t,
- (S, t) is a Taylor algebra,

then S is a subalgebra of \mathbb{B}, and is also a minimal Taylor algebra.

Choose p a prime bigger than $|\mathbb{A}|$ and $|S|$.

Choose c a p-ary cyclic term of \mathbb{A}, u a p-ary cyclic term of (S, t).

Then

$$f = c(u(x_1, x_2, \ldots, x_p), u(x_2, x_3, \ldots, x_1), \ldots, u(x_p, x_1, \ldots, x_{p-1}))$$

is a cyclic term of \mathbb{A}.

First hints of a nice theory

Theorem
If \mathbb{A} is a minimal Taylor algebra, $\mathbb{B} \in HSP(\mathbb{A})$, $S \subseteq \mathbb{B}$, and t a term of \mathbb{A} satisfy
- S is closed under t,
- (S, t) is a Taylor algebra,
then S is a subalgebra of \mathbb{B}, and is also a minimal Taylor algebra.

Choose p a prime bigger than $|\mathbb{A}|$ and $|S|$.
Choose c a p-ary cyclic term of \mathbb{A}, u a p-ary cyclic term of (S, t).
Then
\[f = c(u(x_1, x_2, ..., x_p), u(x_2, x_3, ..., x_1), ..., u(x_p, x_1, ..., x_{p-1})) \]
is a cyclic term of \mathbb{A}.
Have $f|_S = u|_S$ by idempotence.
A few consequences

- **Proposition**

For \mathbb{A} minimal Taylor, $a, b \in \mathbb{A}$, then $\{a, b\}$ is a semilattice subalgebra of \mathbb{A} with absorbing element b iff

$$\begin{bmatrix} b \\ b \end{bmatrix} \in Sg_{\mathbb{A}^2} \left\{ \begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} b \\ a \end{bmatrix} \right\}.$$
A few consequences

- Proposition

 For \mathbb{A} minimal Taylor, $a, b \in \mathbb{A}$, then $\{a, b\}$ is a semilattice subalgebra of \mathbb{A} with absorbing element b iff

 $$\begin{bmatrix} b \\ b \end{bmatrix} \in Sg_{\mathbb{A}^2} \left\{ \begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} b \\ a \end{bmatrix} \right\}.$$

- Proposition

 For \mathbb{A} minimal Taylor, $a, b \in \mathbb{A}$, then $\{a, b\}$ is a majority subalgebra of \mathbb{A} iff

 $$\begin{bmatrix} a & b \\ b & a \end{bmatrix} \in Sg_{\mathbb{A}^{3\times2}} \left\{ \begin{bmatrix} a & b \\ a & b \end{bmatrix}, \begin{bmatrix} b & a \\ a & b \end{bmatrix}, \begin{bmatrix} a & b \\ b & a \end{bmatrix} \right\}.$$
A few consequences, ctd.

- **Proposition**

 For a minimal Taylor, \(a, b \in A \), then \(\{a, b\} \) is a \(\mathbb{Z}/2^{\text{aff}} \) subalgebra of \(A \) iff

 \[
 \begin{bmatrix}
 b & a \\
 b & a \\
 b & a \\
 \end{bmatrix}
 \in \text{Sg}_{A^{3 \times 2}} \left\{ \begin{bmatrix} a & b \\ a & b \\ b & a \end{bmatrix}, \begin{bmatrix} a & b \\ b & a \\ a & b \end{bmatrix}, \begin{bmatrix} b & a \\ b & a \\ a & b \end{bmatrix} \right\}.
 \]
A few consequences, ctd.

Proposition

For a minimal Taylor, $a, b \in A$, then $\{a, b\}$ is a $\mathbb{Z}/2^{\text{aff}}$ subalgebra of A iff

$$
\begin{bmatrix}
 b & a \\
 b & a \\
 b & a
\end{bmatrix} \in Sg_{A^{3 \times 2}} \left\{ \begin{bmatrix}
 a & b \\
 a & b \\
 b & a
\end{bmatrix}, \begin{bmatrix}
 a & b \\
 b & a \\
 a & b
\end{bmatrix}, \begin{bmatrix}
 b & a \\
 b & a \\
 a & b
\end{bmatrix} \right\}.
$$

If there is an automorphism of A which interchanges a, b, then we only have to consider

$$
Sg_{A^3} \left\{ \begin{bmatrix}
 a \\
 a \\
 b
\end{bmatrix}, \begin{bmatrix}
 a \\
 b \\
 a
\end{bmatrix}, \begin{bmatrix}
 b \\
 a \\
 a
\end{bmatrix} \right\}.
$$
Daisy Chain Terms

- It's difficult to write down explicit examples without nice terms.
Daisy Chain Terms

- It’s difficult to write down explicit examples without nice terms.

- Choose a p-ary cyclic term c.

$\begin{align*}
\forall a < p^2, \quad &\text{can make a ternary term } w(x, y, z) \text{ via:} \\
&\quad w(x, y, z) = c(x, \ldots, x, y, \ldots, y, z, \ldots, z) \\
&\quad \approx \quad w(y, x, x).
\end{align*}$

- Also have $w(x, y, x) = c(x, \ldots, x, y, \ldots, y, x, \ldots, x)$.

Daisy Chain Terms

- It's difficult to write down explicit examples without nice terms.
- Choose a p-ary cyclic term c.
- For any $a < \frac{p}{2}$, can make a ternary term $w(x, y, z)$ via:

\[
w(x, y, z) = c(x, \ldots, x, y, \ldots, y, z, \ldots, z).
\]

\[
\begin{array}{ccc}
\underbrace{x, \ldots, x}_{a} & \underbrace{y, \ldots, y}_{p-2a} & \underbrace{z, \ldots, z}_{a}
\end{array}
\]
Daisy Chain Terms

- It’s difficult to write down explicit examples without nice terms.

- Choose a \(p \)-ary cyclic term \(c \).

- For any \(a < \frac{p}{2} \), can make a ternary term \(w(x, y, z) \) via:

\[
w(x, y, z) = c(x, \ldots, x, y, \ldots, y, z, \ldots, z).
\]

- This satisfies

\[
w(x, x, y) \approx w(y, x, x).
\]
Daisy Chain Terms

- It's difficult to write down explicit examples without nice terms.

- Choose a p-ary cyclic term c.

- For any $a < \frac{p}{2}$, can make a ternary term $w(x, y, z)$ via:

$$w(x, y, z) = c(x, ..., x, y, ..., y, z, ..., z).$$

- This satisfies

$$w(x, x, y) \approx w(y, x, x).$$

- Also have

$$w(x, y, x) = c(x, ..., x, y, ..., y, x, ..., x).$$
Daisy Chain Terms, ctd.

- From a sequence

\[a, p - 2a, p - 2(p - 2a), ... \]

we get a sequence of ternary terms:

\[
\begin{align*}
w_0(x, x, y) & \approx w_0(y, x, x) \approx w_1(x, y, x), \\
w_1(x, x, y) & \approx w_1(y, x, x) \approx w_2(x, y, x), \\
\vdots
\end{align*}
\]
Daisy Chain Terms, ctd.

▶ From a sequence

\[a, p - 2a, p - 2(p - 2a), \ldots \]

we get a sequence of ternary terms:

\[w_0(x, x, y) \approx w_0(y, x, x) \approx w_1(x, y, x), \]
\[w_1(x, x, y) \approx w_1(y, x, x) \approx w_2(x, y, x), \]
\[\vdots \]

▶ If \(p \) is large enough and \(a \) is close enough to \(\frac{p}{3} \), then the sequence can become arbitrarily long.
Daisy Chain Terms, ctd.

- From a sequence

\[a, p - 2a, p - 2(p - 2a), \ldots \]

we get a sequence of ternary terms:

\[w_0(x, x, y) \approx w_0(y, x, x) \approx w_1(x, y, x), \]
\[w_1(x, x, y) \approx w_1(y, x, x) \approx w_2(x, y, x), \]
\[\vdots \]

- If \(p \) is large enough and \(a \) is close enough to \(\frac{p}{3} \), then the sequence can become arbitrarily long.

- Since there are only finitely many ternary functions in \(\text{Clo}(A) \), we eventually get a cycle.
What do they mean?

- How can daisy chain terms be useful to us?
What do they mean?

- How can daisy chain terms be useful to us?

- For $a, b \in A$, define a binary relation $D_{ab} \subseteq A^2$ by

$$D_{ab} = \left\{ \begin{bmatrix} c \\ d \\ c \\ d \end{bmatrix} \text{ s.t. } \begin{bmatrix} c \\ d \\ c \\ d \end{bmatrix} \in Sg_{A^3} \left\{ \begin{bmatrix} a \\ a \\ b \\ a \end{bmatrix}, \begin{bmatrix} a \\ b \\ a \\ a \end{bmatrix} \right\} \right\}.$$
What do they mean?

- How can daisy chain terms be useful to us?

- For $a, b \in A$, define a binary relation $D_{ab} \subseteq A^2$ by

$$D_{ab} = \left\{ \begin{bmatrix} c \\ d \\ c \\ d \end{bmatrix} \in Sg_{A^3} \left\{ \begin{bmatrix} a \\ a \\ b \\ a \end{bmatrix}, \begin{bmatrix} a \\ b \\ a \\ a \end{bmatrix}, \begin{bmatrix} b \\ a \\ a \\ a \end{bmatrix} \right\} \right\}. $$

- If $\begin{bmatrix} a \\ a \end{bmatrix} \in D_{ab}$ and there is an automorphism interchanging a, b, then $\{a, b\}$ is a majority algebra.
What do they mean?

- How can daisy chain terms be useful to us?

- For $a, b \in \mathbb{A}$, define a binary relation $D_{ab} \leq \mathbb{A}^2$ by

$$D_{ab} = \left\{ \begin{bmatrix} c \\ d \end{bmatrix} \text{ s.t. } \begin{bmatrix} c \\ d \\ c \end{bmatrix} \in Sg_{\mathbb{A}^3} \left\{ \begin{bmatrix} a \\ b \\ a \end{bmatrix}, \begin{bmatrix} a \\ b \\ a \end{bmatrix}, \begin{bmatrix} a \\ b \\ a \end{bmatrix} \right\} \right\}.$$

- If $\begin{bmatrix} a \\ a \end{bmatrix} \in D_{ab}$ and there is an automorphism interchanging a, b, then $\{a, b\}$ is a majority algebra.

- Proposition

 If \mathbb{A} has daisy chain terms and $a, b \in \mathbb{A}$, then if we consider D_{ab} as a digraph, it must contain a directed cycle.
Describing a minimal Taylor algebra

- If $p = w_i$, $q = w_{i+1}$ are any pair of adjacent daisy chain terms, then they satisfy the system

\[p(x, x, y) \approx p(y, x, x) \approx q(x, y, x), \]
\[q(x, x, y) \approx q(y, x, x). \]
Describing a minimal Taylor algebra

- If \(p = w_i, q = w_{i+1} \) are any pair of adjacent daisy chain terms, then they satisfy the system

\[
\begin{align*}
p(x, x, y) &\approx p(y, x, x) \approx q(x, y, x), \\
q(x, x, y) &\approx q(y, x, x).
\end{align*}
\]

- Thus \(p, q \) generate a Taylor clone, so \(\text{Clo}(A) = \langle p, q \rangle \) if \(A \) is minimal Taylor.

In particular, the number of minimal Taylor clones on a set of \(n \) elements is at most \(n^2 n^3 \).

Conjecture: Every minimal Taylor clone can be generated by a single ternary function.
Describing a minimal Taylor algebra

- If $p = w_i, q = w_{i+1}$ are any pair of adjacent daisy chain terms, then they satisfy the system

 \[p(x, x, y) \approx p(y, x, x) \approx q(x, y, x), \]
 \[q(x, x, y) \approx q(y, x, x). \]

- Thus p, q generate a Taylor clone, so $\text{Clo}(A) = \langle p, q \rangle$ if A is minimal Taylor.

- In particular, the number of minimal Taylor clones on a set of n elements is at most n^{2n^3}.
Describing a minimal Taylor algebra

- If $p = w_i, q = w_{i+1}$ are any pair of adjacent daisy chain terms, then they satisfy the system

 $$p(x, x, y) \approx p(y, x, x) \approx q(x, y, x),$$
 $$q(x, x, y) \approx q(y, x, x).$$

- Thus p, q generate a Taylor clone, so $\text{Clo}(A) = \langle p, q \rangle$ if A is minimal Taylor.

- In particular, the number of minimal Taylor clones on a set of n elements is at most $n^2 n^3$.

- Conjecture

 Every minimal Taylor clone can be generated by a *single* ternary function.
Daisy chain terms in the basic algebras

- **Proposition**

 If w_i are daisy chain terms and A is a semilattice, then each w_i is the symmetric ternary semilattice operation on A.

- **Proposition**

 If w_i are daisy chain terms and A is a majority algebra, then each w_i is a majority operation on A.

- **Proposition**

 If w_i are daisy chain terms and A is affine, then there is a sequence a_i such that w_i is given by:

 $$w_i(x, y, z) = a_i x + (1 - 2a_i) y + a_i z,$$

 with $a_{i+1} = 1 - 2a_i$.

 If $a_0 = 0$, then w_1 is the Mal'cev operation $x - y + z$ and w_{-1} is the operation $x + z$.
Daisy chain terms in the basic algebras

- Proposition
 If w_i are daisy chain terms and \mathbb{A} is a semilattice, then each w_i is the symmetric ternary semilattice operation on \mathbb{A}.

- Proposition
 If w_i are daisy chain terms and \mathbb{A} is a majority algebra, then each w_i is a majority operation on \mathbb{A}.

If $a_0 = 0$, then w_1 is the Mal'cev operation $x - y + z$ and w^{-1} is the operation $x + z$.
Daisy chain terms in the basic algebras

Proposition

If w_i are daisy chain terms and \mathbb{A} is a semilattice, then each w_i is the symmetric ternary semilattice operation on \mathbb{A}.

Proposition

If w_i are daisy chain terms and \mathbb{A} is a majority algebra, then each w_i is a majority operation on \mathbb{A}.

Proposition

If w_i are daisy chain terms and \mathbb{A} is affine, then there is a sequence a_i such that w_i is given by

$$w_i(x, y, z) = a_i x + (1 - 2a_i) y + a_i z,$$

with $a_{i+1} = 1 - 2a_i$.

If $a_0 = 0$, then w_1 is the Mal’cev operation $x - y + z$ and w_{-1} is the operation $\frac{x + z}{2}$.
Bulatov’s graph

- Bulatov studies finite Taylor algebras via three types of edges: semilattice, majority, and affine.
• Bulatov studies finite Taylor algebras via three types of edges: semilattice, majority, and affine.
• In minimal Taylor algebras, we can define his edges more simply.
Bulatov’s graph

- Bulatov studies finite Taylor algebras via three types of edges: semilattice, majority, and affine.
- In minimal Taylor algebras, we can define his edges more simply.

Definition
If A is minimal Taylor and $a, b \in A$, then (a, b) is an edge if there is a congruence θ on $Sg\{a, b\}$ s.t.

$$Sg\{a, b\}/\theta$$

is isomorphic to either a two-element semilattice, a two element majority algebra, or an affine algebra.
Connectivity

- Theorem (Bulatov)

 If \mathbb{A} is minimal Taylor, then the associated graph is connected.
Connectivity

- **Theorem (Bulatov)**

 If \(\mathbb{A} \) is minimal Taylor, then the associated graph is connected.

 - We can simplify the proof!
Connectivity

- **Theorem (Bulatov)**

 If \mathcal{A} is minimal Taylor, then the associated graph is connected.

 - We can simplify the proof!
 - If \mathcal{A} is a minimal counterexample:
 - the hypergraph of proper subalgebras must be disconnected,
 - \mathcal{A} is generated by two elements $a, b,$ and
 - \mathcal{A} has no proper congruences.
Connectivity

- **Theorem (Bulatov)**

 If \mathbb{A} is minimal Taylor, then the associated graph is connected.

 - We can simplify the proof!
 - If \mathbb{A} is a minimal counterexample:
 - the hypergraph of proper subalgebras must be disconnected,
 - \mathbb{A} is generated by two elements $a, b,$ and
 - \mathbb{A} has no proper congruences.
 - It’s not hard to show there must be an automorphism interchanging a, b.

Connectivity

- **Theorem (Bulatov)**

 *If \mathcal{A} is minimal Taylor, then the associated graph is connected.***

- We can simplify the proof!
- If \mathcal{A} is a minimal counterexample:
 - the hypergraph of proper subalgebras must be disconnected,
 - \mathcal{A} is generated by two elements a, b, and
 - \mathcal{A} has no proper congruences.
- It’s not hard to show there must be an automorphism interchanging a, b.
- Consider the binary relation \mathbb{D}_{ab}!
Recall the definition of \mathbb{D}_{ab}:

$$\mathbb{D}_{ab} = \left\{ \begin{bmatrix} c \\ d \\ c \end{bmatrix} \text{ s.t. } \begin{bmatrix} c \\ d \\ c \end{bmatrix} \in Sg_{A^3} \left\{ \begin{bmatrix} a \\ b \\ a \end{bmatrix}, \begin{bmatrix} a \\ a \\ a \end{bmatrix}, \begin{bmatrix} b \\ a \\ a \end{bmatrix} \right\} \right\}.$$
Connectivity, ctd.

- Recall the definition of \mathcal{D}_{ab}:

$$
\mathcal{D}_{ab} = \left\{ \begin{bmatrix} c \\ d \end{bmatrix} \text{ s.t. } \begin{bmatrix} c \\ d \\ c \end{bmatrix} \in Sg_{A^3} \begin{Bmatrix} \begin{bmatrix} a \\ a \\ b \end{bmatrix}, \begin{bmatrix} a \\ b \\ a \end{bmatrix}, \begin{bmatrix} b \\ a \end{bmatrix} \end{Bmatrix} \right\}.
$$

- Have $\begin{bmatrix} a \\ b \end{bmatrix} \in \mathcal{D}_{ab}$, want to show that either $\begin{bmatrix} a \\ a \end{bmatrix} \in \mathcal{D}_{ab}$ or A is affine.
Connectivity, ctd.

- Recall the definition of \mathbb{D}_{ab}:

$$
\mathbb{D}_{ab} = \left\{ \begin{bmatrix} c \\ d \end{bmatrix} \right\} \text{ s.t. } \begin{bmatrix} c \\ d \\ c \end{bmatrix} \in Sg_{\mathbb{A}^3} \left\{ \begin{bmatrix} a \\ b \\ a \end{bmatrix}, \begin{bmatrix} a \\ b \\ a \end{bmatrix}, \begin{bmatrix} b \\ a \\ a \end{bmatrix} \right\}.
$$

- Have $\begin{bmatrix} a \\ b \end{bmatrix} \in \mathbb{D}_{ab}$, want to show that either $\begin{bmatrix} a \\ a \end{bmatrix} \in \mathbb{D}_{ab}$ or \mathbb{A} is affine.

- The daisy chain terms give us $c, d, e \in \mathbb{A}$ such that

$$
\begin{bmatrix} c \\ d \end{bmatrix}, \begin{bmatrix} d \\ e \end{bmatrix} \in \mathbb{D}_{ab}.
$$
Connectivity, ctd.

- Recall the definition of \mathbb{D}_{ab}:

$$
\mathbb{D}_{ab} = \left\{ \begin{bmatrix} c \\ d \end{bmatrix} \text{ s.t. } \begin{bmatrix} c \\ d \\ c \end{bmatrix} \in Sg_{A^3} \left\{ \begin{bmatrix} a \\ b \\ a \end{bmatrix}, \begin{bmatrix} a \\ b \\ a \end{bmatrix}, \begin{bmatrix} b \\ a \\ a \end{bmatrix} \right\} \right\}.
$$

- Have $\begin{bmatrix} a \\ b \end{bmatrix} \in \mathbb{D}_{ab}$, want to show that either $\begin{bmatrix} a \\ a \end{bmatrix} \in \mathbb{D}_{ab}$ or A is affine.

- The daisy chain terms give us $c, d, e \in A$ such that

$$
\begin{bmatrix} c \\ d \end{bmatrix}, \begin{bmatrix} d \\ e \end{bmatrix} \in \mathbb{D}_{ab}.
$$

- If both $Sg\{a, d\}$ and $Sg\{d, b\}$ are proper subalgebras, then the hypergraph of proper subalgebras is connected.
Connectivity, ctd.

- Recall the definition of \mathbb{D}_{ab}:

 $$
 \mathbb{D}_{ab} = \left\{ \begin{bmatrix} c \\ d \end{bmatrix} \text{ s.t. } \begin{bmatrix} c \\ d \\ c \end{bmatrix} \in Sg_{A^3} \left\{ \begin{bmatrix} a \\ b \\ a \\ a \end{bmatrix}, \begin{bmatrix} a \\ b \\ a \\ a \end{bmatrix}, \begin{bmatrix} b \\ a \\ a \\ a \end{bmatrix} \right\} \right\}.
 $$

- Have $\begin{bmatrix} a \\ b \end{bmatrix} \in \mathbb{D}_{ab}$, want to show that either $\begin{bmatrix} a \\ a \end{bmatrix} \in \mathbb{D}_{ab}$ or A is affine.

- The daisy chain terms give us $c, d, e \in A$ such that

 $$
 \begin{bmatrix} c \\ d \end{bmatrix}, \begin{bmatrix} d \\ e \end{bmatrix} \in \mathbb{D}_{ab}.
 $$

- If both $Sg\{a, d\}$ and $Sg\{d, b\}$ are proper subalgebras, then the hypergraph of proper subalgebras is connected.

- Then we can show \mathbb{D}_{ab} is subdirect, and the proof flows naturally from here.
Can we do better?

- Can we get rid of congruences in the definition of the edges?
Can we do better?

- Can we get rid of congruences in the definition of the edges?

- Proposition (Bulatov)

 For every semilattice edge from a to b, there is a b' in the congruence class of b such that $\{a, b'\}$ is a two element semilattice algebra.
Can we do better?

- Can we get rid of congruences in the definition of the edges?

- **Proposition (Bulatov)**

 For every semilattice edge from a to b, there is a b' in the congruence class of b such that $\{a, b'\}$ is a two element semilattice algebra.

 - Similar statements fail for majority edges and affine edges.
Can we do better?

- Can we get rid of congruences in the definition of the edges?

- **Proposition (Bulatov)**

 For every semilattice edge from a to b, there is a b' in the congruence class of b such that $\{a, b'\}$ is a two element semilattice algebra.

 - Similar statements fail for majority edges and affine edges.
 - There are minimal Taylor algebras A, B of size 4 which have congruences θ such that:
 - A/θ is a two element majority algebra and B/θ is $\mathbb{Z}/2^{\text{aff}}$,
 - each congruence class of θ is a copy of $\mathbb{Z}/2^{\text{aff}}$,
 - every proper subalgebra of A or B is contained in a congruence class of θ,
 - A has a 3-edge term and B is Mal’cev,
 - θ is the center of A or B in the sense of commutator theory.
Evil algebra #1

$A = (\{a, b, c, d\}, g)$, where g is an idempotent ternary symmetric operation.
Evil algebra \#1

\[\mathbb{A} = (\{a, b, c, d\}, g), \text{ where } g \text{ is an idempotent ternary symmetric operation.} \]

\(g \) commutes with the cyclic permutation \(\sigma = (a \ b \ c \ d) \) and satisfies

\[
\begin{align*}
 g(a, a, b) &= a, \\
 g(a, a, c) &= c, \\
 g(a, a, d) &= c, \\
 g(a, b, c) &= c.
\end{align*}
\]
Evil algebra #1

\(A = (\{a, b, c, d\}, g) \), where \(g \) is an idempotent ternary symmetric operation.

- \(g \) commutes with the cyclic permutation \(\sigma = (a \ b \ c \ d) \) and satisfies

\[
\begin{align*}
 g(a, a, b) &= a, \\
 g(a, a, c) &= c, \\
 g(a, a, d) &= c, \\
 g(a, b, c) &= c.
\end{align*}
\]

- \(\theta \) corresponds to the partition \(\{a, c\}, \{b, d\} \).
Evil algebra #1

- $\mathbb{A} = (\{a, b, c, d\}, g)$, where g is an idempotent ternary symmetric operation.
- g commutes with the cyclic permutation $\sigma = (a \ b \ c \ d)$ and satisfies

 $g(a, a, b) = a,$
 $g(a, a, c) = c,$
 $g(a, a, d) = c,$
 $g(a, b, c) = c.$

- θ corresponds to the partition $\{a, c\}, \{b, d\}$.
- The algebra $\mathbb{S} = Sg_{\mathbb{A}^2}\{(a, b), (b, a)\}$ has a congruence ψ corresponding to the partition

 \[
 \begin{bmatrix}
 a \\
 b
 \end{bmatrix}, \begin{bmatrix}
 b \\
 c
 \end{bmatrix}, \begin{bmatrix}
 c \\
 d
 \end{bmatrix}, \begin{bmatrix}
 d \\
 a
 \end{bmatrix}, \begin{bmatrix}
 a \\
 d
 \end{bmatrix}, \begin{bmatrix}
 b \\
 a
 \end{bmatrix}, \begin{bmatrix}
 c \\
 b
 \end{bmatrix}, \begin{bmatrix}
 d \\
 c
 \end{bmatrix}
 \]

 such that \mathbb{S}/ψ is isomorphic to $\mathbb{Z}/2^{\text{aff}}$.
Evil algebra #2

\[\mathbb{B} = (\{a, b, c, d\}, p), \text{ where } p \text{ is a Mal’cev operation.} \]
Evil algebra #2

- \(\mathbb{B} = (\{a, b, c, d\}, p) \), where \(p \) is a Mal’cev operation.
- \(p \) commutes with the permutations \(\sigma = (a \ c)(b \ d) \) and \(\tau = (a \ c) \).
Evil algebra #2

- $\mathbb{B} = (\{a, b, c, d\}, p)$, where p is a Mal’cev operation.
- p commutes with the permutations $\sigma = (a \ c)(b \ d)$ and $\tau = (a \ c)$.
- The polynomials $+_a = p(\cdot, a, \cdot), +_b = p(\cdot, b, \cdot)$ define abelian groups:

<table>
<thead>
<tr>
<th>+_a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>d</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>+_b</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>d</td>
<td>c</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>c</td>
<td>d</td>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>

- θ corresponds to the partition $\{a, c\}, \{b, d\}$.
Evil algebra #2

- $\mathcal{B} = (\{a, b, c, d\}, p)$, where p is a Mal’cev operation.
- p commutes with the permutations $\sigma = (a \ c)(b \ d)$ and $\tau = (a \ c)$.
- The polynomials $+_a = p(\cdot, a, \cdot)$, $+_b = p(\cdot, b, \cdot)$ define abelian groups:

<table>
<thead>
<tr>
<th></th>
<th>$+_a$</th>
<th>$+_b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
</tbody>
</table>

- θ corresponds to the partition $\{a, c\}, \{b, d\}$.
- The algebra $\mathbb{S} = \text{Sg}_{\mathcal{B}^2}\{(a, b), (b, a)\}$ has a congruence ψ such that \mathbb{S}/ψ is isomorphic to $\mathbb{Z}/4^{\text{aff}}$.
Zhuk’s four cases

- Theorem (Zhuk)

 If \mathbb{A} is minimal Taylor, then at least one of the following holds:

 - \mathbb{A} has a proper binary absorbing subalgebra,
 - \mathbb{A} has a proper “center”,
 - \mathbb{A} has a nontrivial affine quotient, or
 - \mathbb{A} has a nontrivial polynomially complete quotient.

- Definition

 $\mathbb{C} \leq \mathbb{A}$ is a center of \mathbb{A} if there exist

 - a binary-absorption-free Taylor algebra \mathbb{B} and
 - a subdirect relation $R \leq \text{sd } \mathbb{A} \times \mathbb{B}$, such that

 $\mathbb{C} = \{c \in \mathbb{A} \text{ s.t. } \forall b \in \mathbb{B}, [c, b] \in R\}$.

- Theorem (Zhuk)

 If \mathbb{C} is a center of \mathbb{A}, then \mathbb{C} is a ternary absorbing subalgebra of \mathbb{A}.
Zhuk’s four cases

▶ Theorem (Zhuk)

If \mathbb{A} is minimal Taylor, then at least one of the following holds:

▶ \mathbb{A} has a proper binary absorbing subalgebra,
▶ \mathbb{A} has a proper “center”,
▶ \mathbb{A} has a nontrivial affine quotient, or
▶ \mathbb{A} has a nontrivial polynomially complete quotient.

▶ Definition

$\mathbb{C} \leq \mathbb{A}$ is a *center* of \mathbb{A} if there exist

▶ a binary-absorption-free Taylor algebra \mathbb{B} and
▶ a subdirect relation $\mathbb{R} \leq_{sd} \mathbb{A} \times \mathbb{B}$, such that

▶ $\mathbb{C} = \left\{ c \in \mathbb{A} \text{ s.t. } \forall b \in \mathbb{B}, \left[\begin{array}{c} c \\ b \end{array} \right] \in \mathbb{R} \right\}$.
Zhuk’s four cases

▶ Theorem (Zhuk)

If \mathcal{A} is minimal Taylor, then at least one of the following holds:

▶ \mathcal{A} has a proper binary absorbing subalgebra,
▶ \mathcal{A} has a proper “center”,
▶ \mathcal{A} has a nontrivial affine quotient, or
▶ \mathcal{A} has a nontrivial polynomially complete quotient.

▶ Definition

$C \leq A$ is a center of A if there exist

▶ a binary-absorption-free Taylor algebra B and
▶ a subdirect relation $R \leq_{sd} A \times B$, such that

$C = \left\{ c \in A \text{ s.t. } \forall b \in B, \left[\begin{array}{c} c \\ b \end{array}\right] \in R \right\}.$

▶ Theorem (Zhuk)

If C is a center of A, then C is a ternary absorbing subalgebra of A.
Centers and Daisy Chain terms

Theorem

If \mathbb{A} is minimal Taylor and $\mathbb{M} \in HSP(\mathbb{A})$ is the two element majority algebra on the domain $\{0, 1\}$, then the following are equivalent:

- C is a ternary absorbing subalgebra of \mathbb{A},
- there is a p-ary cyclic term c of \mathbb{A} such that whenever $\#\{x_i \in C\} > \frac{p}{2}$, we have $c(x_1, \ldots, x_p) \in C$,
- the binary relation $R \subseteq \mathbb{A} \times \mathbb{M}$ given by
 \[R = (\mathbb{A} \times \{0\}) \cup (C \times \{0, 1\}) \]
 is a subalgebra of $\mathbb{A} \times \mathbb{M}$,
- every daisy chain term $w_i(x, y, z)$ witnesses the fact that C ternary absorbs \mathbb{A}.
Centers produce majority quotients

- If C, D are centers, then for any daisy chain terms w_i, we must have
 \[w_i(C, C, D), w_i(C, D, C), w_i(D, C, C) \subseteq C \]
 and
 \[w_i(C, D, D), w_i(D, C, D), w_i(D, D, C) \subseteq D, \]
 so $C \cup D$ is a subalgebra of A.
Centers produce majority quotients

- If \(C, D \) are centers, then for any daisy chain terms \(w_i \), we must have

\[
w_i(C, C, D), w_i(C, D, C), w_i(D, C, C) \subseteq C
\]

and

\[
w_i(C, D, D), w_i(D, C, D), w_i(D, D, C) \subseteq D,
\]

so \(C \cup D \) is a subalgebra of \(A \).

- If \(C \cap D = \emptyset \), then the equivalence relation \(\theta \) on \(C \cup D \) with parts \(C, D \) is preserved by each daisy chain term \(w_i \), and \((C \cup D)/\theta \) is a two element majority algebra.
Binary absorption is strong absorption

Theorem

If \mathbb{A} is minimal Taylor, then the following are equivalent:

- \mathbb{B} binary absorbs \mathbb{A},
- there exists a cyclic term c such that if any $x_i \in \mathbb{B}$, then $c(x_1, ..., x_p) \in \mathbb{B}$,
- the ternary relation

$$
\mathbb{R} = \{(x, y, z) \text{ s.t. } (x \not\in \mathbb{B}) \implies (y = z)\}
$$

is a subalgebra of \mathbb{A}^3,
- every term f of \mathbb{A} which depends on all its inputs is such that if any $x_i \in \mathbb{B}$, then $f(x_1, ..., x_n) \in \mathbb{B}$.
Theorem

If \mathbb{A} is minimal Taylor and $\mathbb{A} = \text{Sg}\{a, b\}$, then the following are equivalent:

- \mathbb{B} binary absorbs \mathbb{A},
- $\mathbb{A} = \mathbb{B} \cup \{a, b\}$ and there is a congruence θ such that \mathbb{B} is a congruence class of θ, and \mathbb{A}/θ is a semilattice.

Minimal Taylor algebras generated by two elements are nicer than general minimal Taylor algebras. It's good enough to understand such algebras.
Minimal Taylor algebras generated by two elements

- **Theorem**
 If \mathbb{A} is minimal Taylor and $\mathbb{A} = \text{Sg}\{a, b\}$, then the following are equivalent:
 - \mathbb{B} binary absorbs \mathbb{A},
 - $\mathbb{A} = \mathbb{B} \cup \{a, b\}$ and there is a congruence θ such that \mathbb{B} is a congruence class of θ, and \mathbb{A}/θ is a semilattice.

- **Theorem**
 If \mathbb{A} is minimal Taylor and $\mathbb{A} = \text{Sg}\{a, b\}$, then \mathbb{A} is not polynomially complete.
Minimal Taylor algebras generated by two elements

- **Theorem**
 If \mathbb{A} is minimal Taylor and $\mathbb{A} = \text{Sg}\{a, b\}$, then the following are equivalent:
 - \mathbb{B} binary absorbs \mathbb{A},
 - $\mathbb{A} = \mathbb{B} \cup \{a, b\}$ and there is a congruence θ such that \mathbb{B} is a congruence class of θ, and \mathbb{A}/θ is a semilattice.

- **Theorem**
 If \mathbb{A} is minimal Taylor and $\mathbb{A} = \text{Sg}\{a, b\}$, then \mathbb{A} is not polynomially complete.

 - Minimal Taylor algebras generated by two elements are nicer than general minimal Taylor algebras.
Minimal Taylor algebras generated by two elements

- **Theorem**
 If A is minimal Taylor and $A = Sg\{a, b\}$, then the following are equivalent:
 - B binary absorbs A,
 - $A = B \cup \{a, b\}$ and there is a congruence θ such that B is a congruence class of θ, and A/θ is a semilattice.

- **Theorem**
 If A is minimal Taylor and $A = Sg\{a, b\}$, then A is not polynomially complete.

- Minimal Taylor algebras generated by two elements are nicer than general minimal Taylor algebras.
- It’s good enough to understand such algebras.
Big conjecture

- **Conjecture**

 Suppose \mathcal{A} is minimal Taylor, generated by two elements a, b, and has no affine or semilattice quotient. Then each of a, b is contained in a proper ternary absorbing subalgebra of \mathcal{A}.

- **Proposition**

 Suppose the conjecture holds. Then any daisy chain term w_i which is nontrivial on every affine algebra in $\text{HS}(\mathcal{A})$ generates $\text{Clo}(\mathcal{A})$. In particular, $\text{Clo}(\mathcal{A})$ is generated by a single ternary term.

- **Theorem (Kearnes, Szendrei)**

 Suppose a minimal Taylor algebra has no semilattice edges and has its clone generated by a single ternary term. Then it has a 3-edge term.
Big conjecture

- **Conjecture**
 Suppose \mathbb{A} is minimal Taylor, generated by two elements a, b, and has no affine or semilattice quotient. Then each of a, b is contained in a proper ternary absorbing subalgebra of \mathbb{A}.

- **Proposition**
 Suppose the conjecture holds. Then any daisy chain term w_i which is nontrivial on every affine algebra in $HS(\mathbb{A})$ generates $\text{Clo}(\mathbb{A})$. In particular, $\text{Clo}(\mathbb{A})$ is generated by a single ternary term.
Big conjecture

- **Conjecture**
 Suppose \mathbb{A} is minimal Taylor, generated by two elements a, b, and has no affine or semilattice quotient. Then each of a, b is contained in a proper ternary absorbing subalgebra of \mathbb{A}.

- **Proposition**
 Suppose the conjecture holds. Then any daisy chain term w_i which is nontrivial on every affine algebra in $HS(\mathbb{A})$ generates $\text{Clo}(\mathbb{A})$. In particular, $\text{Clo}(\mathbb{A})$ is generated by a single ternary term.

- **Theorem (Kearnes, Szendrei)**
 Suppose a minimal Taylor algebra has no semilattice edges and has its clone generated by a single ternary term. Then it has a 3-edge term.
Thank you for your attention.