Generalized Ehrhart Polynomials

Nan Li (MIT)
with Sheng Chen (HIT) and Steven Sam (MIT)

Aug 5, 2010 Fpsac
Outline

- Ehrhart Theorem
- Generalized Ehrhart polynomials by examples
- Main theorem in three equivalent versions
- Proof: “writing in base n” trick
- Further questions
Ehrhart Theorem

Let $P \subset \mathbb{R}^d$ be a polytope with rational vertices.

$$(0, 1) \quad (0, 0) \quad \frac{1}{2}, 0$$

$$(0, n) \quad (\frac{1}{2}n, 0)$$

$$\text{#}(nP \cap \mathbb{Z}^2) = \begin{cases} \frac{1}{4}n^2 + n + 1 & n \text{ even} \\ \frac{1}{4}n^2 + n + \frac{3}{4} & n \text{ odd} \end{cases}$$

Definition

We call $f(n)$ a quasi-polynomial, if $f(n) = f_i(n)$ ($n \equiv i \mod T$), for some $T \in \mathbb{N}$ and polynomials $f_i(n)$'s.

Theorem (Ehrhart)

$i(P, n) = \text{#}(nP \cap \mathbb{Z}^d)$ is a quasi-polynomial. In particular, if P has integral vertices, $i(P, n)$ is a polynomial, called the **Ehrhart polynomial**.
Example: non homogenous “dilation”

The number of integer points on this diagonal is

\[f(n) = \# \{(x, y) \in \mathbb{Z}_{\geq 0} \mid 2x + y = n + 1 \} \]
Example: non homogenous “dilation”

\[(0, n+1) \rightarrow (0, 0) \rightarrow \left(\frac{n}{2} + \frac{1}{2}, 0\right)\]

\[
\begin{align*}
2x + y &\leq n + 1 \\
x &\geq 0 \\
y &\geq 0
\end{align*}
\]

\[
\begin{align*}
2x + y &= n + 1 \\
x &\geq 0 \\
y &\geq 0
\end{align*}
\] + \[
\begin{align*}
2x + y &\leq n \\
x &\geq 0 \\
y &\geq 0
\end{align*}
\]

The number of integer points on this diagonal is

\[f(n) = \#\{(x, y) \in \mathbb{Z}_{\geq 0}^2 \mid 2x + y = n + 1\}\]
Example: non homogenous “dilation”

\[
\begin{align*}
\text{(0, } n+1) & \quad \text{(0, 0)} \quad \text{(n/2 + 1/2, 0)} \\
(0, n+1) & \quad \text{\text{The number of integer points on this diagonal is}} \\
(n/2 + 1/2, 0) & \\
\end{align*}
\]

The number of integer points on this diagonal is

\[
f(n) = \#\{(x, y) \in \mathbb{Z}_{\geq 0}^2 \mid 2x + y = n + 1\}
\]
Theorem (Popoviciu’s Formula)

The number of nonnegative integer solutions \((x, y)\) to \(ax + by = m\), where \(a, b\) are coprime integers, is given by the formula

\[
\frac{m}{ab} - \left\{ \frac{ma'}{b} \right\} - \left\{ \frac{mb'}{a} \right\} + 1,
\]

where \(\{r\} = r - \lfloor r \rfloor\) and \(a'\) and \(b'\) are any integers satisfying \(aa' + bb' = 1\).

Example

For \(2x + y = n + 1\), we have

\[
a = 2, \ b = 1, \ a' = 1, \ b' = -1
\]

Then

\[
\frac{n + 1}{2} - \left\{ \frac{n + 1}{1} \right\} - \left\{ \frac{-(n + 1)}{2} \right\} + 1 = \begin{cases}
\frac{n+3}{2} & \text{if } n \text{ odd} \\
\frac{n}{2} + 1 & \text{if } n \text{ even}
\end{cases}
\]
Example: nonlinear “dilation”

\[(0, n^2 + 2n) \rightarrow (2n + 4, 0)\]

The number of integer points on the diagonal is

\[f(n) = \#\{(x, y) \in \mathbb{Z}^2_{\geq 0} \mid (n^2 + 2n)x + (2n + 4)y = (2n + 4)(n^2 + 2n)\}\]

We can not use Popoviciu’s Formula directly, so we need the following generalizations:

- Replace \(GCD(a, b) = 1, a, b \in \mathbb{Z}\) by \(GCD(a(n), b(n)) = 1\) for all \(n \in \mathbb{Z}\), where \(a(n), b(n) \in \mathbb{Z}[n]\)
- Replace \(\left\{\frac{n-1}{2}\right\}\) by function \(\left\{\frac{a(n)}{b(n)}\right\}\), \(a(n), b(n) \in \mathbb{Z}[n]\).
Example: nonlinear “dilation”

The number of integer points on the diagonal is

\[f(n) = \#\{ (x, y) \in \mathbb{Z}^2_{\geq 0} \mid (n^2 + 2n)x + (2n + 4)y = (2n + 4)(n^2 + 2n) \} \]

We can not use Popoviciu’s Formula directly, so we need the following generalizations:

- Replace \(GCD(a, b) = 1, a, b \in \mathbb{Z} \) by \(GCD(a(n), b(n)) = 1 \) for all \(n \in \mathbb{Z} \), where \(a(n), b(n) \in \mathbb{Z}[n] \)

- Replace \(\left\{ \frac{n-1}{2} \right\} \) by function \(\left\{ \frac{a(n)}{b(n)} \right\} \), \(a(n), b(n) \in \mathbb{Z}[n] \).
Example: nonlinear “dilation”

The number of integer points on the diagonal is

\[f(n) = \# \{(x, y) \in \mathbb{Z}_{\geq 0}^2 \mid (n^2 + 2n)x + (2n + 4)y = (2n + 4)(n^2 + 2n) \} \]

We can not use Popoviciu’s Formula directly, so we need the following generalizations:

- Replace \(GCD(a, b) = 1, a, b \in \mathbb{Z} \) by \(GCD(a(n), b(n)) = 1 \) for all \(n \in \mathbb{Z} \), where \(a(n), b(n) \in \mathbb{Z}[n] \)
- Replace \(\left\{ \frac{n-1}{2} \right\} \) by function \(\left\{ \frac{a(n)}{b(n)} \right\} \), \(a(n), b(n) \in \mathbb{Z}[n] \).
Example

Compute \(\left\{ \frac{n^2 + 2n}{2n+4} \right\} \) and \(\text{GCD}(n^2 + 2n, 2n + 4) \).

- \(n = 2m, \ n^2 + 2n = 4m^2 + 4m = m(4m + 4). \)
 \(\left\{ \frac{n^2 + 2n}{2n+4} \right\} = 0 \) and \(\text{GCD}(n^2 + 2n, 2n + 4) = 2n + 4. \)

- \(n = 2m + 1, \ n^2 + 2n = 4m^2 + 8m + 3 = m(4m + 6) + (2m + 3). \)
 \(\left\{ \frac{n^2 + 2n}{2n+4} \right\} = \left\{ m + \frac{2m+3}{4m+6} \right\} = \frac{2m+3}{4m+6} = \frac{1}{2}. \)

For \(\text{GCD} \), we apply Euclidean algorithm and get \(4m + 6 = 2(2m + 3) \), So \(\text{GCD}(n^2 + 2n, 2n + 4) = 2m + 3 = n + 2 \)

Therefore,

\[
\left\{ \frac{n^2 + 2n}{2n+4} \right\} = \begin{cases}
0 & \text{n even} \\
\frac{1}{2} & \text{n odd}
\end{cases}
\text{ and } \text{GCD}(n^2 + 2n, 2n+4) = \begin{cases}
2n + 4 & \text{n even} \\
n + 2 & \text{n odd}
\end{cases}
\]
Example
Compute \(\left\{ \frac{n^2+2n}{2n+4} \right\} \) and \(GCD(n^2 + 2n, 2n + 4) \).

- \(n = 2m, \ n^2 + 2n = 4m^2 + 4m = m(4m + 4) \).
 \(\left\{ \frac{n^2+2n}{2n+4} \right\} = 0 \) and \(GCD(n^2 + 2n, 2n + 4) = 2n + 4 \).

- \(n = 2m + 1, \ n^2 + 2n = 4m^2 + 8m + 3 = m(4m + 6) + (2m + 3) \).
 \(\left\{ \frac{n^2+2n}{2n+4} \right\} = \left\{ m + \frac{2m+3}{4m+6} \right\} = \frac{2m+3}{4m+6} = \frac{1}{2} \).
 For \(GCD \), we apply Euclidean algorithm and get
 \(4m + 6 = 2(2m + 3) \), So \(GCD(n^2 + 2n, 2n + 4) = 2m + 3 = n + 2 \)

Therefore,

\[
\left\{ \frac{n^2 + 2n}{2n + 4} \right\} = \begin{cases} 0 & n \text{ even} \\ \frac{1}{2} & n \text{ odd} \end{cases} \quad \text{and} \quad GCD(n^2 + 2n, 2n + 4) = \begin{cases} 2n + 4 & n \text{ even} \\ n + 2 & n \text{ odd} \end{cases}
\]
Example

Compute \(\left\{ \frac{n^2 + 2n}{2n + 4} \right\} \) and \(\text{GCD}(n^2 + 2n, 2n + 4) \).

- \(n = 2m, \ n^2 + 2n = 4m^2 + 4m = m(4m + 4) \).
 \(\left\{ \frac{n^2 + 2n}{2n + 4} \right\} = 0 \) and \(\text{GCD}(n^2 + 2n, 2n + 4) = 2n + 4 \).

- \(n = 2m + 1, \ n^2 + 2n = 4m^2 + 8m + 3 = m(4m + 6) + (2m + 3) \).
 \(\left\{ \frac{n^2 + 2n}{2n + 4} \right\} = \left\{ m + \frac{2m+3}{4m+6} \right\} = \frac{2m+3}{4m+6} = \frac{1}{2} \).
 For \(\text{GCD} \), we apply Euclidean algorithm and get
 \(4m + 6 = 2(2m + 3) \), So \(\text{GCD}(n^2 + 2n, 2n + 4) = 2m + 3 = n + 2 \).

Therefore,

\[
\left\{ \frac{n^2 + 2n}{2n + 4} \right\} = \begin{cases}
0 & \text{even} \\
\frac{1}{2} & \text{odd}
\end{cases}
\quad \text{and} \quad \text{GCD}(n^2 + 2n, 2n + 4) = \begin{cases}
2n + 4 & \text{even} \\
n + 2 & \text{odd}
\end{cases}
\]
Example
Compute \[\left\{ \frac{n^2 + 2n}{2n + 4} \right\} \] and \(\text{GCD}(n^2 + 2n, 2n + 4) \).

- \(n = 2m, \quad n^2 + 2n = 4m^2 + 4m = m(4m + 4). \)
 \[\left\{ \frac{n^2 + 2n}{2n + 4} \right\} = 0 \] and \(\text{GCD}(n^2 + 2n, 2n + 4) = 2n + 4. \)

- \(n = 2m + 1, \quad n^2 + 2n = 4m^2 + 8m + 3 = m(4m + 6) + (2m + 3). \)
 \[\left\{ \frac{n^2 + 2n}{2n + 4} \right\} = \left\{ m + \frac{2m + 3}{4m + 6} \right\} = \frac{2m + 3}{4m + 6} = \frac{1}{2}. \]
For \(\text{GCD} \), we apply Euclidean algorithm and get
\[4m + 6 = 2(2m + 3), \] So \(\text{GCD}(n^2 + 2n, 2n + 4) = 2m + 3 = n + 2 \)
Therefore,
\[\left\{ \frac{n^2 + 2n}{2n + 4} \right\} = \begin{cases}
0 & n \text{ even} \\
\frac{1}{2} & n \text{ odd}
\end{cases} \] and \(\text{GCD}(n^2 + 2n, 2n + 4) = \begin{cases}
2n + 4 & n \text{ even} \\
n + 2 & n \text{ odd}
\end{cases} \)
Definition
Let \(f(n), g(n) \) be polynomial functions \(\mathbb{Z} \to \mathbb{Z} \). Define functions \(q \), the quotient, \(r \), the remainder and \(ggcd \), the generalized GCD of \(f \) and \(g \) as follows: for each \(n \in \mathbb{Z} \),

\[
q(n) = \left\lfloor \frac{f(n)}{g(n)} \right\rfloor, \quad r(n) = \left\{ \frac{f(n)}{g(n)} \right\} g(n), \quad \text{and} \quad ggcd(n) = \text{GCD}(f(n), g(n)).
\]

Theorem (Chen, L., Sam)
Functions \(q, r, ggcd \) are quasi-polynomials for \(n \) sufficiently large.
Back to example: nonlinear dilation

\(P(n) = \)

\((0, 0) \rightarrow (0, n^2 + 2n) \rightarrow (2n + 4, 0) \)

\[
\#\{ P(n) \cap \mathbb{Z}^2 \} = \frac{1}{2}((n^2 + 2n + 1)(2n + 5) + f(n)), \text{ where}
\]

\[
f(n) = \#\{ (x, y) \in \mathbb{Z}_{\geq 0}^2 \mid (n^2 + 2n)x + (2n + 4)y = (2n + 4)(n^2 + 2n) \}.
\]

Now by generalized division and GCD, we can apply Popoviciu's Formula and get

\[
f(n) = \begin{cases}
2n + 5 & \text{n even} \\
 n + 3 & \text{n odd}
\end{cases}
\]
Back to example: nonlinear dilation

\(P(n) = (0, n^2 + 2n) \rightarrow (0, 0) \rightarrow (2n + 4, 0) \)

\[\#\{ P(n) \cap \mathbb{Z}^2 \} = \frac{1}{2}((n^2 + 2n + 1)(2n + 5) + f(n)) \), where

\[f(n) = \#\{ (x, y) \in \mathbb{Z}_{\geq 0}^2 \mid (n^2 + 2n)x + (2n + 4)y = (2n + 4)(n^2 + 2n) \} . \]

Now by generalized division and GCD, we can apply Popoviciu’s Formula and get

\[f(n) = \begin{cases} 2n + 5 & \text{n even} \\ n + 3 & \text{n odd} \end{cases} \]
Generalized Ehrhart (quasi) polynomials

Theorem
Let $P(n)$ be a polytope in \mathbb{R}^d and the coordinates of its vertices are given by polynomial functions of n (rational functions of n). Then $i(P, n) = #(P(n) \cap \mathbb{Z}^d)$ is a quasi-polynomial of n for n sufficiently large.

Theorem
Define a rational polytope $P(n) = \{x \in \mathbb{R}^d | V(n)x \geq c(n)\}$, where $V(n)$ is an $r \times d$ matrix, and $c(n)$ is an $r \times 1$ column vector, both with entries in $\mathbb{Z}[n]$. Then $#(P(n) \cap \mathbb{Z}^d)$ is a quasi-polynomial of n for n sufficiently large.

Theorem
Let $A(n)$ be an $m \times k$ matrix and $b(n)$ be a column vector of length m, both with entries in $\mathbb{Z}[n]$. If $f(n)$ denotes the number of nonnegative integer vectors x satisfying $A(n)x = b(n)$ (assuming that these values are finite), then $f(n)$ is a quasi-polynomial of n for n sufficiently large.

The above three theorems are equivalent.
Theorem
Let $P(n)$ be a polytope in \mathbb{R}^d and the coordinates of its vertices are given by polynomial functions of n (rational functions of n). Then $i(P, n) = \#(P(n) \cap \mathbb{Z}^d)$ is a quasi-polynomial of n for n sufficiently large.

Theorem
Define a rational polytope $P(n) = \{x \in \mathbb{R}^d \mid V(n)x \geq c(n)\}$, where $V(n)$ is an $r \times d$ matrix, and $c(n)$ is an $r \times 1$ column vector, both with entries in $\mathbb{Z}[n]$. Then $\#(P(n) \cap \mathbb{Z}^d)$ is a quasi-polynomial of n for n sufficiently large.

Theorem
Let $A(n)$ be an $m \times k$ matrix and $b(n)$ be a column vector of length m, both with entries in $\mathbb{Z}[n]$. If $f(n)$ denotes the number of nonnegative integer vectors x satisfying $A(n)x = b(n)$ (assuming that these values are finite), then $f(n)$ is a quasi-polynomial of n for n sufficiently large.

The above three theorems are equivalent.
Generalized Ehrhart (quasi) polynomials

Theorem
Let $P(n)$ be a polytope in \mathbb{R}^d and the coordinates of its vertices are given by polynomial functions of n (rational functions of n). Then $i(P, n) = #(P(n) \cap \mathbb{Z}^d)$ is a quasi-polynomial of n for n sufficiently large.

Theorem
Define a rational polytope $P(n) = \{ x \in \mathbb{R}^d \mid V(n)x \geq c(n) \}$, where $V(n)$ is an $r \times d$ matrix, and $c(n)$ is an $r \times 1$ column vector, both with entries in $\mathbb{Z}[n]$. Then $#(P(n) \cap \mathbb{Z}^d)$ is a quasi-polynomial of n for n sufficiently large.

Theorem
Let $A(n)$ be an $m \times k$ matrix and $b(n)$ be a column vector of length m, both with entries in $\mathbb{Z}[n]$. If $f(n)$ denotes the number of nonnegative integer vectors x satisfying $A(n)x = b(n)$ (assuming that these values are finite), then $f(n)$ is a quasi-polynomial of n for n sufficiently large.

The above three theorems are equivalent.
Lemma
\[f(n) = \# \{x \in (\mathbb{Z}_{\geq 0})^k \mid A(n)x = b(n)\} \] is a quasi-polynomial for \(n \) sufficiently large under the following assumptions:

- \(A(n) \) is a constant matrix \(A \),
- terms in vector \(b(n) \) are linear functions \(cn + d \).

Proof.
The base case is true by Ehrhart Theorem, when there are no nonhomogeneous (in)equalities. By induction on the number of variables and the number of nonhomogeneous (in)equalities. For example,
\[f(n) = \{(x, y) \in \mathbb{Z}_\geq 0^2 \mid 2x + y \leq n + 1\} \]
\[= \{(x, y) \in \mathbb{Z}_\geq 0^2 \mid 2x + y \leq n\} \cup \{y = n + 1 - 2x\}. \]
Special case

Lemma

\[f(n) = \#\{x \in (\mathbb{Z}_{\geq 0})^k \mid A(n)x = b(n)\} \] is a quasi-polynomial for \(n \) sufficiently large under the following assumptions:

- \(A(n) \) is a constant matrix \(A \),
- terms in vector \(b(n) \) are linear functions \(cn + d \).

Proof.
The base case is true by Ehrhart Theorem, when there are no nonhomogeneous (in)equalities.
By induction on the number of variables and the number of nonhomogeneous (in)equalities.
For example, \(f(n) = \{(x, y) \in \mathbb{Z}^2_{\geq 0} \mid 2x + y \leq n + 1\} \)
\[= \{(x, y) \in \mathbb{Z}^2_{\geq 0} \mid 2x + y \leq n\} \cup \{y = n + 1 - 2x\}. \]
Fix a natural number n. Then for any integer x, there is a unique expression of x in base n:

$$x = x_d n^d + x_{d-1} n^{d-1} + \cdots + x_1 n + x_0$$

for some natural number d and $0 \leq x_i < n$.

Now let n grow, and consider x to be polynomial functions of n.

- $f(n) = 2n^2 + 3n + 5$.
 $2n^2 + 3n + 5$ is the expression of $f(n)$ in base n for any $n > 5$

- $g(n) = 2n^2 - n + 3$
 $n^2 + (n - 1)n + 3$ is the expression of $g(n)$ in base n for any $n > 3$.

Fix a natural number n. Then for any integer x, there is a unique expression of x in base n:

$$x = x_d n^d + x_{d-1} n^{d-1} + \cdots + x_1 n + x_0$$

for some natural number d and $0 \leq x_i < n$.

Now let n grow, and consider x to be polynomial functions of n.

- $f(n) = 2n^2 + 3n + 5$.
 $2n^2 + 3n + 5$ is the expression of $f(n)$ in base n for any $n > 5$.

- $g(n) = 2n^2 - n + 3$
 $n^2 + (n - 1)n + 3$ is the expression of $g(n)$ in base n for any $n > 3$.

Reduce $A(n)x = b(n)$ to $Ax = an + b$

For example,

$$2x_1 + (n + 1)x_2 + n^2x_3 = 4n^2 + 3n - 5$$

Step one: Writing in base n:

- $4n^2 + 3n - 5 = 4n^2 + 2n + (n - 5)$
- $x_1 = x_{12}n^2 + x_{11}n + x_{10}, \ x_2 = x_{21}n + x_{20}$ and $x_3 = x_{30}$, with $0 \leq x_{ij} < n$.

The original equation gives a upper boundary for the degree of n in the expression of the x_i, so there are only finitely many new variables x_{ij}.

Step two: Expand the equation

$$(2x_{12} + x_{21} + x_{30})n^2 + (2x_{11} + x_{21} + x_{20})n + (2x_{10} + x_{20}) = 4n^2 + 2n + (n - 5).$$
Reduce $A(n)x = b(n)$ to $Ax = an + b$

For example,

$$2x_1 + (n + 1)x_2 + n^2x_3 = 4n^2 + 3n - 5$$

Step one: Writing in base n:

- $4n^2 + 3n - 5 = 4n^2 + 2n + (n - 5)$
- $x_1 = x_{12}n^2 + x_{11}n + x_{10}$, $x_2 = x_{21}n + x_{20}$ and $x_3 = x_{30}$, with $0 \leq x_{ij} < n$.

The original equation gives a upper boundary for the degree of n in the expression of the x_i, so there are only finitely many new variables x_{ij}.

Step two: Expand the equation

$$(2x_{12} + x_{21} + x_{30})n^2 + (2x_{11} + x_{21} + x_{20})n + (2x_{10} + x_{20}) = 4n^2 + 2n + (n - 5).$$
Reduce $A(n)x = b(n)$ to $Ax = an + b$

For example,

$$2x_1 + (n + 1)x_2 + n^2x_3 = 4n^2 + 3n - 5$$

Step one: Writing in base n:

- $4n^2 + 3n - 5 = 4n^2 + 2n + (n - 5)$
- $x_1 = x_{12}n^2 + x_{11}n + x_{10}$, $x_2 = x_{21}n + x_{20}$ and $x_3 = x_{30}$, with $0 \leq x_{ij} < n$.

The original equation gives an upper boundary for the degree of n in the expression of the x_i, so there are only finitely many new variables x_{ij}.

Step two: Expand the equation

$$(2x_{12} + x_{21} + x_{30})n^2 + (2x_{11} + x_{21} + x_{20})n + (2x_{10} + x_{20}) = 4n^2 + 2n + (n - 5).$$
Reduce \(A(n)x = b(n) \) to \(Ax = an + b \) (2)

Step three: Compare coefficients of \(n \) on both sides

\[
(2x_{12} + x_{21} + x_{30})n^2 + (2x_{11} + x_{21} + x_{20})n + (2x_{10} + x_{20}) = 4n^2 + 2n + (n - 5).
\]

Note \(0 \leq x_{ij} < n \).

- **\(n^0 \):** \((2x_{10} + x_{20}) \equiv (n - 5) \) (mod \(n \)) \(\in \{ n - 5, 2n - 5, 3n - 5 \} \), for \(0 \leq x_{ij} < n \). Let \(A_i^0 = \{ 2x_{10} + x_{20} = n - 5 + in \}, i = 0, 1, 2 \)

- **\(n^1 \):** Subtract the \(n^0 \) term from both sides. If \(x \) satisfies \(A_i^0 \), we are left with

\[
(2x_{12} + x_{21} + x_{30})n^2 + (2x_{11} + x_{21} + x_{20} + i)n = 4n^2 + 2n.
\]

So let \(A_{ij}^1 = \{ 2x_{11} + x_{21} + x_{20} + i = 2 + jn \} \), where \(j = 0, 1, 2, 3, 4 \).

- **\(n^2 \):** Subtract the \(n^0 \) and \(n^1 \) terms. If \(x \) satisfies \(A_{ij}^1 \), we are left with

\[
(2x_{12} + x_{21} + x_{30} + j)n^2 = 4n^2.
\]

So let \(A_j^2 = \{ 2x_{12} + x_{21} + x_{30} + j = 4 \} \).

Notice that all these equations \(A_i^0, A_{ij}^1, \) and \(A_j^2 \) are of the form \(Ax = an + b \).
Reduce $A(n)x = b(n)$ to $Ax = an + b$ (2)

Step three: Compare coefficients of n on both sides

\[(2x_{12} + x_{21} + x_{30})n^2 + (2x_{11} + x_{21} + x_{20})n + (2x_{10} + x_{20}) = 4n^2 + 2n + (n - 5).\]

Note $0 \leq x_{ij} < n$.

- n^0: $(2x_{10} + x_{20}) \equiv (n - 5) \pmod{n} \in \{n - 5, 2n - 5, 3n - 5\}$, for $0 \leq x_{ij} < n$. Let $A^0_i = \{2x_{10} + x_{20} = n - 5 + in\}$, $i = 0, 1, 2$
- n^1: Subtract the n^0 term from both sides. If x satisfies A^0_i, we are left with
 \[(2x_{12} + x_{21} + x_{30})n^2 + (2x_{11} + x_{21} + x_{20} + i)n = 4n^2 + 2n.\]
 So let $A^1_{ij} = \{2x_{11} + x_{21} + x_{20} + i = 2 + jn\}$, where $j = 0, 1, 2, 3, 4$.
- n^2: Subtract the n^0 and n^1 terms. If x satisfies A^1_{ij}, we are left with
 \[(2x_{12} + x_{21} + x_{30} + j)n^2 = 4n^2.\]
 So let $A^2_j = \{2x_{12} + x_{21} + x_{30} + j = 4\}$.

Notice that all these equations A^0_i, A^1_{ij}, and A^2_j are of the form $Ax = an + b$.
Reduce $A(n)x = b(n)$ to $Ax = an + b$ (2)

Step three: Compare coefficients of n on both sides

$(2x_{12} + x_{21} + x_{30})n^2 + (2x_{11} + x_{21} + x_{20})n + (2x_{10} + x_{20}) = 4n^2 + 2n + (n - 5)$.

Note $0 \leq x_{ij} < n$.

- n^0: $(2x_{10} + x_{20}) \equiv (n - 5) \pmod{n} \in \{n - 5, 2n - 5, 3n - 5\}$, for $0 \leq x_{ij} < n$. Let $A^0_i = \{2x_{10} + x_{20} = n - 5 + in\}$, $i = 0, 1, 2$
- n^1: Subtract the n^0 term from both sides. If x satisfies A^0_i, we are left with

$$(2x_{12} + x_{21} + x_{30})n^2 + (2x_{11} + x_{21} + x_{20} + i)n = 4n^2 + 2n.$$

So let $A^1_{ij} = \{2x_{11} + x_{21} + x_{20} + i = 2 + jn\}$, where $j = 0, 1, 2, 3, 4$.

- n^2: Subtract the n^0 and n^1 terms. If x satisfies A^1_{ij}, we are left with

$$(2x_{12} + x_{21} + x_{30} + j)n^2 = 4n^2.$$

So let $A^2_j = \{2x_{12} + x_{21} + x_{30} + j = 4\}$.

Notice that all these equations A^0_i, A^1_{ij}, and A^2_j are of the form $Ax = an + b$.
Reduce $A(n)x = b(n)$ to $Ax = an + b$ (2)

Step three: Compare coefficients of n on both sides

$$(2x_{12} + x_{21} + x_{30})n^2 + (2x_{11} + x_{21} + x_{20})n + (2x_{10} + x_{20}) = 4n^2 + 2n + (n - 5).$$

Note $0 \leq x_{ij} < n$.

- n^0: $(2x_{10} + x_{20}) \equiv (n - 5) \pmod{n} \in \{n - 5, 2n - 5, 3n - 5\}$, for $0 \leq x_{ij} < n$. Let $A^0_i = \{2x_{10} + x_{20} = n - 5 + in\}$, $i = 0, 1, 2$

- n^1: Subtract the n^0 term from both sides. If x satisfies A^0_i, we are left with

$$(2x_{12} + x_{21} + x_{30})n^2 + (2x_{11} + x_{21} + x_{20} + i)n = 4n^2 + 2n.$$

So let $A^1_{ij} = \{2x_{11} + x_{21} + x_{20} + i = 2 + jn\}$, where $j = 0, 1, 2, 3, 4$.

- n^2: Subtract the n^0 and n^1 terms. If x satisfies A^1_{ij}, we are left with

$$(2x_{12} + x_{21} + x_{30} + j)n^2 = 4n^2.$$

So let $A^2_j = \{2x_{12} + x_{21} + x_{30} + j = 4\}$.

Notice that all these equations A^0_i, A^1_{ij}, and A^2_j are of the form $Ax = an + b$.

Reduce $A(n)x = b(n)$ to $Ax = an + b$ (3)

When n is sufficiently large,

$$\{(x_1, x_2, x_3) \in \mathbb{Z}_3^{\geq 0} \mid 2x_1 + (n + 1)x_2 + n^2x_3 = 4n^2 + 3n - 5\}$$

is in bijection with the set

$$\{x = (x_{12}, x_{11}, x_{10}, x_{21}, x_{20}, x_{30}) \in \mathbb{Z}_6^{\geq 0}, 0 \leq x_{ij} < n\},$$

such that x satisfies

$$\begin{pmatrix}
A_0^0 & A_0^1 & A_0^2 \\
A_1^0 & A_1^1 & A_1^2 \\
A_2^0 & A_2^1 & A_2^2 \\
\end{pmatrix}
\begin{pmatrix}
A_{00}^1 & A_{01}^1 & \cdots & A_{04}^1 \\
A_{10}^1 & A_{11}^1 & \cdots & A_{14}^1 \\
A_{20}^1 & A_{21}^1 & \cdots & A_{24}^1 \\
\end{pmatrix}
\begin{pmatrix}
A_0^2 \\
A_1^2 \\
\vdots \\
A_4^2 \\
\end{pmatrix}.$$

Where $AB = A \cap B$, $A + B = A \cup B$ (disjoint union) with all equations A_i^j of the form $Ax = an + b$
Open questions

Theorem (Dahmen-Micchelli, 1988)
For an integral matrix A and a vector $m = (m_1, \ldots, m_k)^T$, denote
\[t(A|m) = \# \{ x \in (\mathbb{Z}_{\geq 0})^k \mid Ax = m \}. \]

Then $t(A|m)$ is a piece-wise quasi-polynomial function in m_1, \ldots, m_k.

Question (Multivariable Case)
If we let terms in A and m be polynomials in variables m_1, \ldots, m_k, is it possible that $t(A|m)$ is still a piece-wise quasi-polynomial function in m_1, \ldots, m_k?

Conjecture (Ehrhart’s Conjecture)
The statement is true if all polynomial functions are linear.